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SUMMARY

Converging evidence indicates that major depressive disorder (MDD) and meta-
bolic disordersmight bemediated by shared (patho)biological pathways. However,
the converging cellular and molecular signatures remain unknown. Here, we inves-
tigatedmetabolic dysfunction on a systemic, cellular, andmolecular level in unmed-
icated patients with MDD compared with matched healthy controls (HC). Despite
comparable BMI scores and absence of cardiometabolic disease, patients with
MDD presented with significant dyslipidemia. On a cellular level, T cells obtained
from patients with MDD exhibited reduced respiratory and glycolytic capacity.
Gene expression analysis revealed increased carnitine palmitoyltransferase IA
(CPT1a) levels in T cells, the rate-limiting enzyme for mitochondrial long-chain fatty
acid oxidation. Together, our results indicate metabolic dysfunction in unmedi-
cated, non-overweight patients with MDD on a systemic, cellular, and molecular
level. This evidence for reduced mitochondrial respiration in T cells of patients
with MDD provides translation of previous animal studies regarding a putative
role of altered immunometabolism in depression pathobiology.
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INTRODUCTION

Major depressive disorder (MDD) is a highly prevalent psychiatric disease associated with a substantial dis-

ease burden (Whiteford et al., 2013) and increasedmortality (Machado et al., 2018; Plana-Ripoll et al., 2019).

A large body of literature indicates that MDD is associated with alterations in several (neuro)biological sys-

tems, including dysfunction in metabolic pathways (Otte et al., 2016). Indeed, comorbid depression is

particularly common in patients with cardiometabolic disorders (Gold et al., 2020) and accumulating evi-

dence from large-scale epidemiological studies has revealed a bidirectional association between MDD

and an increased risk for heart disease (Nicholson et al., 2006), diabetes (Mezuk et al., 2008), and metabolic

syndrome (Pan et al., 2012). This seems to extend to subclinical metabolic dysregulation, as a metabolo-

mics analysis in 5,283 cases and 10,145 healthy controls revealed evidence for a distinct profile of dyslipi-

demia in MDD (Bot et al., 2020). These associations were consistent across sex, age, and body mass index

(BMI) strata, indicating that they are unlikely to be epiphenomena of medical comorbidities in MDD.

Converging evidence indicates that the link between metabolic dysfunction and MDD could be mediated

via common (patho)biological pathways. For example, metabolic diseases and MDD have been shown to

share genetic risk factors, as demonstrated by a risk variant overlap between BMI and MDD, particularly in

atypical depression (Milaneschi et al., 2017). Of note, these mainly comprise genes that are involved in in-

flammatory pathways.

Given the importance of inflammation in the pathophysiology of MDD (Miller and Raison, 2016) and the

crucial role of metabolic programming for immunity (Buck et al., 2017), it seems biologically plausible

that metabolic dysfunction in general, and altered immunometabolism in particular, could contribute to

the pathogenesis of depression (Milaneschi et al., 2020). In line with this notion, recent studies using animal

models have provided direct evidence for a causal role of metabolic dysfunction in depression: for

example, diet- or genetically induced obesity has been shown to induce depression-like behavior in
iScience 24, 103312, November 19, 2021 ª 2021 The Authors.
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Table 1. Sample characteristics

MDD (n = 28) HC (n = 28) Test statistics p Valuea

Age, mean years (SD) 32.2 (11.7) 32.2 (10.5) T(df=27) = 0 >.99

BMI, mean kg/m2 (SD) 24.5 (3.4) 23.9 (3.4) T(df=27) = 1.32 .20

% Females (n) 75 (21) 75 (21) X2(df=1) = 0 >.99

% Current smokers (n) 25 (7) 25 (7) X2(df=1) = 0 >.99

MADRS, mean score (SD) 25.3 (5.4) 0.9 (1.4) T(df=27) = 25.09 <.01

BDI-II, mean score (SD) 30.3 (7.0) 2.3 (3.1) T(df=27) = 17.76 <.01

BAI, mean score (SD) 21.9 (13.2) 3.6 (3.1) T(df=27) = 6.99 <.01

CTQ total score (SD) 40.8 (15.5) 35.1 (11.3) T(df=27) = 1.42 .17

% MDD subtype (n) 64.3 (18) – –

% Melancholic (n) 60.7 (17) – –

% Atypical (n) 3.7 (1) – –

BAI, Beck Anxiety Inventory; BDI-II, Beck Depression Inventory II; BMI, body mass index; CTQ, Childhood Trauma Question-

naire; HC, healthy control; MADRS, Montgomery-Asberg Depression Rating Scale; MDD, major depressive disorder.

Unless specified otherwise, values represent mean (standard deviation).
aPaired-samples t test for continuous and McNemar’s test for dichotomous variables.
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mice (Ogrodnik et al., 2019). Of note, this effect was independent of weight gain but was mediated via in-

flammatory mechanisms. On a cellular level, in another study, chronic stress caused T cell-specific distur-

bances of mitochondrial fusion and respiration (Fan et al., 2019). Intriguingly, transfer of these T cells to

non-stressed recipient mice was sufficient to cause anxiety/depression-like behavior (Fan et al., 2019).

However, whether these findings can be translated to humans remains unknown. Thus, although an

impaired mitochondrial function in a number of tissues and cell populations, including in the central

nervous system (CNS) (Pei and Wallace, 2018), may play a role in depression pathobiology, studying these

aspects in the immune system, and specifically in T cells, might be particularly relevant. In the present study,

we therefore examined metabolic dysfunction in unmedicated patients with MDD (but without metabolic

or cardiovascular disease) on a systemic, cellular and molecular level, compared with healthy controls (HC)

individually matched for important potential confounders (age, sex, BMI, smoking status).

RESULTS

An overview of the clinical and demographic characteristics of the study sample is provided in Table 1

(individual patient data are provided in Table S2).

Patients with MDD display subtle signs of systemic metabolic dysfunction

Despite close matching for sex, age, BMI, and smoking status, as well as the absence of cardiometabolic

disorders in both groups, patients with MDD exhibited subtle signs of metabolic dysfunction compared to

healthy controls (HC) (Figure 1). Specifically, patients with MDD showed a higher LDL/HDL ratio (Figure 1A)

and a higher waist/hip ratio (WHR) (Figure 1B). Systolic and diastolic blood pressure readings were similar

between the groups (Figures 1C and 1D). Group differences in LDL/HDL ratio and WHR remained signifi-

cant in secondary analyses using Bonferroni correction for multiple testing. Serum metabolites, measured

by mass spectrometry-based metabolomics and lipidomics in order to identify further global metabolic

signatures in patients with MDD, did not reveal any additional differences between MDD and HC, at least

none large enough to be detected with metabolome-wide correction in our sample (Figure 1E).

Key parameters of mitochondrial respiration and glycolytic activity are reduced in T cells

from patients with MDD

On a cellular level, we observed pronounced impairment of major metabolic readouts in MDD. T cells

(defined by CD3 positivity) from patients with MDD exhibited lower levels of oxygen consumption (OCR)

(Figure 2A) and lower extracellular acidification rates (ECAR) (Figure 2B), indicative of impaired mitochon-

drial respiration and decreased glycolytic capacity, especially under cellular stress (Figure 2E). In the pri-

mary analysis, significant group differences were observed in T cells from patients with MDD showing
2 iScience 24, 103312, November 19, 2021
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Figure 1. Systemic metabolic imbalance in MDD

(A–D) Serum lipids (HDL, high density lipoprotein and LDL, low density lipoprotein, here shown as LDL/HDL ratio) (A),

waist/hip ratio (B), as well as systolic (C) and diastolic (D) blood pressure levels were determined in 28 patients with MDD

and matched HC. Raw data and group median are shown. Wilcoxon signed-rank test was used to compare groups.

(E) Serum metabolomics group comparison in HC versus MDD. In total, 3,511 features were detected by liquid and gas

chromatography-mass spectrometry. Dashed lines on the x axis indicate threshold values separatingmetabolites with >2-

fold expression in MDD versus HC (+1) or <0.5-fold expression in MDD versus HC (�1). The dotted line on the y axis

represents the threshold value for the selected level of significance (p < 0.05).
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decreased basal respiration, lower ATP production, and diminished spare respiratory capacity (Figure 2C).

Moreover, basal respiration was to a large extent coupled to ATP production with almost no H+ (proton)

leak (Figure 2D). With the exception of coupling efficiency, all of these markers were also

significantly different after correction for multiple comparisons in the secondary analyses. In monocytes

(Figure S2) only one readout (coupling efficiency) was significantly different between MDD and controls

in the primary analysis, and this difference was no longer significant after correcting for multiple compar-

isons. Together, these data suggest a cell-specific reduction of mitochondrial respiration in T cells of

patients with MDD.

In order to explore the link of these markers with clinical phenotype, we examined associations of systemic and

T cell markers with clinician-rated depression severity as measured by the Montgomery-Asberg Depression

Rating Scale (MADRS) (Montgomery and Asberg, 1979), with a higher MADRS score indicative of more severe

depression (Figure 2F). Among systemic markers, only LDL/HDL ratio showed significant positive correlation

with twoMADRS items, inner tension and sleep. In contrast, correlations of clinical phenotype weremore robust

for all cellular markers, where basal respiration, ATP production, and spare respiratory capacity of T cells were

significantly negatively correlated with all MADRS items, except for sleep.

Reduced mitochondrial respiration in patients with MDD is unlikely to be explained by global

shifts in T cell phenotype or immune senescence/exhaustion

Different T cell subpopulations have distinct metabolic profiles, depending on their differentiation stage,

activation status, or cellular senescence/exhaustion (Geltink et al., 2018). To rule out the possibility that our

observed changes in mitochondrial respiration weremerely the result of an over- or underrepresentation of

certain T cell subpopulations in patients with MDD, we conducted flow cytometric phenotyping analyses.

Among all the phenotypes tested, only one marker (KLRG1) showed significant group differences between

MDD and HC in the primary analysis; however, this did not survive adjustment for multiple testing in sec-

ondary analyses (Figure 3). Overall, group differences in T cell differentiation or senescence/exhaustion are

thus unlikely to explain the pronounced differences in T cell metabolism.

Decreasedmitochondrial respiration in patients withMDD is not secondary to impairments in

antiviral immunity

Growing evidence suggests an association betweenmetabolically exhausted T cells and chronic infections.

Moreover, prior work has shown that patients with MDD have a higher risk for persistent herpes virus
iScience 24, 103312, November 19, 2021 3
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Figure 2. Decreased mitochondrial respiration in T cells of patients with MDD

(A and B) To quantify mitochondrial respiration (A) as well as glycolytic activity (B) of CD3+ T cells from 28 patients with

MDD and 28 matched HC different modulators of respiration were added sequentially to the cells (see also Figure S1) and

the oxygen consumption rate (OCR) as well as the extracellular acidification rate (ECAR) were determined over time in a

Seahorse XFe96 Analyzer (mean G SEM is shown, all assays run in three to five replicates for each subject).

(C and D) The main parameters of mitochondrial respiration (basal respiration, ATP production, and spare respiratory

capacity) (C) as well as the coupling efficiency expressed as the % of basal respiration coupled to ATP production (CE%)

(D) are shown. See also Figure S1 for further information regarding the calculation of these parameters from OCR

measurements. Individual patient data and median are shown. Wilcoxon signed-rank test was used to compare groups.

(E) OCR and ECAR values under baseline and stressed conditions (after addition of Oligomycin and FCCP) were plotted

against each other to visualize the energy phenotype of the cells (mean G SEM shown).

(F) Spearman rank correlations of systemic and T cell markers with individual MADRS items. Circle sizes indicate

magnitude of correlation, color shading depicts magnitude and direction of correlation (Spearman’s rho, see legend).

Asterisks were added to the circles if p < 0.005.

Oligomycin, ATP synthase inhibitor; carbonyl cyanide-4(trifluoromethoxy) phenylhydrazone (FCCP), uncoupling agent;

Rotenone/Antimycin A, complex I/III inhibitors; BR, basal respiration; CRP, C-reactive protein; IL-6, interleukin 6; LDL/

HDL, low/high density lipoprotein; MADRS, Montgomery-Asberg Depression Rating Scale; SRC, Spare Respiratory

Capacity; TNF, tumor necrosis factor; WHR, waist/hip ratio. Individual patient data for the Seahorse readouts presented

here are provided in the supplementary data file, Data S1.
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(A–D) PBMCs from patients with MDD andmatched HC were examined by flow cytometry. CD4+ (upper panel) and CD8+ T cell subpopulations (lower panel) were

analyzed for the expression of markers classifying differentiation (CD45RA, CCR7; n = 25) (A), chemokine receptors (CXCR3, CCR6, CCR4; n = 25) or regulatory T cell

markers (CD25, CD127; n = 22) (B), markers indicative of exhaustion or senescence (PD-1, KLRG1, CD57; n = 19–20) (C) or inhibitory receptors (CTLA-4, LAG-3, Tim-3;

n = 20) (D). Naive/Memory subpopulations were defined as TNaive (CCR7
+/CD45RA+), TEM (CCR7�/CD45RA�), TCM (CCR7+/CD45RA�), and TEMRA (CCR7�/

CD45RA+). T helper cell subsets were defined as Th1 (CXCR3+/CCR6�), Th2 (CXCR3�/CCR6�/CCR4+), Th17 (CXCR3�/CCR6+/CCR4+), and Th1/Th17 cells (CXCR3+/

CCR6+) (n = 25). For the analysis of inhibitory receptors, PBMCs were stimulated with 10 mg/mL of a-CD3 and 1 mg/mL a-CD28 for 48 h. Median and interquartile

ranges are shown. Wilcoxon signed-rank test was used to compare groups. All p values > 0.1 if not otherwise indicated.
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infections like Epstein-Barr virus (EBV) or cytomegalovirus, both before and after onset of depressive symp-

toms (Andersson et al., 2016). We therefore examined whether the observed reduction in mitochondrial

respiration of T cells in patients with MDD could be linked to differences in antiviral immune responses.

We chose EBV (pooled EBNA-1, LMP2a and BZLF1 peptide pools) as an exemplary antigen as we expected

90%–95% seropositivity in adults. As control antigen, MP65 fromCandida albicanswas applied, a yeast-like

fungus that occurs as a facultative pathogenic commensal on skin and mucosal surfaces and has so far not

been linked to the occurrence of MDD. Median frequency of EBV- and MP65-reactive T cells was similar in

both groups (4 out of 10,000 CD4+ T cells for EBV and 3 out of 10,000 for MP65) (Figure S3). As expected for

a recall antigen, CD45RA� T cells, i.e., bona fide memory T cells, made up almost 100% of the EBV-reactive

T cell population in both HC and patients with MDD. The same was true for the control antigen MP65. An-

tigen-specific T cells obtained from both study groups were capable of producing comparable amounts of

interferon gamma (IFN-g) in response to the viral and the fungal stimulus. Moreover, we could not detect

any significant differences with regard to the expression of exhaustion markers (PD-1) or markers indicative

of cell senescence (CD57) that are typically upregulated in chronic viral infections with continuous antigen

exposure. Together, these data suggest that metabolic alterations in MDD are not secondary to group dif-

ferences in antiviral immunity, at least for common persistent infections such as EBV.

Cell-specific expression of key metabolic regulators

Finally, we explored if the transcriptional profile of T cells from patients with MDD indicated metabolic

reprogramming. Using targeted cell-specific gene expression analysis by qPCR, we found that T cells of

patients with MDD exhibited significantly higher levels of carnitine palmitoyltransferase 1A (CPT1a), which

encodes a rate-limiting mitochondrial enzyme of long-chain fatty acid (FA) oxidation (Figure 4A). However,

expression of SLC2A1, encoding the membrane glucose transporter type 1 (GLUT1), the main glucose

transporter during T cell activation, and a key inflammatory cytokine (TNF) was unaltered in patients with

MDD compared with controls (Figures 4B and 4C). This effect was more pronounced in T cells but still

detectable in monocytes (Figure S4).

To explore additional shifts, we conducted post hoc analyses of cell-specific expression of key metabolic

proteins by Metflow in a subset of n = 5 MDD cases and n = 5 matched healthy controls with sufficient
iScience 24, 103312, November 19, 2021 5
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compared with matched controls (n = 25). Gene expression is shown as fold change relative to housekeeping genes (TBP and

IPO8). Individual patient data and median are shown. Wilcoxon signed-rank test was used to compare groups.

(D-E) The numbers of metabolome-wide significant correlations (of 3,511 detected features) are shown for CD3 and CD14
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GLUT1, glucose transporter 1; TNF, tumor necrosis factor; HC, healthy controls; MDD, major depressive disorder.
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peripheral blood mononuclear cells (PBMCs) available for analysis. The following six key regulators (as

markers of different major metabolic pathways) were chosen: CPT1a (key regulator of FA oxidation),

GLUT1 (glucose uptake), Glucose-6-phosphate-dehydrogenase (G6PD; oxidative phosphorylation), Hexo-

kinase 1 (HK1; glycolysis), Isocitrate dehydrogenase 2 (IDH2; tricarboxylic acid cycle), and Peroxiredoxin 2

(PRDX2; antioxidant). Our results showed no major differences between MDD and HCs in geometric mean

fluorescence intensities of these proteins, at least none that were large enough to be detected in this small

subset. Also, no significant correlations betweenmetabolic proteins and CD3 and CD14 Seahorse readouts

were found after correction for multiple comparisons (Figure S5).

In order to explore potential correlates of altered cellular metabolism and gene expression, we investi-

gated if CD3 and CD14 cellular readouts correlated with global serum metabolites. Results showed

CPT1a gene expression in T cells was the only one with substantial correlations, with 164 serummetabolites

significantly associated after metabolome-wide correction (Figure 4D), including acylglycerols among the

top hits (Figure 4E).
DISCUSSION

The current study examined metabolic dysfunction in unmedicated and otherwise healthy MDD and HC.

Our results showed that MDD is characterized by metabolic dysfunction on a systemic, cellular, and molec-

ular level, even in the absence of overt metabolic disease and when controlling for important confounders.
6 iScience 24, 103312, November 19, 2021
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On a systemic level, we have confirmed findings of a recent hypothesis-free metabolomics study suggest-

ing dyslipidemia in MDD (Bot et al., 2020) that is independent of obesity, sex, age, or other clinical

descriptors and may thus be an early manifestation of MDD and potentially involved in its pathobiology.

This phenomenon could provide a biological pathway for the significantly elevated risk of cardiometabolic

disease in patients with depression.

On a cellular level, we obtained evidence for impaired mitochondrial respiration specifically in T cells of

patients with MDD. Our analyses also showed that these alterations are unlikely to simply reflect an

epiphenomenon of shifts in T cell differentiation, activation, or senescence/exhaustion. This finding cor-

roborates and extends existing evidence of mitochondrial dysfunction in depression (Allen et al., 2018),

which has also been described outside the CNS, e.g., in platelets (Hroudova et al., 2013) and PBMCs (Kar-

abatsiakis et al., 2014; Boeck et al., 2018). Of importance, the metabolic profiles of T cells seen in our

MDD cohort bear striking similarity to those reported for T cells obtained from mice after chronic stress

(Fan et al., 2019). In this previous study, transfer of these T cells to non-stressed mice in the animal model

was sufficient to elicit depression/anxiety-like behavior (Fan et al., 2019), indicating that they could be

causally involved in the pathogenesis of depression. Here, our data, obtained with the same readout sys-

tem for T cell metabolism, provide a translational link from the experimental mouse model to major

depression in humans. One intriguing observation here was that the main mitochondrial readouts in

T cells (basal respiration, spare respiratory capacity, ATP production) did not show strong correlations

with levels of systemic metabolites, using an unbiased metabolomics approach. Although one has to

be careful with such interpretations of sequence or cause and effect from purely cross-sectional, obser-

vational data, this is in line with the notion that reduced mitochondrial respiration in T cells might be a

primary event rather than simply an epiphenomenon. This could have some relevance from a therapeutic

perspective; modulating cellular processes in the peripheral immune system, as compared with the CNS,

might be easier to achieve.

On a molecular level, T cells from patients with MDD showed increased mRNA levels of CPT1a, the rate-

limiting enzyme for mitochondrial FA oxidation. CPT1a codes for carnitine palmitoyltransferase 1A, which

regulates the transport of long-chain FAs across the inner mitochondrial membrane and makes them avail-

able for FA oxidation. Therefore, increased levels of CPT1a gene expression and unaltered levels of

SLC2A1 (encoding GLUT1) at the same time might be suggestive of an increased reliance on lipolysis

and/or ß-oxidation, rather than glycolysis for metabolism; however, we did not measure this directly.

The observed correlations of CPT1a expression in T cells with many metabolites (including acylglycerols

among the top hits) may indicate that CPT1a upregulation is more likely an epiphenomenon of systemic

metabolic changes in MDD, although we obviously cannot infer cause and effect from our observational

data. Ultimately, this finding could add to the emerging evidence that targeting cellular metabolism offers

a potential therapeutic pathway in depression: A study in an animal model of depression (Morkholt et al.,

2017) has provided evidence that chronic stress increases CPT1a expression both in the CNS and in the im-

mune system and that treatment with etomoxir decreases depression-like behavior in rats. Etomoxir has

been in clinical development for cardiometabolic disorders (diabetes and heart failure) but was discontin-

ued owing to hepatotoxicity. Moreover, recent evidence has suggested that etomoxir may exert immuno-

modulatory properties on T cells (Raud et al., 2018), which are independent of CPT1a, so caution is

warranted.

A recent metabolomics study in the general population (Zacharias et al., 2021) found decreased serum

levels of laurylcarnitine in individuals with elevated levels of depressive symptoms. This metabolite is

involved in the transport of (long-chain) FAs from the cytosol to mitochondria for subsequent b-oxidation.

Together with our data, this supports the notion of altered FA oxidation and/or mitochondrial activity in

depression.

In sum, our study provides evidence for metabolic dysfunction on a systemic, cellular, andmolecular level in

MDD, extending previous mechanistic insights from animal models and lending further support to the

notion of depression as a putative ‘‘immunometabolic’’ disease.
Limitations of the study

Several limitations of our study should be noted. First, although our analyses were controlled for medical

comorbidities, obesity, sex, age, and smoking status, the sample size of our study is relatively small.
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However, given that our results on systemic metabolic markers closely mirror findings from larger studies of

MDD versus HC (i.e., evidence for lower HDL and higher LDL), we are confident that our results in this rela-

tively small sample are generalizable to other MDD patient populations. Nevertheless, our findings need

replication in larger, and particularly in longitudinal studies. We have carefully explored alternative expla-

nations for changes in cellular metabolism (including altered immune cell composition, differentiation,

senescence/exhaustion, and antiviral T cell immunity), and it appears that altered cellular metabolism

can be observed without changes in these parameters.

Although the study groups were matched for sex and age, our sample was predominantly female, as would

be expected for MDD. Owing to the low number of males, our study was not powered to test sex differ-

ences in mitochondrial respiration. Such analyses should thus be conducted in larger samples to examine

generalizability of our findings to both sexes or putative sex differences. For anyone interested in sepa-

rately analyzing our main readouts by sex, we have provided patient-level information on sex in Table S2

and Data S1.

In order to unravel the implications of reduced mitochondrial respiration in MDD, future studies should

directly test different cellular functions putatively driven by altered immunometabolism in MDD. Unfortu-

nately, for the present study, we were limited with regard to the amount of biological material that could be

obtained from each participant (e.g., acceptable limits for blood draw volumes as set out in the ethics re-

view and informed consent procedures). Thus, although we conducted extensive experiments to analyze

mitochondrial respiration and key metabolic processes and proteins/enzymes as well as relevant control

readouts, we did not directly assess potential group differences in a range of additional associated cellular

functions. Based on our results, future studies should expand our study by directly probing FA uptake and

transport in T cells (e.g., CD36, FA-binding proteins). In addition, FA oxidation assays could provide in-

sights into whether the observed increase in CPT1a also reflects a higher ability of T cells for FA oxidation.

Moreover, it would be relevant to better understand functional and structural changes within the cells, such

as quantification of mitochondrial mass (e.g., by MitoTracker labeling), visualization of mitochondrial fusion

and fission, assessment of oxygen consumption in isolated mitochondria, and measurement of reactive

oxygen species (e.g., via MitoSOX). Changes in the mitochondrial membrane potential were not measured

in our study but could, for example, be estimated by the use of fluorescent dyes like tetramethylrhodamine,

methyl ester (TMRM) or 5,50,6,60-tetrachloro-1,10,3,30-tetraethyl-imidacarbocyanine iodide (JC-1) in future

studies, as these markers accumulate in healthy cells with intact mitochondrial membrane potential (Perry

et al., 2011). Such measurements might further substantiate findings on reduced mitochondrial respiration

(and ATP production in particular) in T cells of patients with MDD as the transmembrane electrochemical

gradient is the driver of ATP synthesis.

It should be noted that the mitochondrial alterations we have detected in peripheral immune cells, and in

T cells specifically, do not necessarily reflect mitochondrial aberrations in other cells and tissues with rele-

vance for MDD, most notably the CNS. In fact, mitochondrial function is typically regulated in a highly cell-

and tissue-specific fashion (Fernández-Vizarra et al., 2011). However, mitochondrial dysfunction in T cells is

interesting in its own right owing to their putative role in the pathogenesis of depression-like symptoms as

animal models have demonstrated (Fan et al., 2019). Thus, future studies may combine analyses of key

mitochondrial parameters in central and peripheral (immune) cells and tissues in animal models of

depression to expand our knowledge on the influence of an altered peripheral immunometabolism on

the CNS in MDD.

We have previously reported that certain shifts in the T cell compartment can be detected in MDD, at least

in treatment-naı̈ve patients without any psychiatric comorbidity, specifically with regard to the expression

of chemokine receptors (CXCR3, CCR6) (Patas et al., 2018). We could not replicate this in the present cohort

(where some patients, although untreated at the time of study, had previously been treated with antide-

pressants). Thus, we cannot rule out that there may be subtle shifts in T cell subset compositions (e.g., signs

of CD4 T cell exhaustion/senescence as indicated by KLRG1 expression) in MDD. Larger studies are thus

needed to explore this further.

Finally, the sequence of metabolic, immunological, and other (neuro)biological substrates of depres-

sion remains incompletely understood and should be explored in detail in appropriate animal models

and longitudinal clinical studies, including such analyses within the context of randomized controlled
8 iScience 24, 103312, November 19, 2021
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trials. For example, we are currently conducting a randomized trial of add-on statins in patients with

comorbid MDD and obesity, where cellular and molecular substrates of mitochondrial function are

monitored as secondary endpoints (see Otte et al., 2020). This and similar approaches will help to

further dissect the nature of the relationship between depression, metabolic dysfunction, and

immunometabolism.
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STAR+METHODS

KEY RESOURCE TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Brilliant Violet 421� anti-human CD3 (OKT3) Biolegend Cat# 317344; RRID:AB_2565849

Brilliant Violet 510� anti-human CD8 (SK1) Biolegend Cat# 344732; RRID:AB_2564624

FITC anti-human HLA-DR (LN3) Biolegend Cat# 327006; RRID:AB_893569

PE anti-human CD 197 (CCR7) (G043H7) Biolegend Cat# 353204; RRID:AB_10913813

PerCPCy5.5 anti human CD4 (RPA-T4) Biolegend Cat# 300530; RRID:AB_893322

PE/Cy7 anti human CD45RA (HI100) Biolegend Cat# 304126; RRID:AB_10708879

APC anti-human CD38 (HB-7) Biolegend Cat# 356606; RRID:AB_2561902

PE anti-human CD183 (CXCR3) (G025H7) Biolegend Cat# 353706; RRID: AB_10962912

PE/Cy7 anti-human CD196 (CCR6) (G034E3) Biolegend Cat# 353418; RRID:AB_10916518

APC anti-human CD194 (CCR4) (L291H4) Biolegend Cat# 359408; RRID:AB_2562429

Brilliant Violet 421� anti-human FOXP3 (206D) Biolegend Cat# 320124; RRID:AB_2565972

Brilliant Violet 510� anti-human CD3 (SK7) Biolegend Cat# 344828; RRID:AB_2563704

PE anti-human CD279 (PD-1) (EH12.2H7) Biolegend Cat# 329906; RRID:AB_940483

PerCP/Cyanine5.5 anti-human IFN-g (4S.B3) Biolegend Cat# 502526; RRID:AB_961355

APC anti-human CD57 (HNK-1) Biolegend Cat# 359610; RRID:AB_2562757

Brilliant Violet 421� anti-human CD185

(CXCR5) (J252D4)

Biolegend Cat# 356920; RRID:AB_2562303

PE anti-human CD25 (M-A251) Biolegend Cat# 356104; RRID:AB_2561861

APC anti-human CD127 (IL-7Ra) (A019D5) Biolegend Cat# 351316; RRID:AB_10900804

APC/Cyanine7 anti-human CD8a (RPA-T8) Biolegend Cat# 301016; RRID:AB_314134

Brilliant Violet 421� anti-human CD366 (Tim-3)

(F38-2E2)

Biolegend Cat# 345008; RRID:AB_11218598

FITC anti-human CD223 (LAG-3) (11C3C65) Biolegend Cat# 369308; RRID:AB_2629751

PE anti-human KLRG1 (MAFA) (SA231A2) Biolegend Cat# 367712; RRID:AB_2572157

APC anti-human CD152 (CTLA-4) (BNI3) Biolegend Cat# 369612; RRID:AB_2632874

APC-Vio� 770 anti-human CD4 (VIT4) Miltenyi Biotec Cat# 130-096-652; RRID:AB_2660925

VioGreen� CD8 anti-human (BW135/80) Miltenyi Biotec Cat# 130-096-902; RRID:AB_2660905

VioGreen� CD20 anti-human (REA780) Miltenyi Biotec Cat#: 130-111-532; RRID:AB_2656069

VioGreen� CD14 anti-human (Tük4) Miltenyi Biotec Cat# 130-096-875; RRID:AB_2660175

FITC CD154 anti-human (5C8) Miltenyi Biotec Cat# 130-096-233; RRID:AB_10830229

CD40 Antibody, anti-human, pure-functional

grade (HB14)

Miltenyi Biotec Cat# 130-094-133; RRID:AB_10839704

Alexa Fluor� 488 Anti-CPT1A (8F6AE9) abcam Cat# ab171449; RRID:AB_2714024

Anti-IDH2 (EPR7577) abcam Cat# ab230796

Anti-Hexokinase 1 (EPR10134(B)) abcam Cat# ab233837

Anti-Glucose 6 Phosphate Dehydrogenase

(EPR6292)

abcam Cat# ab231828

Anti-Peroxiredoxin 2/PRP (EPR5154) abcam Cat# ab227988

PE Anti-Glucose Transporter GLUT1 (EPR3915) abcam Cat# ab209449

Alexa Fluor� 700 anti-human CD3 (SK7) Biolegend Cat# 344822; RRID:AB_2563420

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Brilliant Violet 421� anti-human CD14

(HCD14)

Biolegend Cat# 325628; RRID:AB_2563296

Brilliant Violet 510� anti-human CD19 (HIB19) Biolegend Cat# 302242; RRID:AB_2561668

BUV395 Mouse anti-human CD4 (SK3 (Leu3a)) BD Biosciences Cat# 563552; RRID:AB_2738275

APC-eFluor 780 anti-human CD8a (SK1) ThermoFisher Scientific Cat# 47-0087-42; RRID:AB_2016684

Brilliant Violet 785� anti-human CD56 (NCAM)

(5.1H11)

Biolegend Cat# 362550; RRID:AB_2566059

Brilliant Violet 650� anti-human CD45RO

(UCHL1)

Biolegend Cat# 304232; RRID:AB_2563462

Brilliant Violet 605� anti-human CD62L

(DREG-56)

Biolegend Cat# 304834; RRID:AB_2562130

Chemicals, peptides, and recombinant proteins

PepTivator� EBV EBNA-1, human Miltenyi Biotec Cat# 130-093-613

PepTivator� EBV LMP2A, human Miltenyi Biotec Cat# 130-093-615

PepTivator� EBV BZLF1, human Miltenyi Biotec Cat# 130-093-611

Human AB serum Sigma Aldrich Cat# H4522

Brefeldin A Sigma Aldrich Cat# B5936

Sodium pyruvate Thermo Fisher Scientific Cat# BP356-100

L-Glutamine Thermo Fisher Scientific Cat# 25030081

Glucose Sigma Aldrich Cat# G7528

Methyl tert-butyl ether (MTBE) Biosolve Chemicals Cat# 13890602

Derivatization reagents for GC (MSTFA) Macherey-Nagel Cat# 701270.510

ULC/MS grade Acetonitrile Biosolve Chemicals Cat# 01204102

Acetic acid glacial ULC/MS Biosolve Chemicals Cat# 01074131

ULC/MS grade Water Biosolve Chemicals Cat# 23214102

Critical commercial assays

Seahorse XF Cell Mito Stress Test Kit Agilent Technologies Cat# 103015-100

Seahorse XF Base Medium Agilent Technologies Cat# 102353-100

Seahorse Calibrant Solution Agilent Technologies Cat# 100840-000

Seahorse XFe96 FluxPak Agilent Technologies Cat# 102416-100

RNeasy Plus Mini Kit Qiagen Cat# 74134

RevertAid HMinus First Strand cDNA Synthesis

Kit

Thermo Fisher Scientific Cat# K1632

TaqMan� Gene Expression Assay Thermo Fisher Scientific Cat# 4331182

CD154 MicroBead Kit, human Miltenyi Biotec Cat# 130-092-658

CD3 MicroBeads, human Miltenyi Biotec Cat# 130-050-101

CD14 MicroBeads, human Miltenyi Biotec Cat# 130-050-201

LS columns Miltenyi Biotec Cat# 130-042-401

MS columns Miltenyi Biotec Cat# 130-042-201

LIVE/DEAD� Fixable Aqua Dead Cell Stain Kit Thermo Fisher Scientific Cat# L34957

Zombie UV� Fixable Viability Kit Biolegend Cat# 423107

Zombie NIR� Fixable Viability Kit Biolegend Cat# 423106

Fixation/Permeablization Kit BD Biosciences Cat# 554714; RRID:AB_2869008

eBioscience� Foxp3 / Transcription Factor

Staining Buffer Set

ThermoFisher Scientific Cat# 00-5523-00

PE/Cy7� Conjugation Kit - Lightning-Link� abcam Cat# ab102903

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

PerCP/Cy5.5� Conjugation Kit - Lightning-

Link�
abcam Cat# ab102911

PE/Atto 594 Conjugation Kit - Lightning-Link� abcam Cat# ab269900

Alexa Fluor� 647 Conjugation Kit (Fast) -

Lightning-Link�
abcam Cat# ab269823

Software and algorithms

BD FACSDiva version 6.1.2 BD Biosciences RRID:SCR_001456

FlowJo 10.1 Treestar Inc., USA RRID:SCR_008520

GraphPad Prism 7 GraphPad Software Inc., USA RRID:SCR_002798

Wave Desktop 2.3 Agilent Technologies RRID:SCR_014526

R Version 4.0.5 R Project for Statistical Computing RRID:SCR_001905

Leco Chroma-TOF-GC Software v4.50.8.0 LECO N/A; https://www.leco.com/

product/chromatof-software

Python Programming Language 3.8.5 http://www.python.org/ RRID:SCR_008394

MatPlotLib 3.3.1 http://matplotlib.sourceforge.net RRID:SCR_008624

NumPy 1.19.1 http://www.numpy.org RRID:SCR_008633

Pandas 1.1.3 https://pandas.pydata.org RRID:SCR_018214

SciPy 1.5.2 http://www.scipy.org/ RRID:SCR_008058

Seaborn 0.11.0 https://seaborn.pydata.org/ RRID:SCR_018132

Statsmodel 0.12.0 http://www.statsmodels.org/ RRID:SCR_016074

Other

ACQUITY UPLC HSS T3 Column Waters Cat# 176001132

ACQUITY UPLC BEH C8 Column Waters Cat# 176000885
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RESOURCE AVAILABILITY

Lead contact

Requests for further information regarding resources and reagents used in this study should be directed to

the lead contact, Prof. Stefan Gold (stefan.gold@charite.de).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data on cellular metabolism measurements are available as a supplementary file (Data S1). Further data

reported in this paper will be shared by the lead contact upon request.

d No custom code was used in the analysis of the data.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants and clinical assessments

The study was approved by the Ethics Committee of Charité - Universitätsmedizin Berlin (EA1/096/15) and

conducted in accordance with relevant international, national and institutional guidelines (Helsinki

Declaration of 1975). All participants provided written informed consent and received remuneration for

participation. MDD patients, aged 18 to 60 years, were recruited via the in- and outpatient centers of
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the Department of Psychiatry, Charité - Universitätsmedizin Berlin. HC were recruited via the university

hospital’s study data bases as well as via print and online advertisements.

Summary and detailed patient characteristics can be found in Tables 1 and S2. MDD patients and HC were

matched pairwise for age, sex, smoking status, and BMI to minimize potential confounding effects of these

factors on biological variables of interest. Participants were excluded if they had a diagnosis of relevant

medical diseases (e.g., diabetes, cardiovascular diseases, autoimmune or infectious illnesses), currently

received immunomodulatory drugs (such as non-steroidal anti-inflammatory drugs (NSAIDs), glucocorti-

coids or antibiotics), or were vaccinated in the last three months. Pregnancy was also an exclusion criterion.

For the MDD group, patients had to have a clinician-confirmed diagnosis of MDD and a minimum antide-

pressant-free period of two weeks. Patients with comorbid psychiatric diagnoses other than mild-to-mod-

erate anxiety disorders were excluded. All HCs did not meet diagnostic criteria for any psychiatric disorder,

had a Montgomery Asberg Depression Rating Scale (MADRS) score <7 and no personal or family history of

affective disorders (first-degree relatives).

During the eligibility visit, participants underwent a detailed medical history assessment and a thorough

physical examination to assess body weight, height, waist/hip ratio, and blood pressure. In addition, blood

samples were taken for standard laboratory diagnostics, including: hemoglobin, hematocrit, MCV, MCH,

MCHC, RDW-CV, MPV, leukocyte, erythrocyte and platelet counts, differential blood count, CRP, HDL

and LDL cholesterol. Clinical diagnosis of MDD according to DSM-5 (American Psychiatric Association

and DSM-5 Task Force, 2013) was confirmed by two experienced board-certified psychiatrists (DP, CO)

as well as a structured interview (Mini-International Neuropsychiatric Interview = MINI). Clinician rating

of depression severity was obtained using theMADRS. MINI andMADRS were conducted by a trained rater

(HH). Self-report symptom severity was assessed by questionnaires for anxiety (Beck Anxiety Inventory,

BAI), depressive symptoms (Beck Depression Inventory II, BDI-II), and adverse childhood experiences

(Childhood Trauma Questionnaire, CTQ).
METHOD DETAILS

Blood collection and isolation of PBMCs

Following an overnight fasting period of 12 h, peripheral blood was collected in heparinized tubes (BD,

Germany) between 8.00 a.m. and 9.30 a.m. PBMCs were isolated within 1 h of collection via density gradient

centrifugation. In short, diluted blood [1:1 with phosphate-buffered saline (PBS, Gibco, ThermoFisher Scientific,

Germany)] was layered on density medium (Biocoll, Biochrome, Germany), centrifuged, and the PBMC layer ob-

tained. PBMCswerewashed twice in PBS, counted, and resuspended in RPMI-1640+GlutaMaxmedium (Gibco,

ThermoFisher Scientific) supplemented with 25% heat-inactivated fetal calf serum (FCS) (Biochrome) and 10%

dimethylsulfoxide (DMSO) (Applichem GmbH, Germany) at 107 cells/ml for cryopreservation in liquid nitrogen.

Cryopreserved PBMCs were thawed in a 37�C water bath for 2 min before being transferred into 10 ml of 37�C
thawingmedium (RPMI-1640+GlutaMax+ 10%FCS). For antigen-reactivity experiments, FCSwas replacedwith

5%humanABserum (Sigma-Aldrich,Germany). Cellswere thenwashedwithmedium, counted andprepared for

subsequent experiments as described below.
Blood cholesterol measurements

Serum high density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol levels were determined

by a clinically licensed diagnostic lab (Labor Berlin - Charité Vivantes GmbH, Germany).
Metabolomics and lipidomics

General sample preparation and extraction for LC- and GC-MS: The sample preparation was performed

according to MetaSysX standard procedure, a modified protocol from Salem et al. (2016). Briefly, 50 ml

of serum from 22 MDD patients and corresponding matched HC was extracted by methyl-tert-butyl-ether

(MTBE)/methanol/water solvent system that separates molecules into aqueous and organic phase respec-

tively. After MTBE extraction fractions were collected to new tubes. Additional 150 ml of polar phase was

transferred to a tube for subsequent derivatization and GC-MS analysis. All the samples in new tubes

were dried down using a centrifugal evaporator and stored at �80�C until LC-MS and GC-MS analysis.

Liquid phase chromatography and mass spectrometry (LC-MS) sample preparation. The dried sam-

ples were resuspended in 100 ml of water or acetonitrile for polar and lipid measurements respectively.
iScience 24, 103312, November 19, 2021 15
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LC-MS measurements. The samples were measured with a Waters ACQUITY Reversed Phase Ultra Per-

formance Liquid Chromatography (RP-UPLC) coupled to a Thermo-Fisher Exactive Plus mass spectrometer

(Thermo Fisher Scientific). C8 (100 mm 3 2.1 mm 3 1.7mm particles; Waters) and C18 (100 mm 3 2.1 mm 3

1.8mm particles; Waters) columns were used for the lipophilic and the hydrophilic measurements, respec-

tively. A 15 min gradient was used for separation of polar and lipophilic compounds. The mobile phases for

separation of polar and semi-polar compounds were 0.1% formic acid in H2O (buffer A) and 0.1% formic

acid in acetonitrile (buffer B). The chromatographic separation of these analytes was performed in the

following conditions: A 99% initial to 1 min, A 99% to A 60% to 11 min, A 60% to A 30% to 13 min and

A30% to A 1% to 15 min. The following mobile phases were used for lipids and lipophilic metabolites sep-

aration: 1% of 1M NH4Ac in 0.1% acetic acid (buffer A) and acetonitrile: isopropanol (7:3) containing 1% of

1M NH4Ac in 0.1% acetic acid (buffer B). The separation of lipids and lipophilic compounds was performed

with a step gradient from 45% initial to 1 min, 45% A to 25% A in 4 min, 25%–11% A in 11 min and 11%–0% A

in 15 min. Chromatograms were recorded in Full Scan MS mode (Mass Range [100–1500]). All mass spectra

were acquired in positive and negative mode.

LC-MS data processing and annotation. LC-MS RAW data files were extracted with the PeakShaper

-metaSysX GmbH internal software. Alignment and filtering of the LC-MS data were completed using in-

house software. An in-house metaSysX database of chemical compounds was used to match the features

detected in the LC-MS polar and non-polar platform. The metaSysX database contains the mass-to-charge

ratio and the retention time information of reference compounds measured at the same chromatographic

and spectrometric condition as samples measurements. A 5 ppm and 0.1 min deviation from the reference

compounds mass-to-charge-ratio and retention time respectively were used as matching criteria.

Gas chromatography andmass spectrometry (GC-MS) sample preparation. The derivatisation of the

metabolites for GC-MS analysis was performed according to previously described method (Lisec et al.,

2006). Briefly, the dried down samples were suspended in methoxy-hydrochlorid/pyridine solution and

incubated at 30�C for 90 min followed by derivatization with N-methyl-N-trimethylsilyltrifluoroacetamide

(MSTFA) at 37�C for 30 min.

GC-MS measurements. The samples were measured on an Agilent Technologies GC coupled to a Leco

Pegasus HTmass spectrometer which consists of an EI ionization source and a TOFmass analyzer. Column:

30 m DB35; starting temp: 85�C for 2 min; gradient: 15�C per min up to 360�C.

GC-MS data processing and annotation. NetCDF files that were exported from the Leco Pegasus soft-

ware were imported into the ‘‘R’’ Bioconductor package TargetSearch (Cuadros-Inostroza et al., 2009) to

transform retention time to retention index (RI), to align the chromatograms, to extract the peaks, and

to annotate them by comparing the spectra and the RI to the Fiehn Library and to a user created library.

Annotation of peaks was manually confirmed in Leco Pegasus. Analytes were quantified using a unique

mass. Metabolites with a RT and a mass spectrum that did not have a match in the database were labeled

as unknown.

Data analysis. Feature intensities were log2-transformed and platform-wise subjected to measurement-

day- and sample-median-normalization as well as filtering (retention time, group-wise mean intensity).

Features with more than 20% missing values were discarded, the final dataset exhibited a total of 3511

features. Differential expression of features with respect to healthy and depressed groups was assessed

by means of a linear model. We added age, body mass index, sex, measurement day, smoking status

and thawing cycle as predictors to control for potential confounding. We controlled the false-discovery

rate for multiple comparisons platform-wise by the procedure of Benjamini & Hochberg (Benjamini and

Hochberg, 1995). Features were considered differentially expressed if the FDR-corrected p values with

respect to study groups was below a = 0.05. Associations of features with endpoints were quantified via

partial correlations. To this end, we predicted feature intensities and endpoints by a linear model

comprising the potential confounders age, body mass index, sex, measurement day, smoking status and

thawing cycle. We calculated Spearman’s rank correlation coefficient from the residuals. False-discov-

ery-rate was platform-wise controlled for multiple comparisons by the procedure of Benjamini & Hochberg.

Associations were considered significant if the FDR-corrected p values were below a = 0.05. Due to limited

availability of biomaterial from study participants BHC050, BHC053 BMDD010, BMDD013, BMDD023 and

BMDD031 these subjects were not part of the statistical analysis.
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Purification of T cells and monocytes

After thawing of cryopreserved PBMCs, CD3+ T cells and CD14+ monocytes were purified sequentially via

magnetic-activated cell sorting (MACS, Miltenyi Biotec, Germany). In brief, PBMCs were incubated with

20 ml of a-CD3 Microbeads (Miltenyi Biotec) and 80 ml of MACS buffer (0.5% BSA in AutoMACS rinsing so-

lution, both Miltenyi Biotec) per 107 cells for 15 min at 4�C, washed and taken up in MACS buffer. Labeled

cells were then applied to an LS column (Miltenyi Biotec) for CD3+ T cell positive selection according to the

manufacturer’s instructions. Subsequently, CD14+ monocytes were purified from the negative fraction with

a-CD14 Microbeads (Miltenyi Biotec) in an analogous manner. In our hands, this procedure yields a cell

purity of 96.5 + 1.2% for T cells and 92.3 + 1.7% for monocytes.

Cellular respiration assay

Live cell metabolic assessments were conducted using the Cell Mito Stress Assay in a Seahorse XFe 96

Analyzer, optimized for use with cryopreserved primary human immune cells as described (Taenzer,

2019). Briefly, magnetically purified CD3+ T cells and CD14+ monocytes were rested for 2 h at 37�C and

5% CO2 in RPMI1640 medium + GlutaMAX +10% FCS at a density of 2 3 106 cells/ml. Following a washing

step with Seahorse XF Base Medium (Agilent Technologies, USA) supplemented with 1 mM sodium

pyruvate, 2 mM L-glutamine (both ThermoFisher Scientific), 10 mM glucose (Sigma Aldrich) and adjusted

to pH 7.4. Cells were then transferred to a 96-well Seahorse cell culture plate in Seahorse medium at a

density of 4 3 105 cell per well in 3-5 replicates. The plate was incubated for 30 min at 37�C in a non-

CO2 environment. The sensor cartridge was pre-hydrated with calibration buffer (Agilent Technologies)

for 4 h and the injection ports were filled with oligomycin, FCCP, rotenone/antimycin A at final assay

concentrations of 2 mM, 1 mM or 0.5 mM, respectively (Seahorse XF Cell Mito Stress Test Kit, Agilent

Technologies), or Seahorse medium. After an automated calibration process according to the manufac-

turer’s instructions the assay plate was measured in a Seahorse XFe 96 Analyzer (Agilent Technologies).

Key metabolic parameters were analyzed with Wave software (Agilent Technologies) (Figure S1). Matched

patient/HC pairs were measured on the same plate to avoid day-to-day variations between pairs.

Analysis of T cell phenotype

Antibody panels for flow cytometric analysis of T cell phenotype are depicted in Table S1. Thawed PBMCs

were incubated with a live/dead marker (Zombie NIR Fixable Viability Kit, Biolegend, UK) in PBS for 15 min

(together with the CCR7 antibody for the naive/memory T cell panel). Antibody premixes (see Table S1, all

Biolegend) were prepared in staining buffer [PBS +0.5% bovine serum albumin (Miltenyi Biotec) + 2 mM

EDTA (Promega, USA) + 0.02% sodium azide (Sigma-Aldrich)] and added to the cells for further 15 min.

Following a washing step, samples were resuspended in staining buffer and measured on a FACSCanto

II flow cytometer (BD, Germany). All flow cytometry data described (below) were analyzed using FlowJo

version 10.1 software (Treestar Inc., USA).

Analysis of inhibitory receptors and KLRG1

After thawing of PBMCs, each 53 105 cells were seeded into two wells of a 96-well round bottom plate and

rested over night at 37�C, 5% CO2. The next day, the cells were stimulated with 10 mg/ml of a-CD3 antibody

and 1 mg/ml a-CD28 antibody or left unstimulated for 48 hours. Subsequently, PBMCs were harvested,

washed with PBS and stained with the respective staining mix (Table S1) for 15 min at room

temperature. Cells were washed and resuspended in staining buffer before flow cytometric analysis.

Analysis of EBV-reactive T cells

3-103 106 PBMCs were seeded at a density of 53 106 cells/cm2 in cell culture plates in RPMI1640medium+

GlutaMAX +5% human AB serum and incubated over night at 37�C, 5% CO2. The next morning, cells were

stimulated with EBV antigens (EBNA-1 + LMP2a + BZLF1 peptide pools), MP65 peptide pool (all Miltenyi

Biotec, final concentration 0.6 nmol/ml/peptide) or left unstimulated for 7 h. To avoid downregulation of

the CD154 activation marker, a-CD40 antibody was added during the incubation period at 1 mg/ml

(Miltenyi Biotec). After 5 hours 2 mg/ml Brefeldin A (Sigma-Aldrich) was added for the last two hours of stim-

ulation. The cells were harvested and a small aliquot was removed for later FACS staining (= original frac-

tion; for all antibody panels see Table S1). PBMCs were washed with cold staining buffer and labeled with

a-CD154 Biotin + a-Biotin Microbeads according to the manufacturer’s instruction (CD154 MicroBead Kit,

Miltenyi Biotec) with a slight adaptation: The a-Biotin-antibody was added in combination with the surface

antibody mix in PBS. After a washing step the cells were fixed with fixation/permeabilization solution (BD)
iScience 24, 103312, November 19, 2021 17



ll
OPEN ACCESS

iScience
Article
and transferred to an equilibrated MS separation column attached to a strong magnet (Miltenyi Biotec).

The column was rinsed twice with Perm/Wash buffer (BD) and the intracellular staining mix was added

directly onto the column in Perm/Wash buffer. After a 12 min incubation time, the column was washed

again with Perm/Wash buffer and the enriched cells were eluted with staining buffer (= CD154 enriched

fraction). The CD154 enriched fraction was measured on a FACS Canto II flow cytometer (BD). For analysis,

the number of non-specifically activated background cells was subtracted from the positive signal. The fre-

quency of antigen-reactive T cells was calculated by dividing the absolute number of CD4+/CD154+ T cells

after enrichment by the absolute number of CD4+ T cells within total PBMCs before enrichment.
Cell-specific gene expression by qPCR

CD3+ T cells and CD14+ monocytes were isolated from thawed PBMCs by magnetic-activated cell sorting,

as described above. RNA isolation was performed using Qiagen RNeasy Plus Mini Kit (Qiagen, Germany)

according to manufacturer’s instructions. Concentration and purity were measured with a NanoDrop spec-

trophotometer (NanoDrop 2000c, ThermoFisher Scientific). RNA was then transcribed to complementary

DNA (cDNA) using the RevertAid H Minus First Strand cDNA Synthesis Kit (ThermoFisher Scientific), ac-

cording to manufacturer’s instructions. cDNA amplification was carried out on a StepOne Real-Time

PCR system (Applied Biosystems, Germany) using TaqMan Gene Expression Assays (ThermoFisher Scien-

tific) for TNF (Hs01113624_g1), SLC2A1 (Hs00892681_m1) (encoding GLUT1) and CPT1a (Hs00912671_m1).

All RT-qPCR reactions were performed in triplicates with matched control and patient samples always on

the same plate. Results are given as relative gene expression (normalized to the geometric mean of the two

housekeeping genes, TATA Box Binding Protein (TBP; HS00427620_m1) and Importin 8 (IPO8;

Hs00183533_m1).
Met-flow

Met-Flow, a flow cytometry-based method capturing the metabolic state of immune cells by targeting key

proteins and rate-limiting enzymes across multiple pathways (Ahl et al., 2020), was used in a subset of n = 5

MDD cases and n = 5 matched healthy controls. The antibody panel used for flow cytometry-based meta-

bolic readouts is provided in Table S1. The key metabolic proteins CPT1a, GLUT1, PRDX2, G6PD, IDH2 and

HK1 were chosen for analysis.

PBMCs were thawed and 1.53 106 cells were seeded into round bottom 96 well plates at a density of 0.53

106 cells/well in RPMI1640medium +10% FCS and incubated for 2 hrs at 37�C, 5% CO2. Cells were then pre-

stained with a Live/Dead marker (Zombie UV Fixable Viability Kit, Biolegend) in PBS for 20 min at RT in the

dark. Following a washing step with FACS buffer (PBS + 2 % BSA), surface staining antibody mix prepared

in PBS was added to the cells and incubated for 30 min at RT protected from light. After a washing step

(Perm/wash solution, Invitrogen eBioscience Foxp3/Transcription Factor Staining Buffer Set, Thermo

Fisher Scientific), cells were fixed with fixation/permeabilization solution (Invitrogen eBioscience Foxp3/

Transcription Factor Staining Buffer Set, Thermo Fisher Scientific) for 30 min, followed by intracellular stain-

ing in permeabilization buffer for 30 min at RT in the dark. PBMCs were washed once more with Perm/wash

solution, resuspended in FACS buffer and measured on a FACS Fortessa flow cytometer (BD).
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

Continuous variables were analyzed with Wilcoxon signed-rank test based on the pairwise matching of

MDD patients and HC (for age, sex, smoking, and BMI). Dichotomous variables were analyzed with McNe-

mar’s test.

Planned and pre-specified primary analyses used the standard, unadjusted alpha level of 0.05 for each var-

iable of interest (each systemic metabolic marker, each cellular respiration read-out, and all cell subset fre-

quencies obtained from immunophenotyping). In order to corroborate these results, we also conducted

secondary analyses adjusting for multiple comparisons per group of variables of interest using Bonferroni

adjustments (i.e. an alpha level of 0.0125 for the four systemic markers LDL/HDL ratio, WHR, systolic and

diastolic blood pressure, an alpha level of 0.0071 for the seven parameters of cellular respiration in

T cells and monocytes, and an alpha level of 0.005 for ten MADRS items, respectively). Gene expression

analyses were considered exploratory and not adjusted for multiple comparisons. Statistical details
18 iScience 24, 103312, November 19, 2021


	Reduced mitochondrial respiration in T cells of patients with major depressive disorder
	Introduction
	Results
	Patients with MDD display subtle signs of systemic metabolic dysfunction
	Key parameters of mitochondrial respiration and glycolytic activity are reduced in T cells from patients with MDD
	Reduced mitochondrial respiration in patients with MDD is unlikely to be explained by global shifts in T cell phenotype or  ...
	Decreased mitochondrial respiration in patients with MDD is not secondary to impairments in antiviral immunity
	Cell-specific expression of key metabolic regulators

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resource table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Participants and clinical assessments

	Method details
	Blood collection and isolation of PBMCs
	Blood cholesterol measurements
	Metabolomics and lipidomics
	Liquid phase chromatography and mass spectrometry (LC-MS) sample preparation
	LC-MS measurements
	LC-MS data processing and annotation
	Gas chromatography and mass spectrometry (GC-MS) sample preparation
	GC-MS measurements
	GC-MS data processing and annotation
	Data analysis

	Purification of T cells and monocytes
	Cellular respiration assay
	Analysis of T cell phenotype
	Analysis of inhibitory receptors and KLRG1
	Analysis of EBV-reactive T cells
	Cell-specific gene expression by qPCR
	Met-flow

	Quantification and statistical analysis
	Statistical analysis






