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Abstract: Background: Protein intake has been associated with the development of pre-diabetes (pre-
T2D) and type 2 diabetes (T2D). The gut microbiota has the capacity to produce harmful metabolites
derived from dietary protein. Furthermore, both the gut microbiota composition and metabolic
status (e.g., insulin resistance) can be modulated by diet and ethnicity. However, to date most studies
have predominantly focused on carbohydrate and fiber intake with regards to metabolic status and
gut microbiota composition. Objectives: To determine the associations between dietary protein
intake, gut microbiota composition, and metabolic status in different ethnicities. Methods: Separate
cross-sectional analysis of two European cohorts (MetaCardis, n = 1759; HELIUS, n = 1528) including
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controls, patients with pre-T2D, and patients with T2D of Caucasian/non-Caucasian origin with
nutritional data obtained from Food Frequency Questionnaires and gut microbiota composition.
Results: In both cohorts, animal (but not plant) protein intake was associated with pre-T2D status and
T2D status after adjustment for confounders. There was no significant association between protein
intake (total, animal, or plant) with either gut microbiota alpha diversity or beta diversity, regardless
of ethnicity. At the species level, we identified taxonomical signatures associated with animal protein
intake that overlapped in both cohorts with different abundances according to metabolic status and
ethnicity. Conclusions: Animal protein intake is associated with pre-T2D and T2D status but not with
gut microbiota beta or alpha diversity, regardless of ethnicity. Gut microbial taxonomical signatures
were identified, which could function as potential modulators in the association between dietary
protein intake and metabolic status.

Keywords: protein diet; gut microbiota; diabetes; ethnicity; HELIUS study

1. Introduction

Type 2 diabetes (T2D) is a major health issue which leads to high levels of morbidity
and mortality on a global scale [1]. The pathophysiology of T2D is complex and it is
characterized by metabolic impairment, leading to insulin resistance and eventually lower
levels of systemic insulin [2].

Recently, the gut microbiota, a “new” endocrine organ, has been shown to be involved
in obesity and insulin resistance [3,4]. Furthermore, the burden of T2D is not equally
distributed among different ethnic groups and countries [1,5], which could possibly be
explained by differences in the gut microbiota [6]. The exact relationship between T2D and
the gut microbiota remains to be elucidated. However, multiple studies have shown that
the gut microbiota composition and function of patients with T2D is altered compared with
healthy individuals [7,8]. This alteration is mainly characterized by a decrease in diversity,
which is associated with the production of deleterious gut derived metabolites, such as
branch-chained amino acids (BCAA) [9], trimethylamines (TMA) [10], and imidazole
propionate (ImP) [11].

Diet is one of the main modulators of metabolic status (e.g., insulin resistance), but
also of gut microbiota composition and function [12,13]. Multiple studies have shown
the influence of carbohydrates and dietary fibers on insulin resistance and the gut mi-
crobiota [14–16]. However, recent studies show that not only carbohydrates and fibers,
but also dietary protein can significantly impact insulin resistance and T2D risk and pro-
gression [17,18]. Moreover, protein intake has been shown to differ according to ethnic
backgrounds [19]. The source of dietary protein is also of importance, as studies show that
animal protein is associated with higher cardiovascular mortality and risk of T2D compared
with plant protein [17,18,20]. Furthermore, dietary protein is linked to the production of
metabolites that can increase insulin resistance via the gut microbiota [21–23]. However, the
interaction between dietary protein, gut microbiota and ethnicity with regards to metabolic
status remains unclear. Therefore, the aim of this study was to investigate the interaction
between dietary protein, the gut microbiota, and metabolic status, specifically focusing
on insulin resistance as defined in pre-T2D and T2D subjects, in two independent cohorts
from two European countries, and in different ethnicities (Caucasians vs. non-Caucasians).

2. Methods
2.1. Study Design and Populations

We examined 1759 subjects from the MetaCardis cohort and 1549 from the Healthy
Life in an Urban Setting (HELIUS) cohort for whom nutritional and gut microbiota data
were available.

For the MetaCardis cohort, subjects were recruited between 2013 and 2015 in clinical
institutions in France (Pitié-Salpêtrière Hospital, Center of Research for Clinical Nutrition
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(CRNH) and Institute of Cardiometabolism And Nutrition (ICAN)), Germany (Integrated
Research and Treatment Center (IFB) Adiposity Diseases in Leipzig), and Denmark (Novo
Nordisk Foundation Center for Basic Metabolic Research (CBMR) in Copenhagen) for
the European project MetaCardis (www.MetaCardis.net, accessed date 1 July 2021), as
described previously [11]. All subjects provided written informed consent and the study
was conducted in accordance with the Helsinki Declaration. The study is registered at:
https://clinicaltrials.gov/show/NCT02059538. The Ethics Committee of each participating
country approved the clinical investigation. The study was approved by the Comite de
Protection des Personnes (CPP) Ile de France III n◦ IDRCB2013-A00189-36.

For HELIUS cohort, subjects were recruited between 2011 and 2015 from the municipal-
ity of Amsterdam, The Netherlands as previously described [24]. The HELIUS study was
performed in accordance with the Helsinki Declaration and approved by the Institutional
Research Board of the Amsterdam University Medical Centre. More information about the
HELIUS study can be found on http://www.heliusstudy.nl/en/researchers/publications,
accessed date 1 July 2021 [24].

A detailed list of prescribed medications, anthropometric data, clinical history, fecal
sample, and a fasting blood sample were obtained at enrollment. Subjects were classi-
fied as healthy, pre-diabetes (pre-T2D), or type 2 diabetes (T2D). T2D was defined as
fasting glycemia ≥7.0 mmol/L and/or 2 h values during the oral glucose tolerance test
(OGTT) >11.1 mmol/L and/or hemoglobin A1c (HbA1c, glycated hemoglobin) ≥6.5%
(≥48 mmol/mol) and/or use of any anti-diabetic treatment; pre-T2D was defined for
subjects without T2D as fasting glycemia ≥5.6 mmol/L and/or 2 h values in the oral
glucose tolerance test (OGTT) ≥7.8 mmol/L and/or hemoglobin A1c (HbA1c, glycated
hemoglobin) ≥5.7% (≥39 mmol/mol) according to the American Diabetes Association
(ADA) definitions [25,26].

Ethnicity was assessed according to country of birth of subject and the parents, as
previously described [27].

2.2. Dietary Intake Data Assessment

Dietary data for the MetaCardis cohort was collected via a validated food-frequency
questionnaire that was adapted to the cultural habits of each of the countries of recruitment.
A validation study against repeated 24-h dietary records among 324 French MetaCardis
participants indicated a good validity for macronutrients and protein food groups [28].
Portion size and nutrient composition were derived from national food consumption
surveys and food composition databases. Data on physical activity were collected using a
validated Recent Physical Activity Questionnaire (RPAQ) [29].

Dietary data for the HELIUS cohort was obtained via a validated, ethnicity-specific
food-frequency questionnaire, as previously described [30].

For each subject, basal metabolic rate (BMR) was estimated using the Harris and
Benedict Formula [31]. Subjects with under- or over-reporting energy intake declarations
defined as <0.5*BMR or >3.5*BMR were excluded from all nutritional analysis (<10% of the
subjects with available nutritional data).

2.3. Biochemical Analyses

Blood samples were collected after an overnight fast. Fasting serum glucose, triglyc-
erides, and HbA1c were measured using enzymatic methods.

2.4. Extraction of Fecal Genomic DNA and Gut Microbiota Sequencing

Gut microbiota sequencing in the MetaCardis cohort was performed using shotgun
sequencing as previously described [11]. Briefly, participants collected fecal samples
within 24 h before each visit. Samples were either stored immediately at −80 ◦C or briefly
conserved in home freezers before transport to the laboratory, where they were immediately
frozen at −80 ◦C following guidelines [32]. Total fecal DNA was extracted and sequenced
using ion-proton technology (ThermoFisher Scientific, WA, USA). The reads were mapped

www.MetaCardis.net
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to the Integrated Gene Catalog (IGC) of 9.9 million genes [33]. Gene abundance tables
(built from mapping against the 9.9M gene catalog) were processed for richness calculation,
downsizing (to 10 million reads) and normalization using the momr R package.

Gut microbiota sequencing in the HELIUS cohort was performed as previously de-
scribed [6]. Briefly, subjects delivered a fresh stool sample within 6 h after collection to the
research location. At the research location, the samples were temporarily stored at −20 ◦C
and transported the next day to the −80 ◦C freezers. The gut microbiota composition was
determined using 16S rRNA, focusing on the V4 region. The RNA was sequenced using a
MiSeq ststem (RTA version 1.17.28, bundled with MCS version 2.5; Illumina, San Diego,
CA, USA).

2.5. Statistical Analysis

All nutrient data are originally expressed as grams of intake per day. In all the
analysis, residuals of each nutrients to total energy intake were calculated as described
previously [34] to correct for total caloric intake. Participants characteristics were analyzed
using chi-square tests for categorical variables and t-tests for numerical variables, using
the TableOne Package in R. High protein eaters were defined as protein intake >20% of
total energy intake. This number is based on the fact that the average protein consumption
is 14 energy percent in the Netherlands and 13 energy percent of total caloric intake in
France (https://ourworldindata.org/diet-compositions, accessed date 1 July 2021). This is
also in agreement with nutritional recommendations to consume a 10−20% range of total
energy intake from protein [35]. The link between nutritional data and metabolic status was
assessed using logistic regression with adjustment for confounders. The model used was
metabolic status ~ protein_residual + carbohydrate_residual + fat_residual + fibre_intake
+ total_kcal_intake + age + sex + physical_activity. To investigate the links between
macronutrients intake and the gut microbiota, residuals of macronutrients adjusted for
energy intake and other gut microbiota confounders were computed. The model used to
compute residuals was: macronutrient ~ total_kcal_intake + age + sex + Body Mass Index
(BMI) + T2D status + anti diabetic treatment + lipid lowering treatment. Gut microbiota
alpha diversity was assessed by computing Shannon index. Correlations between residuals
of each macronutrient and alpha diversity were computed. Gut microbiota beta diversity
was computed using Bray-Curtis distance in each cohort and permanova was performed
to assess the contribution of each macronutrient residuals to the beta diversity using vegan
and adonis R packages. The most important species as defined in (molecular) Operational
Taxinomical Units (mOTUs for MetaCardis and OTUs for HELIUS) associated with animal
protein intake were identified with cross-validated optimized random forest models using
animal protein intake residuals adjusted for age, sex, BMI, anti-diabetic treatment, and lipid-
lowering treatments with the caret R package. The variable importance was determined
using increase in node purity. The analyses were restrained at the species OTU level.

Statistical analyses and conception of figures were carried out using R version 3.3.2,
R Core Team (2019), https://www.R-project.org/, acessed date 1 July 2021.

3. Results
3.1. Cohort Characteristics

The characteristics of the two independent cohorts, MetaCardis and HELIUS, are
described in Table 1.

Briefly, the MetaCardis cohort and HELIUS cohort were similar in sex distribution
(50.2% females in MetaCardis and 52.6% in HELIUS, p = 0.17). However, participants of
the MetaCardis cohort were slightly older and had a higher percentage of individuals
with T2D (37.5%) than the HELIUS cohort (16.7%), whereas the HELIUS cohort had a
higher percentage of subjects with pre-T2D (57.3%) compared with the MetaCardis cohort
(34.1%). The MetaCardis cohort consisted of more subjects of Caucasian ethnicity (88.4%)
than the HELIUS cohort (32.4%) (p < 0.01). The mean protein consumption in MetaCardis
was slightly higher than in HELIUS (94.4 ± 40.4 vs. 89.3 ± 35.4 g/day, p < 0.01) and the

https://ourworldindata.org/diet-compositions
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proportion of high protein eaters was also higher in MetaCardis (27.7% vs. 10.7%, p < 0.01)
(for information on animal or plant protein see supplementary figures). Both cohorts from
different countries were analyzed separately due to the abovementioned differences and
different methods of gut microbiota sequencing.

Table 1. Baseline characteristics of the MetaCardis (A) and HELIUS (B) cohort.

All Control Pre-T2D T2D

(A) MetaCardis

100% (N = 1759) 28.4% (N = 500) 34.1% (N = 599) 37.5% (N = 660)

Age (years) 57.0 ± 12.0 51.7 ± 14.2 57.2 ± 11.1 * 60.8 ± 9.1 *
Sex: Female (%) 50.2 (N = 883) 61.4% (N = 307) 46.2 (N = 277) * 45.3 (N = 299) *

Ethnicity:
Caucasians (%) 88.4 (N = 1555) 93.4 (N = 467) 91.3 (N = 547) 82.0 (N = 541)

Non Caucasians (%) 11.6 (N = 204) 6.6 (N = 33) 8.7 (N = 52) 18.0 (N = 119) *
BMI (kg/m2) 32.1 ± 8.7 30.1 ± 9.8 32.4 ± 8.9 * 33.3 ± 7.1 *

Total physical activity
(MET/h/week) 96.3 ± 75.1 104.4 ± 74.3 93.7 ± 72.5 92.5 ± 77.5 *

Diabetes treatment (%) 30.6 (N = 539) 0.0 (N = 0) 0.0 (N = 0) 81.7 (N = 539) *
Statin treatment (%) 35.5 (N = 624) 21.0 (N = 105) 33.7 (N = 202) * 48.0 (N = 317) *
Energy (kcal/day) 2128.3 ± 841.4 2134.4 ± 846.7 2189.7 ± 883.6 2068.0 ± 793.7 *

Protein (g/day) 94.4 ± 40.4 92.3 ± 38.2 96.8 ± 44.1 93.7 ± 38.4
Protein (% of total energy intake) 18.4 ± 3.4 18.0 ± 3.5 18.4 ± 3.3 18.7 ± 3.2 *

Animal protein (g/day) 62.3 ± 33.4 60.0 ± 31.4 64.4 ± 37.3 62.1 ± 31.0
Animal protein (% of total energy

intake) 11.9 ± 4.0 11.5 ± 4.2 11.9 ± 3.9 12.1 ± 3.8 *

Plant protein (g/day) 32.1 ± 14.5 32.3 ± 14.7 32.4 ± 14.6 31.6 ± 14.2
Plant protein (% of total energy

intake) 6.1 ± 1.6 6.1 ± 1.5 6.0 ± 1.6 6.2 ± 1.5

Fat (g/day) 77.6 ± 34.7 78.3 ± 33.8 80.1 ± 37.1 74.8 ± 32.9
Carbohydrates (g/day) 249.0 ± 109.6 251.1 ± 115.4 256.5 ± 108.8 240.6 ± 105.2

Fiber (g/day) 29.5 ± 15.1 29.8 ± 15.2 29.2 ± 14.5 29.6 ± 15.5
High protein (>20En%) eater (%) 27.7 (N = 488) 22.6 (N = 113) 26.5 (N = 159) 32.7 (N = 216) *

(B) HELIUS
100% (N = 1528) 29.3% (N = 447) 57.3% (N = 876) 16.7% (N = 255)

Age (years) 52.20 ± 10.55 46.14 ± 11.97 54.45 ± 8.70 * 57.97 ± 7.36 *
Sex: Female (%) 52.6 (N = 804) 61.7 (N = 276) 48.9 (N = 428) * 50.6 (N = 129) *

Ethnicity:
Caucasians (%) 32.4 (N = 495) 43.4 (N = 194) 30.0 (N = 263) 16.9 (N = 43)

Non Caucasians (%) 67.6 (N = 1033) 56.6 (N = 253) 70.0 (N = 613) 83.1 (N = 212)
BMI (kg/m2) 27.15 ± 4.76 24.98 ± 4.03 27.69 ± 4.60 * 29.50 ± 5.00 *

Total physical activity (h/week) 43.82 ± 28.35 45.57 ± 25.32 44.43 ± 30.35 40.12 ± 31.36 *
Diabetes treatment (%) 10.3 (N = 157) 0.0 (N = 0) 6.7 (N = 59) * 61.6 (N = 157) *

Statin treatment (%) 14.0 (N = 218) 7.6 (N = 99) 14.3 (N = 125) * 46.7 (N = 119) *
Energy (kcal/day) 2226.11 ± 822.92 2253.29 ± 764.94 2237.58 ± 854.61 2155.57 ± 875.51

Protein (g/day) 89.26 ± 35.41 87.50 ± 31.72 90.33 ± 37.10 90.68 ± 40.02
Protein (% of total energy intake) 16.2 ± 3.2 15.7 ± 3.0 16.3 ± 3.3 * 17.0 ± 3.3 *

Animal protein (g/day) 52.26 ± 27.01 50.11 ± 24.29 53.46 ± 28.18 * 54.00 ± 31.13
Animal protein (% of total energy

intake) 9.5 ± 3.6 9.0 ± 3.3 9.7 ± 3.7 * 10.0 ± 3.8 *

Plant protein (g/day) 36.99 ± 15.31 37.38 ± 14.77 36.87 ± 15.77 36.68 ± 14.93
Plant protein (% of total energy

intake) 6.7 ± 1.6 6.7 ± 1.7 6.7 ± 1.6 7.0 ± 1.7 *

Fat (g/day) 79.35 ± 35.81 81.28 ± 34.69 79.42 ± 36.40 76.31 ± 36.91
Carbohydrates (g/day) 249.63 ± 104.98 251.28 ± 96.03 251.43 ± 111.04 241.89 ± 106.64

Fiber (g/day) 24.11 ± 9.47 24.55 ± 9.46 23.97 ± 9.65 24.16 ± 9.20
High protein (>20En%) eater (%) 10.7 (N = 163) 5.1 (N = 23) 13.2 (N = 116) * 15.7 (N = 40) *

Data are represented as N (%) for categorical data and mean (SD) for continuous data. Significance was calculated comparing to the control
group. *: p < 0.05 for comparison against control group. Student t test performed for continuous data and Chi-square test performed for
categorical data. MET: Metabolic equivalent of task.
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3.2. Protein Intake and Metabolic Status

Despite differences in the two cohorts, protein intake was significantly associated
with the MetaCardis (pre-T2D and T2D in both MetaCardis (pre-T2D: Odds Ratio (OR)
1.14 (Confidence Interval (CI):1.05–1.24); T2D: OR 1.18 (CI: 1.08–1.29)) cohort, as well
as the HELIUS (pre-T2D: OR 1.29 (CI:1.18–1.41); T2D: OR 1.73 (CI: 1.49–2.03)) cohort,
after adjustment for nutritional confounders, physical activity, age, and sex (Figure 1).
Interestingly, the association could almost be fully explained by animal protein intake
(MetaCardis pre-T2D: 1.14 (CI: 1.05–1.24) T2D: OR 1.18 (CI: 1.08–1.29); HELIUS pre-T2D:
1.26 (CI 1.16–1.37); T2D:1 1.61 (CI: 1.40–1.87)), but not by plant protein intake (MetaC-
ardis pre-T2D: 1.21 (CI: 0.93–1.57); T2D:1.16 (CI: 0.90–1.48) HELIUS pre-T2D: 1.09 (CI:
0.88–1.36); T2D: 1.20 (CI: 0.88–1.66), in both cohorts. Similarly, being a high protein eater,
i.e., proportion of the total energy intake attributable to protein >20%, was strongly asso-
ciated with T2D and pre-T2D in both cohorts (MetaCardis pre-T2D: 1.50 (CI: 1.08–2.11)
T2D: 1.97 (CI: 1.40–2.77; HELIUS pre-T2D: 4.23 (CI: 2.55–7.27); T2D: 6.66 (CI: 3.40–13.56)).
In MetaCardis, we observed that the association between animal protein intake and T2D
status was more pronounced in Caucasians vs. non Caucasians (interaction term: 0.15,
p = 0.027), however this was not the case in HELIUS. Furthermore, the found associations
were significantly attenuated by BMI (Supplementary Figure S1). This is likely due to
overcorrection as BMI/obesity is involved in the causal pathway of insulin resistance [17].
We also provide univariate analysis results (Figure S2).
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Figure 1. Forrest plots representing protein intake in the (A) MetaCardis and (B) HELIUS cohort. Data is shown per 10 g
of protein intake and the model was adjusted for age, gender, physical activity, other macronutrients and total energy
intake according to the energy residual model. Model used: Metabolic status = protein_residual + carbohydrate_residual +
fat_residual + fibre_intake + total_kcal_intake + age + gender + physical_activity.

3.3. Macronutrient Intake and Gut Microbiota Alpha Diversity

We then determined the links between alpha diversity (Shannon index) and macronuri-
ent intake adjusted for energy intake, age, sex, BMI, T2D status, and lipid-lowering and
antidiabetic treatment (Figure 2). We also examined potential differences depending on
subjects’ ethnicity by stratifying subjects into Caucasian vs. non-Caucasian ethnicity. In
both cohorts, fat intake was positively associated with alpha diversity. In MetaCardis,
this association was only found regarding unsaturated fat and not saturated fat. In both
cohorts, carbohydrate intake was negatively associated with alpha diversity. In contrast,
protein intake showed no significant correlation with alpha diversity, regardless of the
protein source. When stratified for ethnicity, the previously mentioned association between
unsaturated fat and alpha diversity remained significant for subjects of both Caucasian
and non-Caucasian ethnicity in both cohorts. On the other hand, the negative association
observed between carbohydrates intake and alpha diversity was only observed in non-
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Caucasians in both cohorts with a significant interaction between ethnicity, carbohydate,
and alpha diversity in MetaCardis (p = 0.015).
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3.4. Macronutrient Intake and Gut Microbiota Beta Diversity

The beta diversity was calculated using the Bray-Curtis method in order to study
the contribution of all macronutrients to the known explained variance of the gut micro-
biota (Figure 3). First, we found that the macronutrients that contributed the most to
the explained variance were rather consistent in the two cohorts. Notably, dietary fiber
had a significant association with beta diversity in both cohorts and was the one with the
highest link in HELIUS and the one with second highest link in gut microbiota variance in
MetaCardis. Interestingly, in both cohorts, total protein and animal protein had no signifi-
cant association with beta diversity and were the macronutrients with the least explained
variance, whereas plant protein had a significant association in both cohorts. Importantly,
all these analyses were adjusted for potential confounders on microbiota composition and
the significant effects are therefore independent of total caloric intake, age, sex, BMI, T2D
status, and anti-diabetic and anti-lipid treatment intake (Figure 3A,B). We also stratified the
analysis according to Caucasian vs. non-Caucasian ethnicity and found that total protein
and animal protein were not significantly associated with beta diversity in either cohort,
regardless of ethnicity (Figure 3C–F). Overall, after adjustment for confounders, protein
and specifically animal protein intake were not significantly linked with gut microbial beta
diversity in our two cohorts, regardless of Caucasian vs. non-Caucasian ethnicity.
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3.5. Species Associated with Animal Protein Intake

Since animal protein intake was linked with T2D status but was not significantly
associated with gut microbiota diversity, we next sought to determine if we could never-
theless identify taxonomical signatures associated with the consumption of animal protein
intake and if these species overlapped in the two independent cohorts, using random
forest models adjusted for total caloric intake, age, sex, BMI, metformin, and statin intake.
Among the 30 most important species associated with animal protein intake, we found
11 (37%) that overlapped between the two cohorts (Figure 4). Most of these were positively
associated with animal protein intake apart from Roseburia hominis, which showed a nega-
tive association in both cohorts, and Colinsella aerofaciens, which was negatively associated
with animal protein intake in the HELIUS cohort.
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In the HELIUS cohort, which is more diverse in terms of different ethnicities, we
found that seven of these species’ abundance were significantly associated with ethnicity
(Caucasian vs. Non-Caucasian). Subjects of Caucasian ethnicity (in HELIUS) had higher
abundances of Bacteroides uniformis, Coprococcus comes, Faecalibacterium prausnitzii, Odorib-
acter splanchnicus, and Parabacteroides distasonis but significantly lower levels of Prevotella
copri and Dorea formicigenerans compared with non-Caucasians. However, we did not
find the same significance in MetaCardis, where the majority of the population consisted
of Caucasians (Supplementary Figure S3). For some of these species, such as Bacteroides
uniformis or Parabacteroides distasonis, we found a positive association with T2D status
in MetaCardis; but it was not confirmed in HELIUS (Supplementary Figure S4). On the
other hand, Roseburia hominis, which was negatively associated with animal protein, was
decreased in T2D patients in both cohorts.

4. Discussion

In this cross-sectional study design, we showed, for the first time, the interaction
between protein intake, metabolic status, and gut microbiota composition in different ethnic
groups (Caucasian vs. non-Caucasian) in two large, independent cohorts from different
European countries. Previous research has mainly focused on the role of fiber intake with
regards to metabolic status and the gut microbiota, whereas recent studies highlight the
importance of protein intake and ethnicity [6,13]. This study observed an association
between animal protein intake and a worsened metabolic status, confirming previous
findings in different populations [17,36]. We did not observe significant associations
between animal protein intake and gut microbiota alpha or beta diversity, regardless of
ethnicity. However, we reported several species associated with animal protein intake
in both cohorts, which could serve as potential targets for future studies. Surprisingly,
we found that fat intake was positively associated with microbial alpha diversity in both
cohorts. Nevertheless, when stratifying these analyses for fat source, we found that this
association is mostly attributable to unsaturated fat. However, a recent clinical trial did
not find any effects of a high fat diet on alpha diversity [37], which might be explained by
differences in fecal matter collection and sequencing techniques, as well as with various
food intake patterns in different studied populations.

This study is in line with the findings of a previous large meta-analysis, which showed
that high consumption of total protein and animal protein is associated with T2D with a
relative risk of 1.12 and 1.14 respectively [38]. In our studied populations, protein intake
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was associated with T2D status. This association had an odds ratio of 1.19 in the MetaCardis
cohort and 1.73 in the HELIUS cohort and was largely explained by the consumption of
animal protein in both cohorts. In MetaCardis, we observed a significant interaction
between animal protein intake, T2D status, and ethnicity, i.e., the association between
animal protein intake was overall stronger in Caucasians than in non-Caucasians.

The precise biological mechanism via which (animal) protein intake could increase
T2D risk remains unknown. However, recent evidence points towards gut microbial
produced metabolites as potential mediators between diet and metabolic status [13]. More
specifically, the increased production of harmful metabolites which derive from protein
degradation such as Branched chain amino acids (BCAA), Imidazole Propionate (ImP), or
Trimethylamine N-oxide (TMAO) have been linked with the development of metabolic
diseases and their cardiovascular complications [11,23,39]. We therefore investigated
whether this association could be mediated by the gut microbiota. However, in both cohorts,
we found that animal protein, after adjustment for confounders, was not correlated with
gut microbial diversity and that among all macronutrients, it was the one with the least
effect on beta diversity. Importantly, macronutrients only explained a small percentage
of the beta diversity, which is in line with previous studies [40,41]. It has been suggested
that there are more unknown covariates such as intrinsic microbial ecological processes,
species interactions, and dynamics which could influence microbial diversity to a larger
degree then nutrition [41], which is currently recognized as one of the major modifiable
factors in gut microbiota composition and function [13]. Since a previous study showed
that ethnicity strongly impacts gut microbiota composition, regardless of diet, and plays
a larger role than traditionally recognized factors such as obesity and BMI [42], we next
investigated whether stratification by ethnicity would change our findings. However, this
was not the case in either cohort.

This study next sought out to investigate if specific microbial species were associated
with animal protein intake. Despite different methodological methods in the gut microbiota
assessment techniques between MetaCardis and HELIUS, we observed 11 similar species
shared in both cohorts among the 30 most important strains that explained animal protein
intake. Of the 11 shared species, Roseburia hominis was the only one that was negatively
associated with animal protein intake in both cohorts. This bacterial strain has not been
studied in a dietary setting. However, Roseburia hominis has been identified as a major
butyrate producer [43], which is associated with improved metabolic status [44]. The
closely associated Roseburia inulivorans, on the other hand, was positively associated with
animal protein intake in both cohorts. This finding highlights the diverse effects of protein
intake on (closely related) bacterial species, warranting further studies in order to modulate
metabolic status.

This study also identified previously described species that were negatively asso-
ciated with metabolic status [45–49]. A previous study has shown that adherence to a
Mediterranean Diet negatively impacted the abundance of several species which were here
positively associated with animal protein intake [49]. These species were Collinsella aerofa-
ciens, Coprococcus comes, and Dorea formicigenerans. Of these species, Collinsella aerofaciens
was shown to be highly abundant in patients with metabolic syndrome and obesity and
showed a strong positive correlation with high triglycerides, and low HDL. This bacterial
strain is suggested to be a biomarker for obesity and metabolic syndrome and has also been
associated with low fiber intake in a previous study [50,51]. Another species which was
identified in our study was Bilophila wadsworthia, a bile-tolerant gram-negative rod. This
bacteria is increased with animal-based diets in humans and is recognized as a pathobiont,
which can cause metabolic derangements when exposed to a diet rich in lipids, as shown
in HFD mice [47,48].

Moreover, eight of the identified bacterial species associated with animal protein
intake had different abundances depending on ethnicities, the majority of them being more
abundant in Caucasians vs. non-Caucasians. This increase in animal protein-associated
bacteria could perhaps contribute to the more pronounced association of animal protein
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intake observed in Caucasians vs. non-Caucasians. This finding again highlights the
importance of an ethnic specific approach to gut microbiota research [52].

Several limitations exist in this study. First, the MetaCardis and HELIUS cohorts differ
in their population composition, which made it impossible to pool the data from both
cohorts. Second, both cohorts used different methods (i.e., shot gun metagenomics vs.
16S rRNA sequencing) to characterize gut microbiota composition and function. We were
therefore limited in exploring full functional pathways in both cohorts. Third, the nature
of this study was cross-sectional, making it prone to reverse causality (i.e., T2D subjects
can alter their nutritional intake towards more protein intake which can also influence gut
microbiota composition).

However, the fact that this study found similar associations between (animal) protein
intake, metabolic status, gut microbiota composition, and ethnicity in both cohorts, despite
the abovementioned differences, leads to greater generalizability of the results in different
population settings.

5. Conclusions

In this study, we confirmed that dietary (animal) protein is associated with poor
metabolic status, but is not associated with the gut microbiota composition and diversity
regardless of ethnicity (Caucasian vs. non-Caucasian), taking into account confounders. We
nevertheless identified several species linked with animal protein intake that could serve
as targets for future intervention studies. Moreover, this study identified ethnicity as a
modifier in the interaction between diet, metabolic status, and gut microbiota composition.
Future studies are needed with well-characterized ethnic groups, in-depth microbiota
sequencing techniques, and detailed dietary data in order to further shed light on the
complex interplay between diet, health, and the gut microbiota.
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