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Abstract 

Background: Postoperative delirium (POD) and postoperative cognitive dysfunction (POCD) are frequent and serious 
complications after surgery. We aim to investigate the association between genetic variants in cholinergic candidate 
genes according to the Kyoto encyclopedia of genes and genomes ‑ pathway: cholinergic neurotransmission with 
the development of POD or POCD in elderly patients.

Methods: This analysis is part of the European BioCog project (www. biocog. eu), a prospective multicenter obser‑
vational study with elderly surgical patients. Patients with a Mini‑Mental‑State‑Examination score ≤ 23 points were 
excluded. POD was assessed up to seven days after surgery using the Nursing Delirium Screening Scale, Confusion 
Assessment Method and a patient chart review. POCD was assessed three months after surgery with a neuropsycho‑
logical test battery. Genotyping was performed on the Illumina Infinium Global Screening Array. Associations with 
POD and POCD were analyzed using logistic regression analysis, adjusted for age, comorbidities and duration of anes‑
thesia (for POCD analysis additionally for education). Odds ratios (OR) refer to minor allele counts (0, 1, 2).

Results: 745 patients could be included in the POD analysis, and 452 in the POCD analysis. The rate of POD within this 
group was 20.8% (155 patients), and the rate of POCD was 10.2% (46 patients). In a candidate gene approach three 
genetic variants of the cholinergic genes CHRM2 and CHRM4 were associated with POD (OR [95% confidence interval], 
rs8191992: 0.61[0.46; 0.80]; rs8191992: 1.60[1.22; 2.09]; rs2067482: 1.64[1.10; 2.44]). No associations were found for POCD.

Conclusions: We found an association between genetic variants of CHRM2 and CHRM4 and POD. Further studies 
are needed to investigate whether disturbances in acetylcholine release and synaptic plasticity are involved in the 
development of POD.

Trial registration: ClinicalTrials.gov: NCT02265263.
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Introduction
Postoperative delirium (POD) is a common and seri-
ous complication, presenting as an acute change in the 
mental state in terms of attention and other cognitive 
functions [1]. The condition has been associated with 
increased morbidity and mortality rates [2, 3], as well as 
with a chronic deterioration of cognitive capacity, termed 
postoperative cognitive dysfunction (POCD), which can 
lead to dementia [4, 5].

The incidence of POD and POCD is related to a num-
ber of predisposing and precipitating risk factors [6, 7], 
and although the condition can develop at any age, older 
patients are particularly susceptible. It is unknown to 
what extent POD and POCD are subject to genetic fac-
tors [8]. However, results of a systematic review suggest 
that genetic factors are likely to influence the devel-
opment of POD and POCD [9, 10]. Neurotransmitter 
imbalance, in addition to neuroinflammation is one of 
the leading hypotheses for the development of delirium 
[11]. It was hypothesized that neuroinflammation is 
driven by a disrupted cholinergic neurotransmission [12]. 
However, the factors responsible for the disturbance of 
cholinergic neurotransmission are not sufficiently under-
stood. Genome-wide association studies (GWAS) have so 
far been unable to identify a link between the choliner-
gic system and the development of POD and POCD [13, 
14], although numerous polymorphisms are located in 
the cholinergic system [15] and a connection to inflam-
mation has already been established [16]. To confirm the 
evidence so far of the two previous GWAS, we first per-
formed a GWAS.

Futhermore, the objective of this study was to investi-
gate whether genetic variants in the cholinergic candidate 
genes were associated with the development of POD or 
POCD in elderly patients. For that reason we additionally 
conducted a candidate gene association study (CGAS). 
Since there is no evidence in the literature indicating 
which cholinergic genes or variants could be responsi-
ble for the disturbance of cholinergic neurotransmission, 
we decided to investigate all cholinergic genes involved 
in cholinergic neurotransmission according to the Kyoto 
encyclopedia of genes and genomes (KEGG) pathway 
[17–19].

Methods
Study design and population
This analysis was conducted as part of the BioCog project 
(www. biocog. eu), which is an international, prospective, 
multicenter observational study that recruited patients 

at the anesthesiology departments of the Charité – Uni-
versitätsmedizin Berlin, in Germany, and the University 
Medical Center Utrecht in the Netherlands. The project 
was designed to identify biomarker panels associated 
with an increased risk of POD and POCD, as well as pos-
sible clinical outcome predictors [20]. The project was 
registered (ClinicalTrials.gov: NCT02265263), approved 
by Ethics Committees in both countries (ref.: EA2/092/14 
and 14-469), and was conducted in accordance with the 
declaration of Helsinki Written. All relevant data protec-
tion regulations were followed, and informed consent 
was obtained from all patients.

The study included patients aged ≥ 65  years undergo-
ing elective surgery with an expected surgical duration 
of at least 60 min, and a Mini-Mental-State-Examination 
(MMSE) score > 24 points. Detailed inclusion and exclu-
sion criteria are described in a previous publication [20, 
21]. Within the study, further publications with other 
questions have been published. Worth mentioning here 
seem the manuscripts, which investigate the association 
between preoperative medication use and development 
of POD and POCD [22] or between three Anticholinergic 
Drug Scales and development of POD [23] and between 
radiological, chemical and pharmacological cholinergic 
system parameters and preoperative neurocognitive dis-
order [21].

Baseline measurements
Baseline measurements included: age, sex, Charlson 
Comorbidity Index (CCI) [24], duration of anesthesia and 
education according to the International Standard Clas-
sification of Education (ISCED).

Postoperative delirium
POD was assessed daily through a validated delirium 
screening (using the Nursing Delirium Screening Scale, 
Confusion Assessment Method and a patient chart 
review) until the 7th postoperative day. For a detailed 
description of the assessment, please refer to previous 
publications [22, 23].

Postoperative cognitive dysfunction (POCD)
A neuropsychological test battery was used to identify 
POCD, consisting of paper-based and computerized 
assessments performed prior to surgery and at a three-
month follow-up. For a detailed description of the assess-
ment, please refer to a previous publication [22].
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Genotyping
Blood samples were obtained from patients preop-
eratively. The DNA was extracted from whole blood 
or buffy coat with the ReliaPrep™ Blood gDNA Mini-
prep System (Promega GmbH, Walldorf, Germany) and 
with the Maxwell®RSC Buffy Coat DNA Kit (Promega 
GmbH) according to the manufacturer’s instructions. 
For ReliaPrep™ System we adopted the protocol: Lysis 
15 min at 56  °C, all steps for mixing at least 20  s. The 
Maxwell®RSC Kit was applied automatically using the 
Maxwell® RSC 48 (Promega GmbH). Genotyping was 
performed on the Illumina Infinium Global Screening 
Array (GSA) v2.0 (Illumina, Inc., San Diego, CA, USA) 
using a semiautomated protocol. All laboratory proce-
dures were performed in accordance with the manufac-
turer’s instructions. Illumina raw intensity files (.idat) 
were uploaded together with the Illumina GSA v2.0 
manifest (.bmp) and cluster file (.egt) into the Genom-
eStudio v2.0 software and genotypes were subsequently 
exported to PLINK format. Afterwards, coordinates of 
genetic variants were converted according to the new-
est human genome build (hg38), as genetic variants 
were initially aligned to hg19. For this, we used an exe-
cutable of the liftOver tool provided in the University 
of California Santa Cruz (UCSC) Genome Browser tool 
suite [25] and a wrapper script provided on GitHub 
[26] for files in PLINK-format.

Quality Control was performed in R software envi-
ronment (version 3.5.1) [R Core Team (2017). R: A 
language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. 
URL https:// www.R- proje ct. org/] and with PLINK 27 
[Package: PLINK (v1.90b6.12), Author: Shaun Purcell, 
URL: http:// pngu. mgh. harva rd. edu/ purce ll/ plink/] [27].

We filterd for chromosomes 1–22 and included them 
for further analysis. Therefore, we removed genetic var-
iants with no chromosomal information, and variants 
that lay on mitochondrial chromosomes, on allosomes 
or on uncommon chromosome variants. Afterwards, 
we filtered out monomorphic variants that were not in 
Hardy–Weinberg Equilibrium (p < 0.0001). Lastly, we 
checked the Multidimensional scaling (MDS) plots for 
possible outliers (see Additional file 1: Figure S1, Addi-
tional file 2: Figure S2).

Analysis
The baseline characteristics are shown as median with 
interquartile ranges, or frequencies with percentages. 
Group differences were tested using Mann–Whitney U 
test or Chi-Square Test, as appropriate.

GWAS
After quality control, we first performed multiple 
logistic regression analysis with PLINK in a GWAS 
approach, with either POD or POCD as the response 
and each variant as the predictor, adjusting for possible 
confounding variables. We adjusted for variables that 
were chosen a priori and included age, CCI and dura-
tion of anesthesia for the regression analysis of POD, 
and age, sex, CCI, education (according to ISCED, 
with regard to level 1–4 which corresponds to a lower 
educational level) and duration of anesthesia for the 
regression analysis of POCD. We considered a p-value 
threshold of 5 ×  10− 8 as genome-wide significant and 
1 ×  10− 5 as exploratory significant. The retrieved odds 
ratios associated with variants refer to minor allele 
counts (0, 1, 2). We visually checked the results by gen-
erating a quantile–quantile (Q-Q-plot) and calculating 
the inflation factor λ (see Additional file  3: Figure  S3, 
Additional file 4: Figure S4).

CGAS
Secondly we investigated genetic variants of cholinergic 
genes in a candidate gene approach. We have identified 
cholinergic genes of the cholinergic synapse according 
to the KEGG pathway [17–19]. These includes genes for: 
acetylcholinesterase (ACHE), choline acetyltransferase 
(CHAT), high affinity choline transporter (SLC5A7), 
vesicular acetylcholine transporter (SLC18A3), choliner-
gic receptor nicotinic alpha 3 subunit (CHRNA3), cho-
linergic receptor nicotinic alpha 4 subunit (CHRNA4), 
cholinergic receptor nicotinic alpha 6 subunit 
(CHRNA6), cholinergic receptor nicotinic alpha 7 subu-
nit (CHRNA7), cholinergic receptor nicotinic beta 2 
subunit (CHRNB2), cholinergic receptor nicotinic beta 
4 subunit (CHRNB4), cholinergic receptor muscarinic 1 
(CHRM1), cholinergic receptor muscarinic 2 (CHRM2), 
cholinergic receptor muscarinic 3 (CHRM3), cholinergic 
receptor muscarinic 4 (CHRM4) and cholinergic recep-
tor muscarinic 5 (CHRM5). We retrieved the respective 
gene ranges including exons and introns from gene data-
base of the National Center for Biotechnology Informa-
tion [28].

Here we have applied the identical regression models 
with the same confounders as for the GWAS approach. 
For the CGAS, we assumed an exploratory significance 
level of 0.05 and liberally adjusted the p-values of the 
variants in each gene via Benjamini–Hochberg correc-
tion. Again, odds ratios associated with variants refer to 
minor allele counts. Statistical analyses were conducted 
with IBM© SPSS© Statistics, Version 23 [Copyright 1989, 
2015 by SPSS Inc., Chicago, Illinois, USA], as well as R 
software environment (version 3.5.1) and PLINK 27 [27].

https://www.R-project.org/
http://pngu.mgh.harvard.edu/purcell/plink/
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Results
Between October 2014 and April 2017, a total of 1033 
patients could be enrolled at the two study sites (Berlin, 
Germany and Utrecht, Netherlands). Following removal 
of drop-outs, loss to follow-up and missing data, 745 
patients could ultimately be included in the POD analy-
sis, and 452 in the POCD analysis  (Fig.  1). The rate of 
POD within this group was 20.8% (155 patients), and 
the rate of POCD was 10.2% (46 patients) (see Tables 1 
and 2). Patients developing POD were shown to be sig-
nificantly older, have more comorbidities in terms of CCI 
scores, and longer duration of anesthesia.

Similarly, patients that developed POCD were shown 
to be older and have higher CCI scores than those that 
did not, and although there were no differences in dura-
tion of anesthesia, there were differences in sex.

GWAS
747,816 variants were included in Quality Control (QC) 
and 552,759 variants passed QC. Therefore, in total 
552,759 genetic variants were analyzed with a total geno-
typing rate of 0.996  (Fig.  1). In the GWAS approach no 
locus reached genome-wide significance (5 ×  10− 8). 
When we applied the same level of significance as in a 
previous report of 1 ×  10− 5 [14], we found three variants: 

Fig. 1 Flow chart
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rs12423672, rs75787432 and rs12155347 significantly 
associated with POD (see Fig.  2 and Additional file  5: 
Table S1). Additionally, two genetic variants: rs116044365 
and rs73217998 were significantly associated with POCD 
(see Fig. 3 and Additional file 5: Table S2). Of these, only 
rs75787432 (Long Intergenic Non-Protein Coding RNA 
669) and rs73217998 (acyl-CoA dehydrogenase family 
member 11) are located in gene regions.

CGAS
In the candidate gene approach, we could identify three 
genetic variants of the cholinergic system associated with 
POD when considering confounding factors (Table 3).

The single-nucleotide polymorphism (SNP) rs8191992 
of the CHRM2 gene was significantly associated with 
POD (Odds ratio (OR): minor allele carriers compared 
to non-carriers [95% confidence interval (CI)], 0.61 
[0.46; 0.80], adjusted p-value = 0.01). rs8191992 is a 3′ 
prime UTR variant (T > A) with a European minor allele 

frequency (MAF) [29] of 0.46 (T). In addition, another 
SNP of the CHRM2 gene: rs6962027, which is a 3′ prime 
UTR variant, too (T > A/T > G) with a European MAF 
of 0.45 (T), was significantly associated with POD (OR 
[95% CI], 1.60 [1.22; 2.09], adjusted p-value = 0.01). 
Furthermore, rs2067482, a synonymous SNP (G > A) 
of the CHRM4 gene with a European MAF of 0.18 (A), 
was found to be significantly associated with POD (OR 
[95% CI], 1.64 [1.10; 2.44], adjusted p-value = 0.03). In 
our cohort the MAFs are comparable to the European 
MAFs: rs8191992 = 0.50 (T), rs6962027 = 0.50 (T) and 
rs2067482 = 0.18 (A).

In POCD analysis, we did not find any genetic variant 
of the cholinergic system to be significantly associated 
with POCD in the candidate gene approach.

Discussion
The aim of this study was to investigate whether genetic 
variants in the cholinergic candidate genes are associated 
with POD or POCD in elderly patients, and found using 
a candidate gene approach three genetic variants of the 
cholinergic genes CHRM2 and CHRM4 to be associated 
with the development of a POD.

In the research field of delirium, there are so far only 
two studies that have conducted a GWAS [13, 14], 
whereas in the field of postoperative neurocognitive dis-
orders (which includes POCD), to the best of our knowl-
edge, no GWAS have yet been published. With regard 
to POD, a study by McCoy et  al. was able to identify a 
single locus on Chr2 associated with the development of 
delirium in hospitalized patients [13]. It contained multi-
ple genes, none of these, however, was part of the cholin-
ergic system. The most important aspect to be taken into 
account in this study is, that delirium was solely defined 
by an electronic health record–based case definition. 
There is no information on routine assessment for delir-
ium in the study center, so it is difficult to judge whether 
the evaluation of the electronic health record can lead 
to a valid evaluation of delirium incidence in the study 
population. The stated delirium incidence of 7.5%, may 
suggest that many delirious cases in this study could be 
falsely negatively assigned.

A study by Westphal et  al. described two SNPs in 
long intergenic non-protein coding RNAs, which were 
associated not with genome-wide significance, but with 
a p-value of < 1 ×  10− 5 to the development of POD in 
patients after non-emergent cardiac surgery [14]. In this 
study it should be noted that cardio surgical patients are 
extremely vulnerable to the development of POD, in con-
trast to our heterogeneous surgical cohort.

In our study, no locus reached genome-wide signifi-
cance in the GWAS approach, neither for POD nor for 
POCD. Considering the constraints of the two previous 

Table 1 Patient characteristics for POD analysis (n = 745)

Data is shown as median [IQR 25; IQR 75], or as mean ± SD. Categorical data is 
shown as frequencies (percentages). Differences between patient groups with 
and without POD were evaluated with Mann–Whitney U test (a) or Chi-Square 
Test (b), whereas a P ≤ 0.05 was considered as statistically significant

IQR, interquartile range; SD, standard deviation

Characteristic POD
(n = 155)
(20.8%)

No POD
(n = 590)
(79.2%)

P

n = 745

Age [years] 74 [70; 76] 71 [68; 75]  < 0.001a

Sex

Female 73 (47.1%) 247 (41.9%) 0.24b

Charlson Comorbidity Index 1.84 ± 1.5 1.33 ± 1.5  < 0.001a

Duration of anesthesia [min] 305 [202; 470] 175 [107; 269]  < 0.001a

Table 2 Patient characteristics for POCD analysis (n = 452)

Data is shown as median [IQR 25; IQR 75], or as mean ± SD. Categorical data is 
shown as frequencies (percentages). Differences between patient groups with 
and without POD were evaluated with Mann–Whitney U test (a) or Chi-Square 
Test (b), whereas a P ≤ 0.05 was considered as statistically significant

IQR, interquartile range; SD, standard deviation

Characteristic POCD
(n = 46)
(10.2%)

No POCD
(n = 406)
(89.8%)

P

n = 452

Age [years] 74 [70; 77] 71 [68; 75] 0.006a

Sex

Female 26 (56.5%) 158 (38.9%) 0.02b

Charlson Comorbidity Index 1.74 ± 1.6 1.18 ± 1.4 0.006a

Duration of anesthesia (min) 202 [120; 308] 198 [121; 292] 0.99a
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Fig. 2 Manhattan plot for genome‑wide association for POD (n = 745)

Fig. 3 Manhattan plot for genome‑wide association for POCD (n = 452)

Table 3 Overview over SNPs significantly associated with POD in CGAS approach

Entered variables into logistic regression analysis: age (years), Charlson Comorbidity Index and duration of anesthesia. Data are expressed as odds ratio (OR) and 95% 
confidence interval (CI). OR refer to minor allele counts (0, 1, 2). P-values were adjusted for multiple testing by applying the Benjamini–Hochberg method according to 
the number of SNPs examined per cholinergic gene. Adjusted P ≤ 0.05 was considered as statistically significant

Chr, Chromosome; SNP, single-nucleotide polymorphism

Chr SNP Gene name Position OR [95% CI] P-value Adjusted 
P-value

7 rs8191992 CHRM2 137,016,561 0.61 [0.46; 0.80] < 0.001 0.01

7 rs6962027 CHRM2 137,017,188 1.59 [1.22; 2.09] < 0.001 0.01

11 rs2067482 CHRM4 46,385,217 1.64 [1.10; 2.44] 0.01 0.03
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studies: uncertain delirium assessment and failure to 
achieve genome-wide significance, our results are con-
sistent with this. This can most likely be explained by the 
fact that these are multifactorial and most likely poly-
genic diseases, which are difficult to study in a GWAS 
approach. In addition, the number of participants, both 
in our study and in the cited ones, is very small for a 
GWAS approach. If there would be an associated locus 
with a much lower MAF, we might overlook it in our 
population due to the small number of cases. However, 
it is also possible that there is actually no connection or 
that the effect is too small to see a significant association 
in these extensive tests. Furthermore, we must take into 
account that there are factors other than genetic vari-
ants that may influence the expression of relevant genes, 
which could lead to the development of POD and POCD. 
For example, there are already studies suggesting that 
epigenetic regulation of mainly proinflammatory [30] and 
also neurotransmitter genes, especially cholinergic genes 
[31] may be involved in the development of delirium.

Under these considerations, it seemed reasonable to 
apply a candidate gene approach. In this approach we 
have referred to the cholinergic hypothesis. Hereby one 
supposes that cholinergic neurotransmission plays an 
important role in cognitive performance, and that cholin-
ergic inhibition could suppress the formation of a circu-
lus vitiosus, where neuroinflammation is maintained by 
the activation of microglia cells. Van Gool postulated that 
any dysfunction in cholinergic neurotransmission could 
hinder this mechanism and promote the development 
of delirium [12]. Since there is no evidence in the litera-
ture indicating which cholinergic genes or variants could 
be responsible for the disturbance of cholinergic neuro-
transmission, we decided to investigate all cholinergic 
genes involved in cholinergic neurotransmission accord-
ing to the KEGG pathway [19].

In the candidate gene approach we were able to identify 
an association between genetic variants of the muscarinic 
cholinergic receptor genes CHRM2 and CHRM4 to be 
associated with the development of POD. In addition to 
CHRM1, CHRM2 and CHRM4 are among the most rel-
evant receptors in the CNS. As G-protein-coupled recep-
tors, they activate signaling pathways that are important 
for synaptic plasticity, the modulation of neuronal excit-
ability, and the feedback regulation of Acetylcholine 
(Ach) release [32, 33]. The activation of both receptors 
terminates in the same pathway. Both feedback regula-
tion and synaptic plasticity are transmitted by activating 
the guanine nucleotide-binding protein [19]. In addi-
tion, CHRM2 and CHRM4 receptors are also thought 
to be related to cognitive performance [34–36]. So far, 
no explicit connection with the development of delirium 
could be shown. Only in an Asian candidate gene study 

an association between the CHRM2 gene (rs1824024) 
and the development of delirium tremens, which is the 
severe form of alcohol withdrawal, was also shown [37]. 
Of particular interest was the finding that the genetic 
variant was not associated with alcohol dependence per 
se.

The genetic variants (rs8191992, rs6962027 and 
rs2067482) we have identified have also not been 
described in the literature in connection with POD and 
POCD, so far. For rs8191992 an association with intelli-
gence quotient (IQ) [38, 39] and with cognitive flexibil-
ity (suppression of no longer relevant information and 
usage of prior information) [40] was merely described. 
In addition, rs8191992 was described to predict car-
diac mortality after acute myocardial infarction and to 
determine cardiac function in a postexercise recovery 
phase [41]. Consistent with this, in another study inves-
tigating patients with schizophrenia, it was shown that 
rs8191992 was associated with decreased activity of 
the autonomic nervous system [42]. In addition, it was 
described that rs8191992 has an impact on visual atten-
tion when it acts synergistically with another variant of 
the nicotinic receptor CHRNA4 [43]. In contrast, other 
studies on cognitive function could not show any impact 
of rs8191992 [44, 45]. rs6962027 in turn was found to be 
associated with asthma susceptibility [46] and with poor 
bronchodilator response in asthmatic patients [47]. And 
rs2067482 was described to be associated with schizo-
phrenia susceptibility [48].

Strengths and limitations
Important strengths of this study include the prospective 
multicenter design, as well as the rigorous assessment 
of POD and POCD. The POCD neuropsychological test 
battery took into account several cognitive domains, and 
followed a validated standard with limited rater effects. 
The R algorithm employed is freely available, allowing 
comparability of results with other major investigations 
[49].

However, there are important limitations to this study. 
One of the major limitations is that with the achieved 
sample size, GWAS are usually not performed. Nonethe-
less, given the scarcity of studies and our unique data-
base, we performed a GWAS in an exploratory manner. 
Furhermore, the incidence of POCD was low (10%), 
which is likely to limit statistical power. Although many 
patients were ultimately excluded from the analyses, the 
incidence of POD and POCD did not differ between the 
enrolled and analyzed collectives, so that this limitation 
is not expected to alter the results. Likewise, although 
patients with POCD tended to have slightly lower CCI 
scores, the remaining patient characteristics did not dif-
fer significantly after patient exclusion. The results were 
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not corrected for multiple testing, as there are no uni-
form guidelines as to how multiple testing can be con-
sidered within CGAS. We decided to consider how many 
genetic variants were studied per candidate gene. Against 
this background, the adjusted p-values should not be 
interpreted as absolute values, but as an orientation to 
order the impact of the different genetic variants.

Conclusion
In conclusion, we found an association between genetic 
variants of CHRM2 and CHRM4 and the development 
of POD in a candidate gene approach. Our results are 
in agreement with the hypothesis that cholinergic neu-
rotransmission and synaptic plasticity are involved in 
POD. Further studies are needed to investigate these 
hypotheses.
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