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Fig. S1. TubuleNet segmentations closely copied expert human annotations. (A-C) TubuleNet and expert 
annotations for tubule length, pronephros width (bounding box area x) and pronephros height (box area y). Shown 
on the right is raw input data as used. Crop outs reflect the manual segmentation and TubuleNet segmentations. 
Deviations in pronephros height and width when directly comparing the measurements between manual 
segmentation and TubuleNet due to differential methodology of applying the bounding box are apparent. (D) 
Correlation of the median value of the pronephros area between TubuleNet and U-net segmentations across each 
setup (left and right pronephros separately) (n = 18) (pearson r = 0.99). (E) Correlation of the difference in means 
across the left/right pronephros across each setup (n = 9) (pearson r = 0.94). (F) For eight setups the Dunn's multiple 
comparison mean rank difference was calculated to an RFP injection control. This was performed for both TubuleNet 
measurements and expert annotations. Matched mean rank differences for identical comparisons were compared 
between TubuleNet and expert annotations revealing profound correlation (n = 9) (pearson r = 0.99). 
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Fig. S2. 3D-NephroNet. (A) U-Net training logs. Blue lines (left to right) are locally estimated scatterplot 
smoothing (LOESS) of validation loss. (B) Comparison between Imaris intensity threshold segmentation 
(threshold level increased until full segmentation of the left kidney was achieved) and 3D-NephroNet. Threshold 
segmentation was performed on the single LEL-lectin channel, the single Atp1a1 channel and the LEL-lectin/
Atp1a1 composite. 3D-NephroNet was run on the LEL-lectin/Atp1a1 composite. A largest-two blob filter was 
applied on the 3D-NephroNet segmentation. This embryo is unseen test data. 
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Fig. S3. Efficient genome editing of pkd1 results in cystogenesis in X. tropicalis embryos. (A) Genome editing 
efficiencies for three distinct gRNAs targeting pkd1 as quantified by Sanger sequencing and trace deconvolution 
approaches (3 pools of 5 embryos per gRNA, N = 15). (B) Development of cystic kidneys in X. tropicalis embryos 
after bilateral injection of pkd1 gRNAs in two-cell embryos. (C) Kidney areas were manually measured revealing only 
for pkd1 gRNA 2 a significant increase. (Kruskal-Wallis: p<0.05; Dunn's multiple comparisons: * p<0.05) (D) U-Net 
training logs for 3D-CystNet. Blue lines (left to right) are LOESS of validation loss, IOU across classes and F1 score 

across classes  
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Fig. S4. pkd1 crispants do not show gross morphological abnormalities. (A) mesoSPIM 
recordings in the DAPI channel reveal no gross differences in embryos between non-injected, tyr 
crispants and pkd1 gRNA crispants. Nevertheless, obvious kidney cystogenesis can be observed in 
the LE/Lectin-A5 channels. (B) A chained U-Net approach to investigate possible broad 
abnormalities in structures originating from the vegetal-ventral blastomere. First, an Embryonet (IOU: 
0.87) is used to isolate embryos from low magnification bright-field stereomicroscopy. Isolated single 
embryos are then processed by OrganNet (IOU: 0.75) to provide area measurements of 4 anatomical 
regions: The head (pink), the somites (blue), the eye (green) and then intestines (red). (C-D) U-Net 
training logs for EmbryoNet and OrganNet. Blue lines (left to right) are LOESS of validation loss, IOU 
across classes and F1 score across classes. (E) Fully automated measurements using a Fiji macro 
chaining EmbryoNet and OrganNet allows extraction of somite and intestine area of single embryos 
from low-magnification stereomicroscopy. This reveals no significant differences in sizes of two 
anatomical structures, originating from the CRISPR/Cas9-targeted ventral-vegetal lineage, when 
comparing non-injected, tyr injected and pkd1 injected embryos demonstrating absence of gross 
abnormalities in pkd1 crispants. 
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Fig. S5. 2D-NephroNet, a deep learning solution for kidney segmentation in X. tropicalis 
embryos. (A-B) U-Net training logs: IOU and F1 scores across different training dataset sizes (5, 
15, 25 and 35 per state). State is defined as either hypoplastic, normal or cystic X. tropicalis 
kidneys. Orange line is the LOESS of the three technical repeats, dashed lines are the LOESS of 
each technical repeat separately. (C-D) U-Net training logs: 2D-NephroNet models trained with a 
larger training dataset for more iterations and with a smaller dataset for less iterations. (E) Cross-
correlation of model 1 (panel C) and model 2 (panel D) to two independent human experts using 
45 unseen test images, stratified evenly across the three states.  
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Fig. S6. 2D-NephroNet transfer learning and 2D-CystNet. (A) Transfer learning finetuning 
adapting a pre-trained 2D-NephroNet towards different imaging conditions (different 
stereomicroscope and different zoom level used). Blue lines (left to right) are LOESS of validation 
loss, IOU across classes and F1 score across classes (B) U-Net training logs 2D-CystNet. (C) 2D-
CystNet performance across the phenotypic scale and across three developmental stages. (D) 
Correlation of the pronephros area between 2D-NephroNet and expert annotations (n = 120) 
(pearson r = 0.96). All data used for this correlation was unseen to the network and the expert 
annotator was not involved in labeling the training data. 
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Fig. S7. High-resolution mesoSPIM (using MVPLAPO2XC objective) reveals localized tubular cysts interspersed 
with undilated epithelia in pkd1 crispants. (A) mesoSPIM imaging with a 2x objective clearly showcases local 
cystogenesis in pkd1 crispants. (B) U-Net training logs for 3D-NephroNet-PKD1. Blue lines (left to right) are LOESS of 
validation loss, IOU and F1 score. (C) 3D-NephroNet-PKD1 for 3D reconstruction of kidneys from high-resolution mesoSPIM 
data (acquired with 2x objective) showcasing the spectrum of phenotypes occurring in pkd1 crispants.   
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Fig. S8. Cystogenesis in pkd1 crispants is characterized by a phenotypic spectrum ranging from tubular 
cysts interspersed with undilated epithelia to fully cystic kidneys, reflecting the mosaic nature of CRISPR/
Cas9 genome editing. (A) U-Net training logs for DiameterNet. Blue lines (left to right) are LOESS of validation 
loss, IOU across classes and F1 score across classes (B) DiameterNet was deployed on maximum projections of 
single kidneys imaged using high-resolution MesoSPIM. The resulting segmentation map was employed for 
medial axis skeletonization allowing heatmapping of the distance between each pixel within the DiameterNet 
mask to background pixels with the value zero (C) Significant increase in the average tubular dilation comparing 
the kidneys on the injected side of pkd1 crispants to kidneys on the non-injected side. Tubular dilation is an index 
calculated as the average of each non-zero pixel in the heatmap shown in C. Mann-Whitney test, **p<0.01. (D) 
Histogram plots demonstrating the increase in distance from pixels within DiameterNet to background, a measure 
for tubular dilation around that pixel, when comparing the injected side of pkd1 crispants to either the non-injected 
side or both sides of tyrosinase control crispants. 
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Fig. S9. Generalized edema can be triggered in pkd1 crispants at stage 45 by targeting both kidneys. (A) 
Targeting both the left and the right ventral blastomere allows bilateral gene editing using pkd1 gRNA2. (B-C) 
When both kidneys are targeted pronounced general edema occurs, showcasing a functional consequence of 
renal malfunction and fluid retention in early development.  
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Fig. S10. pkd2 crispant model for autosomal dominant polycystic kidney disease (ADPKD). (A)  Schematic 
of CRISPR/Cas9 injection in the vegetal-ventral blastomere of an 8-cell stage in X. laevis embryos. (B) 
Stereomicroscopy of LE-Lectin/A5 stained embryos reveals normal kidney development in non-injected and 
tyrosinase control embryos. Injections of two independent gRNAs targeting pkd2, existing as a non-duplicated gene 
on the X. laevis L. chromosome, leads to localized renal cyst formation. (C) mesoSPIM light-sheet microscopy 
revealing cystogenesis on the injected (left) side of pkd2 crispants, which is absent on the non-injected (right) side 
or in tyr crispant controls.  

Development: doi:10.1242/dev.199664: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Fig. S11. 2D-NephroNet and 2D-CystNet transfer learning. (A) Transfer learning finetuning adapting a pre-
trained 2D-NephroNet towards towards pkd2 X. laevis embryos. Blue lines (left to right) are LOESS of validation 
loss, IOU across classes and F1 score across classes (B) Transfer learning finetuning adapting a pre-trained 2D-
CystNet towards towards pkd2 X. laevis embryos. 
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Fig. S12. Analysis of pkd2 mutants. (A) Fully automated measurements reveal significant differences in embryo 
size (EmbryoNet total area) (Analysis shown in detail in main figure 3D. (B) EmbryoNet-PKD2 training logs. Blue 
lines (left to right) are LOESS of validation loss, IOU and F1 score. 
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Fig. S13. U-Net deep learning for brain phenotyping. (A) TelenNet training logs. Blue lines (left to right) are 
LOESS of validation loss, IOU and F1 score. (B) BrainNet training logs. Blue lines (left to right) are LOESS of 
validation loss, IOU across classes and F1 score across classes. (C) TelenNet transfer learning to PCNA-stained 
embryos training logs. Blue lines (left to right) are LOESS of validation loss, IOU and F1 score. (D) ProliNet training 
logs. Blue lines (left to right) are LOESS of validation loss, IOU and F1 score.  
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Fig. S14. U-Net deep learning for facial phenotyping. (A) AlcianNet training logs. Blue lines (left to right) 
are LOESS of validation loss, IOU across classes and F1 score across classes. (B) FaceNet training logs. 
Blue lines (left to right) are LOESS of validation loss and IOU across classes. (C) Embryos were subjected 
to four different concentrations of BMS-453 and a DMSO control and facial photographs were acquired. 
FaceNet was deployed on this unseen data and the masks were used to quantify orofacial area (blue), face 
height (blue - bounding box y), face width (blue - bounding box x), eyes (yellow), distance between eyes 
(bounding box edge yellow left eye to bounding box edge yellow right eye) and mouth area (red).  
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Fig. S15. CranioNet. (A) CranioNet training logs. Blue lines (left to right) are LOESS of validation loss, 
IOU and F1 score. (B-C) Transfer learning finetuning adapting a pre-trained CranioNet towards BMS-453 
treated embryos. Blue lines (left to right) are LOESS of validation loss, IOU and F1 score. In panel C 
double the training data was used as in panel B, using the same validation dataset. (D) Transfer learning 
finetuning adapting a pre-trained CranioNet towards six1 embryos. Blue lines (left to right) are LOESS of 
validation loss, IOU and F1 score. 
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Fig. S16. EmbryoNet-ISH. (A) EmbryoNet-ISH training logs. Blue lines (left to right) are LOESS of validation 
loss, IOU and F1 score. (B) Cross-correlation of EmbryoNet-ISH to a human expert using unseen test images 
from different stages of X. tropicalis development.  
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Fig. S17. Part1, U-Net training logs for models used in X. tropicalis reconstruction (Fig. 5D-E) and mouse 
whole kidney imaging (Fig. 5F). (A-E) VoluNet training logs. Blue lines (left to right) are LOESS of validation 
loss, IOU and F1 score. 
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Fig. S18. Part2, U-Net training logs for models used in X. tropicalis reconstruction 
(Fig. 5D-E. (A-E) VoluNet training logs. Blue lines (left to right) are LOESS of validation loss, 
IOU and F1 score. 
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Fig. S19. (A) EmbryoNets were trained on two images shown. EmbryoNet 1 – trained on two 
images containing embryos from clutch 1, EmbryoNet 2 – trained on two images containing 
embryos from clutch 1, EmbryoNet 3 – trained one 1 image containing embryos from clutch 1 
and one image containing embryos from clutch 2 (B-C) All three EmbryoNets were validated 
on an unseen image containing embryos from either clutch 1, embryos from clutch 2 and 
embryos from clutch 1 and clutch 2 intermixed 1:1. Shown is the correlation matrix (B) and the 
results of each EmbryoNet on validation data (C). (D) EmbryoNet training logs. Blue lines (left 
to right) are LOESS of validation loss, IOU and F1 score. 
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Table S1. Primer sequences used for PCR amplification, oligo sequences used for gRNA synthesis and concentrations of injected 
CRISPR/Cas9 ribonucleoprotein complexes. (A) Oligos employed for generation of template DNA for in vitro gRNA transcription. (B) 
Concentrations of sgRNAs and Cas9 microinjected in Xenopus embryos. (C) Genotyping primers for CRISPR/Cas9 target sites. 
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Movie 1. CranioNet 3D reconstruction of craniofacial cartilage from a Col2a1-stained wild-type X. 
tropicalis embryo counterstained with Draq5.
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Movie 2. CranioNet 3D reconstruction of craniofacial cartilage from Col2a1-stained six1+/- and six1-/- 
X. tropicalis embryos shown side-by-side.  
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Movie 3. VoluNet 3D reconstructions of several morphological structures in a four-channel recording of an 
X. tropicalis embryo.
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