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Abstract 

We present a protocol and workflow to perform live cell dual-color fluorescence 

crosscorrelation spectroscopy (FCCS) combined with Förster Resonance Energy transfer 

(FRET) to study membrane receptor dynamics in live cells using modern fluorescence labeling 

techniques. In dual-color FCCS, where the fluctuations in fluorescence intensity represents the 

dynamical “fingerprint” of the respective fluorescent biomolecule, we can probe co-diffusion 

or binding of the receptors. FRET, with its high sensitivity to molecular distances, serves as a 

well-known “nanoruler” to monitor intramolecular changes. Taken together, conformational 

changes and key parameters such as local receptor concentrations, and mobility constants 

become accessible in cellular settings.  

Quantitative fluorescence approaches are challenging in cells due to high noise levels and the 

vulnerable sample itself. We will show how to perform the experiments including the 

calibration steps. We use dual-color labeled β2-adrenergic receptor (β2AR) labeled (eGFP and 

SNAPtag-TAMRA). We will guide you step-by-step through the data analysis procedure using 

open-source software and provide templates that are easy to customize.  

Our guideline enables researchers to unravel molecular interactions of biomolecules in live cells 

in situ with high reliability despite the limited signal-to-noise levels in live cell experiments. 

The operational window of FRET and particularly FCCS at low concentrations allows 

quantitative analysis near-physiological conditions. 

 

Link to accompanying video: 

https://tr240.uni-wuerzburg.de/vippclass/index.php/s/TL8aWmwE9RjGfLE 
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Introduction 
Fluorescence spectroscopy is one of the main methods to quantify protein dynamics and 

protein-protein interactions with minimal perturbation in a cellular context. Confocal 

fluorescence correlation spectroscopy (FCS) is one powerful method to analyze molecular 

dynamics as it is single molecule sensitive, highly selective, and live-cell compatible 1. 

Compared with other dynamics orientated approaches, FCS has a broader measurable time 

range spanning from ~ ns to ∼ s, most importantly covering the fast time scales that are often 

inaccessible by imaging-based methods. Moreover, it also provides spatial selectivity so that 

membrane, cytoplasmic and nucleus molecular dynamics can be easily distinguished 2. Thus, 

molecular blinking, the average local concentration and the diffusion coefficient can be 

quantitatively analyzed with FCS; intermolecular dynamics such as binding become easily 

accessible when probing co-diffusion of two molecular species in fluorescence cross-

correlation spectroscopy (FCCS) analysis 3-5 in a dual color approach. The main underlying 

principle in correlation spectroscopy is the statistical analysis of intensity fluctuations emitted 

by fluorescently labeled biomolecules diffusing in and out of a laser focus (Figure 1A). The 

resulting auto- or cross-correlation functions then can be further analyzed by curve fitting to 

eventually derive the rate constants of interest. In other words: The statistical methods FCS and 

FCCS do not provide single molecule traces like in single particle tracking, but a dynamic 

pattern or “fingerprint” of a probed specimen with high temporal resolution. Combined with 

Förster resonance energy transfer (FRET), also intramolecular dynamics such conformational 

changes can be monitored at the same time in a common confocal setup 5,6. FRET probes the 

distance of two fluorophores and is often referred to as a molecular “nano ruler”. Energy 

transfer takes place only when i) the molecules in close vicinity (3-10 nm), ii) the emission 

spectrum of the donor significantly overlaps with absorption spectrum of the acceptor molecule, 

and iii) the dipole orientation of donor and acceptor is (almost) parallel. Thus, the combination 

of FRET and FCCS provides a technique with very high spatio-temporal resolution. 

When spatial selectivity, sensitivity as well as live-cell compatibility is required, FRET-FCCS 

has obvious advantageous over other methods such as ITC 7, SPR 8 or NMR 9,10 when it comes 

to measuring protein dynamics and interactions.  

Despite the capabilities and promise of dual color fluorescence cross-correlation spectroscopy 

(dc-FCCS), performing dc-FCCS in live cells is technically challenging due to spectral bleed-

through or cross-talk between the channels 3,4, difference in the confocal volumes due to the 

spectrally distinct laser lines 3,4,11, background signal and noise or limited photostability of the 

samples 12-15. Introduction of pulse interleaved excitation (PIE) to FCCS was an important 

“tweak” to temporally decouple the different laser excitations to reduce the spectral crosstalk 
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between the channels 16. Other correction methods to counter spectral bleed-through 17-19and 

background have also been well-accepted 17-19. For details and basics on FCS, PIE or FRET the 

reader is referred to the following references 2,4,6,16,20-24. 

Here, first all necessary calibration experiments were performed and analyzed before 

experimental results of a prototypical G-protein coupled receptor, β2-adrenergic receptor 

(β2AR), for three different scenarios are shown: (1) Single-labeled molecules carrying either a 

“green” (eGFP) or a “red” (SNAP tag-based labeling) 25 fluorophore. (2) A double-labeled 

construct, which carries an N-terminal SNAP tag and intracellular eGFP (NT-SNAP). In this 

case, both labels are at the same protein, thus 100 % co-diffusion was expected. (3) A double-

labeled sample, where both fluorophores are on the same side of the cell membrane (CT-

SNAP). It carries a C-terminal SNAP tag and an intracellular eGFP. Here, again both labels are 

at the same protein with again 100 % co-diffusion expected. As both labels are very close to 

each other, on the same side of the cell membrane, it shows the potential to observe FRET and 

anticorrelated behavior. All constructs were transfected in Chinese Hamster Ovary (CHO) cells 

and later labeled with a red fluorescent substrate which is membrane-impermeable for the NT-

SNAP construct and a membrane-permeable substrate for the CT-SNAP construct. Finally, 

simulated data exemplifies the influence of experimental parameter on the FRET-induced 

anticorrelation, and the effect of protein-protein interactions on the co-diffusion amplitude. 

Thus, this protocol provides a complete guide to perform the combined approach of FRET-

FCCS in living cells to understand protein dynamics and protein-protein interactions while 

making aware of technical / physical artifacts, challenges and possible solutions.  

 

Protocol 
1. Experimental protocol 

1.1. Sample preparation 

1.1.1. Cell seeding 

Important note: Cell seeding and transfection need to be performed under sterile conditions. 

1. Place a cleaned coverslip per well onto a 6-well culture plate and wash three times with 

sterile phosphate-buffered saline (PBS). 

Note: The coverslip cleaning protocol is detailed in Supplementary Note 1. 

2. Add 2 ml of cell culture medium with phenol red supplemented with 10 % fetal bovine 

serum (FBS), 100 μg/ml penicillin and 100 μg/mL streptomycin to each well and keep 

it aside. 

3. Take the CHO cells, which are cultured in the same medium with phenol red at 37 °C, 

in 5 % CO2 and wash them with 5 ml PBS to remove the dead cells. 
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4. Add 2 mL of trypsin and incubate for 2 min at room temperature (RT). 

5. Dilute the detached cells with 8 mL of medium with phenol red and mix carefully by 

pipetting. 

6. Count the cells in a Neubauer chamber and seed the CHO cells at a density of 1.5 x 105 

cells/well in the 6-well cell culture plate containing the coverslips. 

7. Let the cells grow in an incubator (37 °C, 5 % CO2) for 24 hr in order to achieve approx. 

80 % confluency. 

 

1.1.2. Transfection 

1. Dilute 2 µg of the desired vector DNA (e.g. CT-SNAP or NT-SNAP) and 6 µL of the 

transfection reagent in two separate tubes each containing 500 µL reduced-serum 

medium for each well and incubate them for 5 min at RT. 

2. Mix the two solutions together to obtain the transfection mixture and incubate it for 

further 20 min at RT. 

3. In the meantime, wash the seeded CHO cells once with sterile PBS. 

4. Replace the PBS with 1 mL/well of phenol red-free medium supplemented with 10 % 

FBS and no antibiotics. 

5. Add the entire transfection mixture of 1 mL dropwise to each well and incubate the cells 

overnight at 37 °C, in 5% CO2.  

 

1.1.3. Labeling of SNAP constructs 

1. Dilute the appropriate SNAP substrate stock solution in 1 mL medium supplemented 

with 10 % FBS to obtain a final concentration of 1 µM. 

2. Wash the transfected cells once with PBS and add 1 mL per well of 1 µM SNAP 

substrate solution. 

3. Incubate the cells for 20 min at 37 °C in 5 % CO2. 

4. Wash the cells thrice with phenol red-free medium and add 2 mL per well phenol red-

free medium. 

5. Incubate the cells for 30 min at 37 °C in 5 % CO2. 

 

1.1.4. Transfer to measurement chamber 

1. Transfer the coverslips of all samples subsequently into the imaging chamber and wash 

with 500 µL imaging buffer. 

2. Add 500 µL imaging buffer before moving to the FRET-FCS setup. 
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1.2. Calibration Measurements 

The FRET-FCS setup is equipped with a confocal microscope water objective, two laser lines, 

a Time-Correlated Single Photon Counting (TCSPC) system, two hybrid photomultiplier tubes 

(PMT) and two avalanche photodiodes (APD) for photon collection and the data collection 

software. It is very crucial to align the setup every time before measurements in live cells. 

Note: The detailed setup description can be found in Supplementary Note 2. 

Important note: Both lasers and all detectors (two PMTs and two APDs) are always on during 

the measurements, as all measurements need to be conducted under identical conditions. Use a 

coverslip from the same lot on which the cells were seeded, this decreases the variation in collar 

ring correction. 

 

1.2.1. Adjusting focus, pinhole and collar ring position 

1. Place 2 nM green calibration solution on a glass coverslip and switch on the 485 nm and 

560 nm laser operated in Pulsed Interleaved Excitation (PIE) mode 16. 

2. Focus on the solution and adjust the pinhole and collar ring position such that the highest 

count rate and smallest confocal volume are obtained to get the maximum molecular 

brightness. 

3. Repeat this process for the red channels with 10 nM red calibration solution and a 

mixture of both. 

1.2.2. Optimizing the confocal overlap volume 

1. Place the 10 nM DNA solution on glass coverslip and adjust the focus, pinhole, and 

collar ring position such that the cross correlation between the green and red detection 

channels is highest, i.e. shows the highest amplitude. 

Notes:  

Steps 1.2.1 and 1.2.2 might have to be repeated back and forth to find the optimal alignment.  

Take 3-5 measurements from each calibration solution for 30 s – 120 s after the focus, pinhole, 

and collar ring position have been aligned optimally for the green and red detection channels 

and the confocal overlap volume. 

Measure a drop of ddH2O, the imaging medium and a non-transfected cell for 3-5 times each 

for 30 s – 120 s to determine the background count rates. 

 

1.2.3. Optional step: Instrument response function 

Optional but highly recommended: Collect the instrument response function with 3-5 

measurements for 30 s – 120 s. 
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1.3. Measurements in live cells 

1. Find a suitable cell by illuminating with the Mercury lamp and observing through the 

ocular. 

Note: Suitable cells are alive and the fluorescence of the protein of interest, here a surface 

receptor, is visible all over the surface. Less bright cells are more suitable than brighter 

ones due to the better contrast in FCS when a low number of molecules is in the focus.  

2. Switch on both lasers in PIE mode and focus on the membrane by looking for the 

maximum counts per second. 

Note: The laser power might need to be reduced for the cell samples (less than 5 µW at 

objective). This depends highly upon the used fluorophores and the setup. 

3. Observe the auto- and cross-correlation curves of the β2AR bound to eGFP and / or 

SNAP-tagged probes in the online preview of the data collection software and collect 

several short measurements (2 -10) with an acquisition time between 60 -180 s 

Important note: Do not excite the cells for long time continuously as the fluorophores may 

bleach. However, it will depend on the brightness of each cell, how long the 

measurements can be and how many measurements in total can be performed.  

 

2. Data analysis 

2.1. Data Export 

Export the correlation curves G(tc) and count rates CR from all measurements. Please take care 

here to correctly define the “prompt” and “delay” time windows and use the “microtime gating” 

option in the data correlation software. In total, three different correlations are required: (i) 

autocorrelation of the green channel in prompt time window (ACFgp), (ii), autocorrelation of 

the red channels in the delay time window (ACFrd), and finally (iii) the cross-correlation of the 

green channel signal in the prompt time window with the red channel signal in the delay time 

window (CCFPIE). 

Note: The data export is shown step-by-step for different software in Supplementary Note 3. 

 

2.2. Calibration measurements 

2.2.1. Determination of the confocal detection volume 

1. Use the autocorrelation functions of the green (ACFgp) and red (ACFrd) fluorophore 

solutions, and fit them to a 3D diffusion model with an additional triplet term if required 

(eq. 1) to calibrate the shape and size of the confocal detection volume for the two used 

color channels: 
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𝐺𝐴𝐶𝐹(𝑡𝑐) = 𝑏 +
1

𝑁
∗∙ ((

1

1+𝑡𝑐 𝑡𝐷⁄
) (

1

√1+𝑠2(𝑡𝑐 𝑡𝐷⁄ )
)) [1 − 𝑎𝑅 + 𝑎𝑅 ∙ exp (−

𝑡𝑐

𝑡𝑅 
)] eq. 1 

where b is the baseline of the curve, N the number of molecules in focus, tD the diffusion 

time (in ms) and s = z0/ω0 the shape factor of the confocal volume element. The triplet 

blinking and photophysics is described by its amplitude aR and relaxation time tR  

Note: All variables and symbols used within the protocol are listed in Table 1. 

2. Use the known diffusion coefficients D for the green 26 and red calibration standard 27 

and the obtained shape factors sgreen and sred to determine the dimensions (width 𝜔0 and 

height 𝑧0) and volume Veff of the confocal volume element is determined (eq. 2a-c). 

𝑤0
2 = 4𝑡𝐷𝐷        eq.2a 

𝑧0 = 𝑠 𝑤0        eq.2b 

𝑉𝑒𝑓𝑓 =  𝜋3/2𝑧0𝑤0
2       eq.2c 

Note: Templates for calculation of the calibration parameter are provided as Supplementary 

files (S7). 

 

2.2.2. Spectral crosstalk α of green into red channel 

Calculate the spectral crosstalk α of the green fluorescence signal (collected in channels 0 and 

2) into the red detection channels (channel number 1 and 3) is as a ratio of the background-

corrected (BG) signals (eq. 3). 

𝛼 =  
((𝐶𝑅1,𝑔𝑟𝑒𝑒𝑛−𝐶𝑅1,𝐵𝐺)+(𝐶𝑅3,𝑔𝑟𝑒𝑒𝑛−𝐶𝑅3,𝐵𝐺))

((𝐶𝑅0,𝑔𝑟𝑒𝑒𝑛−𝐶𝑅0,𝐵𝐺)+(𝐶𝑅2,𝑔𝑟𝑒𝑒𝑛−𝐶𝑅2,𝐵𝐺))
∗ 100%    eq. 3 

 

2.2.3. Direct acceptor excitation  

Determine the direct excitation of the acceptor fluorophore  by the donor excitation 

wavelength by the ratio of the background-corrected count rate of the red calibration 

measurements in the “prompt” time window (excitation by green laser) to the background-

corrected count rate in the “delay” time window (excitation by red laser) are used (eq. 4). 

𝛿 =  
((𝐶𝑅1,𝑝𝑟𝑜𝑚𝑝𝑡,𝑟𝑒𝑑−𝐶𝑅1,𝑝𝑟𝑜𝑚𝑝𝑡,𝐵𝐺)+(𝐶𝑅3,𝑝𝑟𝑜𝑚𝑝𝑡,𝑟𝑒𝑑−𝐶𝑅3,𝑝𝑟𝑜𝑚𝑝𝑡,𝐵𝐺))

((𝐶𝑅1,𝑑𝑒𝑙𝑎𝑦,𝑟𝑒𝑑−𝐶𝑅1,𝑑𝑒𝑙𝑎𝑦,𝐵𝐺)+(𝐶𝑅3,𝑑𝑒𝑙𝑎𝑦,𝑟𝑒𝑑−𝐶𝑅3,𝑑𝑒𝑙𝑎𝑦,𝐵𝐺))
∗ 100% eq. 4 

 

2.2.4. Molecular brightness B 

Calculate the molecular brightness B of both the green and red fluorophores (eq. 5a-b) based 

on the background-corrected count rates and the obtained number of molecules in focus, N, 

from the 3D diffusion fit (eq. 1):  
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𝐵𝑔𝑟𝑒𝑒𝑛 =  
𝐶𝑅𝑐𝑜𝑟𝑟,𝑔𝑟𝑒𝑒𝑛,0+𝐶𝑅𝑐𝑜𝑟𝑟,𝑔𝑟𝑒𝑒𝑛,2

𝑁𝑔𝑟𝑒𝑒𝑛
      eq. 5a 

𝐵𝑟𝑒𝑑 =  
𝐶𝑅𝑐𝑜𝑟𝑟,𝑟𝑒𝑑,1+𝐶𝑅𝑐𝑜𝑟𝑟,𝑟𝑒𝑑,3

𝑁𝑟𝑒𝑑
       eq. 5b 

 

2.2.5. Overlap of green and red confocal detection volume 

1. Fit both ACFgp and ACFrd as well as CCFgp-rd of the double-labeled DNA to the 3D 

diffusion model (eq. 1). Keep the obtained shape factors, sgreen and sred, constant for 

ACFgp and ACFrd, respectively. The shape factor for the CCFgp-rd, sPIE, is usually in 

between these two values. 

Note: In an ideal setup, both Veff, green and Veff, red would have the same size and overlap 

perfectly. 

2. Determine the amplitude at zero correlation time, G0(tc), based on the found values of 

the apparent number of molecules in focus (Ngreen, Nred and NPIE). 

3. Calculate the amplitude ratio rGR and rRG for a sample with 100 % co-diffusion of green 

and red fluorophores (eq. 6): 

Note: Be aware that NPIE is not reflecting the number of double-labeled molecules in the 

focus but reflects only the 1/G0(tc). 

𝑟𝐺𝑅 =  
𝐺0,𝐶𝐶𝐹(𝑡𝑐)

𝐺0,𝐴𝐶𝐹𝑔𝑝(𝑡𝑐)
           and               𝑟𝑅𝐺 =  

𝐺0,𝐶𝐶𝐹(𝑡𝑐)

𝐺0,𝐴𝐶𝐹𝑟𝑑(𝑡𝑐)
  eq. 6 

 

2.3. Live cell experiments 

2.3.1. Single-labeled constructs 

1. Fit the cell samples to an appropriate model. For the shown membrane receptor, 

diffusion occurs in a bimodal fashion with a short and a long diffusion time. 

Additionally, the photophysics and blinking of the fluorophores have to be considered: 

𝐺𝐴𝐶𝐹,2𝐷(𝑡𝑐) = 𝑏 +
1

𝑁
[

𝑎1

1+
𝑡𝑐

𝑡𝑑1
⁄

+
1−𝑎1

1+
𝑡𝑐

𝑡𝑑2
⁄

] [1 − 𝑎𝑅 + 𝑎𝑅 ∙ exp (−
𝑡𝑐

𝑡𝑅 
)] eq. 7 

where td1 and td2 are the two required diffusion times and a1 is the fraction of the first 

diffusion time.. 

Important note: In contrast to the calibration measurements, in which the free dyes and DNA 

strands freely diffuse in all directions, membrane receptor shows only 2D diffusion along the 

cell membranes. This difference between 3D and 2D diffusion is reflected by the modified 

diffusion term (compare eq. 1), where tD in the 2D case does not depend upon the shape factor 

s of the confocal volume element. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 12, 2021. ; https://doi.org/10.1101/2021.09.10.459760doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.10.459760
http://creativecommons.org/licenses/by/4.0/


2. Calculate the concentration c of green or red labeled proteins from the respective N 

and Veff using basic math (eq. 8): 

𝑐 =  
𝑁

𝑉𝑒𝑓𝑓𝑁𝐴
                  where NA = Avogadro’s number   eq. 8 

 

2.3.2. N-terminal SNAP label and intracellular eGFP 

1. Fit the two autocorrelations (ACFgp and ACFrd) of the double-labeled sample using the 

same model as for the single-labeled constructs for the ACFs (eq. 7) and the CCFPIE 

using a bimodal diffusion model (eq. 9): 

𝐺𝐶𝐶𝐹,2𝐷(𝑡𝑐) = 𝑏 +
1

𝑁
[

𝑎1

1+
𝑡𝑐

𝑡𝑑1
⁄

+
1−𝑎1

1+
𝑡𝑐

𝑡𝑑2
⁄

]     eq. 9 

Note: For a global description of the system, all three curves have to be fit jointly: The diffusion 

term is identical for all three curves and the only difference is the relaxation term for the CCFPIE. 

As photophysics of two fluorophores is usually unrelated no correlation term is required. This 

absence of relaxation terms results in a flat CCFPIE at short correlation times. However, 

crosstalk and direct excitation of the acceptor due to the donor fluorophore might show false-

positive amplitudes and should be carefully checked for using the calibration measurements. 

2. Calculate the concentration c of green or red labeled proteins from the respective N 

and Veff using basic math (eq. 8). 

3. Estimate the fraction or concentration, cGR or cRG, of interacting green and red labeled 

proteins from the cell samples using the correction factors obtained from the DNA 

samples, the amplitude ratios rGR and rRG of the cell sample and their respective obtained 

concentrations (eq. 10). 

𝑐𝐺𝑅 = 𝑟𝐺𝑅 ∙ 𝑐𝑔𝑟𝑒𝑒𝑛            and               𝑐𝑅𝐺 = 𝑟𝑅𝐺 ∙ 𝑐𝑟𝑒𝑑   eq. 10 

 

2.3.3. C-terminal SNAP label and intracellular eGFP 

Fit the two autocorrelations (ACFgp and ACFrd) of the FRET sample as the single-labeled 

samples (eq. 7) and the CCFFRET to a bimodal diffusion model containing an anticorrelation 

term (eq. 11): 

𝐺𝐶𝐶𝐹,2𝐷(𝑡𝑐) = 𝑏 +
1

𝑁
[

𝑎1

1+
𝑡𝑐

𝑡𝑑1
⁄

+
1−𝑎1

1+
𝑡𝑐

𝑡𝑑2
⁄

] [1 − 𝑎𝑓] [1 − ∑ 𝑎𝑅𝑖 ∙ exp (−
𝑡𝑐

𝑡𝑅𝑖 
)𝑖 ] eq. 11 

where af reflects the amplitude of the total anti-correlation and aR and tR the respective amplitude 

and relaxation time. Note: In case of anti-correlated fluorescence changes due to FRET one or 

several anti-correlation terms might be required (eq. 11) resulting in a “dip” of CCFFRET at low 

correlation times coinciding with a rise in the two autocorrelations (ACFgp and ACFrd). 
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However, be aware that photophysics such as triplet blinking might mask the anti-correlation 

term by dampening the FRET-induced anti-correlation. A joint analysis supplemented with 

filtered FCS methods might help to unmask the anti-correlation term. Additionally, technical 

artifacts stemming from dead times in the counting electronics in the nanoseconds range should 

be excluded 16. 

 

A more detailed step-by-step procedure on how to perform the analysis in ChiSurf 28 and excel 

templates e.g. for the calculation of confocal volume or molecular brightness are provided on 

our github repository (https://github.com/HeinzeLab/JOVE-FCS) and as supplementary files 

(Supplementary Note 4 and S6). Additionally, our python-scripts for batch export of data 

acquired with the Symphotime software in .ptu format can be found there. 

 

Result 
Below, exemplary the results of calibration and live-cell measurements are shown. 

Additionally, the effect of FRET on the cross-correlation curves is shown based on simulated 

data next to exemplifying the effect of protein-protein-interaction increasing the CCFPIE 

amplitude. 

 

1. PIE-based FCS data export 

In PIE experiments, data are collected in the time-tag time-resolved mode (TTTR) 29,30. Figure 

1B shows exemplary the photon arrival time histograms of a PIE measurement of a double-

labeled DNA strand on the described setup (Supplementary Note 1). The setup contains in total 

four detection channels, two for the green fluorescence signal and two for the red fluorescence 

signal. Additionally, the photons are sorted by their polarization – either parallel or 

perpendicular to the excitation direction. In the “prompt” time window, the green fluorophore 

gets excited and signal is detected in both the green and – due to FRET - red channels, while in 

the delay time window the red fluorophore gets excited and signal is only detected in the red 

channels. Based on the detection channels and time windows at least five different correlation 

curves can be reconstructed (Figure 1C-D). The autocorrelations (ACF) of the green signal in 

the prompt time window (ACFgp), of the red signal in the prompt time window (in case of FRET, 

ACFrp) and lastly of the red signal in the delay time window (ACFrd) report on the protein 

mobility, photophysics (e.g. triplet blinking) and other time-correlated brightness changes in 

the fluorophores (e.g. due to FRET). The PIE-based crosscorrelation CCFPIE of the green signal 

in the prompt time window with the red signal in the delay time window allows determining 

the fraction of co-diffusion of the green and red fluorophore 16. The FRET-based 
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crosscorrelation CCFFRET of the green with the red signal in the prompt time window is related 

to FRET-induced, anticorrelated brightness changes in the green and red signals 31-33. 

 

 
Figure 1 Pulsed-interleaved excitation (PIE) based fluorescence (cross) correlation spectroscopy 

(F(C)CS). (A) In FCS fluorescently labeled molecules diffuse freely in and out of a confocal detection volume, 

in which they are excited by a laser pulse and their emitted fluorescence is collected. The resulting intensity 

fluctuations are correlated and provide information on e.g. the mobility of the molecules. (B) In PIE, two 

different laser lines (“prompt” and “delay”) are used to excite the sample labeled with two different fluorophores 

(“green” and “red”). The time difference between both excitation pulses is chosen based on the fluorescence 

lifetime of the selected fluorophores: Their respective fluorescence should have decayed. In the shown double-

labeled sample, both fluorophores are close enough together to undergo Förster Resonance Energy Transfer 

(FRET), and the “green” or donor fluorophore transfer part of its energy to the “red” or acceptor fluorophore. 

Thus, red fluorescence emission occurring in the “prompt” time-window, i.e. after green excitation. In the used 

setup (Supplementary Note 2), two detectors are used for each color, one oriented parallel to the excitation beam 

orientation (denoted “p”) and the second perpendicular (denoted “s”). (C) Three different autocorrelation 

functions can be determined in a PIE experiment: Correlation of the signal collected in the green channels in 

the prompt time window (ACFgp), signal collected in the red channels in the prompt time window (ACFrp) and 

the signal collected in the red channels in the delay time window (ACFrd). (D) Two different crosscorrelation 

functions can be constructed: In the “PIE” crosscorrelation, CCFPIE, the signal collected in the green channels 

in the prompt time window is correlated with the signal collected in the red channels in the delay window. The 

amplitude of this curve is related to the co-diffusion of fluorophores. In the “FRET” crosscorrelation, CCFFRET, 

the signal collected in the green channels in the prompt time window is correlated with the signal collected in 

the red channels in the same prompt window. The shape of this curve at times faster than diffusion is related to 

the FRET-induced intensity changes. 

 

2. Calibration 

Figure 2A-B shows a calibration measurement of the singly diffusing green and  red 

fluorophores, respectively. Based on a fit with eq. 1 and the known diffusion coefficient Dgreen 

26 and Dred 
27 the shape (z0 and ω0) and size (Veff) of the detection volume is calculated using eq. 

2a-c. The fit results from the ACFgp from the green fluorophore and ACFrd from the red 

fluorophore are summarized in Figure 2C. Both fluorophores show an additional relaxation 8.6 

µs (18 %) and 36 µs (15 %) for, respectively. The molecular brightness (eq. 5a-b) of the green 

and red fluorophore amounts to 12.5 kHz per molecule and 2.7 kHz per molecule, respectively, 

A B

10-3 10-2 10-1 100 101 102 103

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

C
o

rr
e

la
ti

o
n

 a
m

p
li
tu

d
e

Time [ms]

 green - prompt

 red - delay

 red - prompt

C D

10-3 10-2 10-1 100 101 102 103

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

C
o

rr
e

la
ti

o
n

 a
m

p
li
tu

d
e

Time [ms]

 PIE Crosscorrelation

green prompt X red delay

 FRET correlation

green prompt X red prompt

“prompt” “delay”

0 20 40 60 80 100

103

104

105  Green s

 Green p

 Red s

 Red p

In
te

n
s

it
y

 [
c

o
u

n
ts

]

microtime [ns]

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 12, 2021. ; https://doi.org/10.1101/2021.09.10.459760doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.10.459760
http://creativecommons.org/licenses/by/4.0/


for the used excitation conditions. 

For a reliable estimation of the confocal volume size and shape as well as the molecular 

brightness, it is recommended to perform 3-5 measurements per calibration experiments and to 

perform a joint (or global) fit of all repeats. 

The crosstalk α (Figure 2D, eq. 3) and the direct excitation of acceptor by the green laser δ 

(Figure 2E, eq. 4) for this fluorophore pair lies at ~15 % and ~ 38 %.  

 

 
Figure 2 Calibration measurements of freely diffusing green and red calibration standard. (A-B) 

Representative 60 s measurement of a 2 nM green (A) and a 10 nM red (B) calibration standard measurement 

fitted to the 3D Diffusion model including an additional relaxation time (eq. 1). The table in panel (C) shows 

the fit results and the derived parameter based on eq. 2a-c and eq. 5a-b. *Diffusion coefficients were taken 

from literature 26,27. (D) Determination of the crosstalk α of the green signal into the red channels (eq. 3). The 

excitation spectrum of green standard is shown in cyan, in green the emission spectrum. The excitation laser 

lines at 485 nm (blue) and 561 nm (orange) are shown as dashed lines. Transparent green and magenta boxes 

show the collected emission range (Supplementary Note 2). (E) Determination of the direct excitation δ of the 

red fluorophore by the 485 nm laser (eq. 4). Color code is identical to (D), light and dark orange show the 

excitation and emission spectrum of the red standard, respectively. 

 

To determine and calibrate the overlap of the green and red excitation volume a double-labeled 

double DNA strand is used (Figure 3A) as described above. Here, the fluorophores are spaced 

40 bp apart such that no FRET can occur between the green and red fluorophores attached to 

the ends of the DNA double strands. Figure 3B shows the autocorrelations from both 

fluorophores in green (ACFgp) and magenta (ACFrd) and the PIE-crosscorrelation, CCFPIE, in 

cyan. As a reminder, for CCFPIE the signal in the green channels in the prompt time window is 

correlated with the signal in the red channels in the delay time window 16. 

Here, we obtain an average diffusion coefficient for the DNA strand of DDNA = 77 µm²/s is 
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obtained (More details on the calculation can be found in the step-by-step protocol, 

Supplementary Note 4). This value is found when inserting the calibrated green and red 

detection volumes size (Figure 2) and the respective diffusion times of ACFgp and ACFrd of the 

DNA strand (Figure 3C) into eq. 2a. Next, using the obtained correction values rGR and rRG, 

determined from eq. 6 later on the amount of co-diffusing, i.e. double labeled molecules (or 

protein complexes in case of co-transfection of two different proteins) can be determined from 

the cell samples. 

 

 
Figure 3 Calibration of the green-red overlap volume using a DNA sample. (A) The DNA strand used for 

calibration carries a the green and an red calibration fluorophore, with a distance of 40 bp inbetween. The 

interdye distance must be sufficiently large to exclude FRET between the fluorophores. (B) Representative 60 

s measurement of a 10 nM DNA solution. Autocorrelations from both fluorophores in green (ACFgp, green 

standard) and magenta (ACFrd, red standard) and the PIE-crosscorrelation, CCFPIE, in blue. The table in panel 

(C) shows the fit results based on the 3D Diffusion model including an additional relaxation term (eq. 1) and 

the derived parameter diffusion coefficient of DNA, DDNA, (eq. 2a), the size and shape of the overlap volume 

(eq. 2a-c) and the correction ratios rGR and rRG (eq. 6). Please note the values for the green and red detection 

volume (labeled with *) were taken from the fit of the individual fluorophores shown in Figure 2. 

 

3. Live-cell experiments 

In the following section, the analysis of live-cell experiments for different β2AR constructs are 

shown. As β2AR is a membrane protein, its diffusion is largely limited to a two-dimensional 

diffusion (Figure 4A) along the cell membrane (except of transport or recycling processes to or 

from the membrane) 2. This restriction to the 2D diffusion is reflected in the modified diffusion 

term of eq. 9 compared to eq. 1: it is independent from the shape factor. 

 

3.1. Single-labeled constructs: β2AR-IL3-eGFP and NT-SNAP-β2AR 

Figure 4 shows exemplary measurements of the single-label constructs β2AR-IL3-eGFP (Figure 

4B), where the eGFP is inserted into the intracellular loop 3, and NT-SNAP-β2AR (Figure 4C), 

where the SNAP tag is conjugated to the N-terminus of β2AR. The SNAP tag is labeled with a 

membrane-impermeable SNAP surface substrate. The shown curves represent the average of 

4-6 repeated measurements each 120 - 200 s long. The respective autocorrelations ACFgp and 

ACFrd of the eGFP and SNAP signal are fitted to a bimodal, two-dimensional diffusion model 
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shown in eq. 9. The ACFgp from eGFP shows only the expected triplet blinking at tR1 ~ 9 µs. 

Interestingly, the ACFrd of the SNAP signal requires two additional relaxation times, one at the 

typical triplet blinking time of tR1 ~ 5 µs and a second one at tR2 ~ 180 µs.  

The molecular brightness of eGFP and the SNAP substrate in live cells under the used excitation 

conditions amounts to 0.8 and 1.7 kHz per molecule, respectively (eq. 5a-b). The concentration 

of the labeled β2AR constructs incorporated into the cell membrane lies in the nano-molar range 

and can be determined based on the obtained number of molecules (eq. 9, Figure4C) and the 

size of the respective confocal volume for the green and red channel (Figure 2) using eq. 8. 

 

 
Figure 4 Representative measurement of single-label constructs. (A-B) In this study, the membrane receptor 

β2AR  was used as a example. In contrast to the fluorophores and DNA strand used for calibration, which could 

freely float through the detection volume, membrane proteins diffuse mainly laterally along the membrane, 

described as 2-dimensional diffusion. (B,D) ACFgp and ACFrd of the single-label constructs β2AR-IL3-eGFP 

(B) and NT-SNAP-β2AR (D). Shown is the average of 4-6 measurements with each 120 – 200 s long. The table 

in panel (C) shows the fit results of the data to the bimodal two-dimensional diffusion model including 

additional relaxation terms (eq. 7). 

 

3.2. Double-labeled construct: NT-SNAP-β2AR-IL3-eGFP 

In the double-labeled construct NT-SNAP-β2AR-IL3-eGFP (short NT-SNAP), eGFP is inserted 

into the intracellular loop 3 and additionally the SNAP tag is conjugated to the N-terminus of 

β2AR (Figure 5A). As both fluorophores are on different sides of the cell membrane, they 

cannot interact, i.e. FRET does not occur. In an ideal case, this construct would show 100 % 

co-diffusion of the green and red fluorophore. Figure 5B-D shows two measurements of the 

NT-SNAP in two cells on two different measurement days. Fitting the ACFgp and ACFrd of the 

“better” measurement shown in Figure 5B with eq. 7 and the CCFPIE with eq. 9, reveals 50- 60 

molecules in focus for the ACFgp and ACFrd, whereas Napp, thus 1/G0(tc) ~ 114 for the CCFPIE 

(Figure 5C). The concentration of labeled receptors lies in the ~100 nM range as determined 

with eq. 8. To determine the average concentration of double-labeled molecules, first the ratio 
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of G0(tc) (represented by 1/N(app)) of the CCFPIE to ACFgp and ACFrd, respectively, is calculated 

(eq. 6). Next, these values, rGRcell = 0.43 and rRGcell = 0.53 are compared to the values obtained 

from the DNA measurement (rGR,DNA = 0.51 and rRG,DNA = 0.79 on this measurement day). Using 

the rule of proportions, a rGRcell = 0.43 from the ACFgp of the eGFP signal reflects a fraction of 

co-diffusion (rGRcell/rGR,DNA) of 0.84, where for the other case of ACFrd of the SNAP substrate 

signal this value amounts to 0.67. The average concentration of double-labeled NT-SNAP 

construct can finally be calculated based on eq. 10. In contrast, in the measurement shown in 

Figure 5D from a different day the concentration of receptors is quite low and the data very 

noisy such that the fit range is limited up to ~ 10 µs and also low amount of co-diffusion is 

observed (15 – 26 %). 

 

 
Figure 5 Double-labeled NT-SNAP-β2AR-IL3-eGFP construct. (A) In the double labeled construct, the 

eGFP is inserted into the intracellular loop 3 and the SNAP tag attached to the N-terminus of β2AR (NT-SNAP). 

(B, D) ACFgp, ACFrd and CCFPIE of two measurements of the double-labeled construct. The data is fit to a 

bimodal two-dimensional diffusion model (eq. 9, CCFPIE) and including additional relaxation terms (eq. 7, 

ACFgp and ACFrd). The table in panel (C) shows the fit results and the derived parameter concentration (eq. 8), 

the ratio of the correlation amplitude at zero correlation time (G0(tc)) and the fraction of co-diffusing molecules 

(eq. 10). Please note that the measurement were acquired on different days, thus slightly different factor for the 

amplitude correction were used (B: rGR,DNA = 0.51 and rRG,DNA = 0.79; D: rGR,DNA = 0.51 and rRG,DNA = 0.56). 

 

3.3. Double-labeled construct undergoing FRET: β2AR-IL3-eGFP-CT-SNAP 

In the double-labeled construct β2AR-IL3-eGFP-CT-SNAP (Figure 6A), the eGFP is inserted 

into the intracellular loop 3 identical to the NT-SNAP-β2AR-IL3-eGFP construct and the SNAP 

tag attached to the C-terminus. Thus, here both labels are on the same side of the cells’ plasma 
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membrane, and due to the fluorophores’ closeness FRET is occurring as can be judged based 

on the quenched eGFP lifetime (Supplementary Note 5). Considering the general flexibility of 

relatively unstructured protein regions like the C-terminus 34 and the knowledge about the at 

least two different proteins conformations of GPCRs 35, dynamic changes in the FRET 

efficiency due to eGFP-SNAP distance changes would be expected and to show up as 

anticorrelated terms in the CCFFRET (orange curve in Figure 6B). The joint (or global) fit of all 

five correlations shown in Figure 6B reveals ~70 % of slowly diffusing molecules at ~100 ms 

while the rest diffuses with ~ 1 ms. All autocorrelations and CCFFRET show relaxation terms at 

37 µs and 3 µs, where the correlations dominated by red signal (ACFrp, ACFrd and CCFFRET) 

show an additional slow component ~ 50 ms (Figure 6C).  

 

Next, to show the effect of FRET-induced changes on the CCFFRET under different conditions, 

a series of simulations were performed (Figure 6D) assuming a two state system exchanging 

with a rate constant at 70 µs. If a molecule switches between a low and a high-FRET (LF, HF) 

state – inducing anticorrelated increase in the red signal and a decrease in the green signal - at 

a timescale faster than its residence time in the focal volume, the photons coming from LF 

versus HF are anticorrelated as the molecule can only be in HF or LF, but never be in both at 

the same time 6,31,36. Here, two different FRET-systems were assumed showing either a 

moderate change in FRET efficiency between the two states (LF<-> HF) or maximal FRET 

contrast (DOnly <-> VHF) in the absence or presence of triplet blinking and increasing amount 

of donor crosstalk into the red channels. The simulations were performed using Burbulator 37. 

The diffusion term was modeled as a bimodal distribution with 30 % of fast diffusing molecules 

at tD1 = 1 ms and the rest of the molecules diffusing slowly with tD2 = 100 ms. In total, 107 

photons were simulated in a 3D Gaussian shaped volume with w0 = 0.5 µm and z0 = 1.5 µm, a 

box size of 20, and NFCS = 0.01. 

 

Figure 6E-F shows the simulation results for the FRET-induced cross-correlation CCFFRET for 

moderate (Figure 6E) and maximal FRET contrast (Figure 6F) in the absence (solid lines) and 

presence of triplet blinking (dashed lines). The FRET-induced anti-correlation can easily be 

seen in Figure 6F and also the “dampening” effect upon addition of an additional triplet state 

reducing the correlation amplitude is clearly seen (Figure 6E-F) 38,39. 
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Figure 6 Simulation of double-labeled sample showing dynamic FRET. (A) Double-labeled β2AR with an 

eGFP inserted into the intracellular loop 3 and a C-terminal SNAP tag. Both fluorophores are close enough to 

undergo FRET and show changes in the FRET efficiency if the receptor undergoes protein dynamics. (B) 

Autocorrelation (ACFgp, ACFrp and ACFrd, fit with eq. 7) and cross-correlation curves (CCFFRET (eq. 7) and 

CCFPIE (eq. 9)) of an example measurement. Table in panel (C) shows the fit results. (D-F) To show the 

influence of experimental parameter on the expected, FRET-induced anticorrelation term, 12 simulations were 

performed, in which the change in the FRET efficiency (small or large), different amount of donor crosstalk 

into the acceptor channels (0 %, 1 % or 10 %) and the absence and presence of triplet blinking were modeled. 

The equilibrium fraction of both FRET-states was assumed to 50:50 and their exchange rates adjusted such that 

the obtained relaxation time tR = 70 µs. More details on the simulations see in the text. (E) CCFFRET of the 

simulation results with a moderate FRET contrast and in the absence of crosstalk (dark orange), 1 % crosstalk 

(orange) and 10 % crosstalk (light orange). Solid lines show results in the absence of triplet, dashed lines in the 

presence of triplet. (F) CCFFRET of the simulation results with maximal FRET contrast. The color code is 

identical to (E). 

 

However, in the simulation case most similar to the experimental conditions (α = 10 %, 15 % 

triplet blinking and moderate FRET contrast, dashed yellow line in Figure 6E) the 

anticorrelation term is nearly diminished. Figure 7 shows the result of analyzing this simulated 

data using the information encoded in the photon arrival time histograms (i.e. the fluorescence 

lifetime) by means of Fluorescence Lifetime Correlation Spectroscopy (FLCS) 17,19 or species-

filtered FCS (fFCS) 18. Here, the fluorescence lifetime of the known HF and LF species (Figure 

7A) is used to generate weights or “filters” (Figure 7B) which are applied during the correlation 

procedure. In the obtained species-auto- and crosscorrelation curves (Figure 7C-D) the 

anticorrelation is clearly seen. 

 

Parameter ACFgp ACFrp ACFrd CCFFRET CCFPIE

tD1 [ms] 117 329 372 310 341

a1 0.608 0.727 0.637 0.731 0.896

tD2 [ms] 1.23 0.897 1.39 1.20 1.43

N(app) 5.20 6.04 4.04 12.5 61.8

tR1 [ms] --- 51.6 ---

aR1 --- 0.302 0.313 0.229 ---

tR2 [µs] 37.1 ---

aR2 0.129 0.107 0.123 0.118 ---

tR3 [µs] 3.06 ---

aR3 0.159 0.102 0.071 0.137 ---
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Figure 7. Lifetime-filtered FCS can help to uncover the protein dynamics based fluctuations in FRET 

efficiency in samples with high crosstalk, significant triplet blinking or other photophysical or 

experimental properties masking the FRET-induced anticorrelation in the CCFFRET. Here, the approach 

is shown exemplary for the data shown in Figure 6E for the simulation containing 10 % crosstalk and 5 % triplet 

blinking. (A) Normalized fluorescence intensity decay patterns for the two FRET-species (light and dark green 

for high and low FRET, respectively) and the IRF (grey). The pattern for the parallel detection channel is shown 

in solid lines, dashed lines for the perpendicular detection channel. (B) The weighting function or “filter” were 

generated based on the patterns shown in (A), color code is identical to (A). Please note that only the signal in 

the green detection channels, and thus the FRET-induced donor quenching, is considered here. (C) Four 

different species-selective correlations are obtained: species-autocorrelations of the low FRET state (sACFLF-

LF, dark green) and the high FRET state (sACFHF-HF, light green), and the two species-crosscorrelations between 

the low FRET to the high FRET state (sCCFLF-HF, dark orange) and vice versa (sCCFHF-LF, orange). The sCCF 

clearly shows the anticorrelation in the µs-range. Dashed black lines show the fits. sACF were fit with eq. 9 

and sCCF with eq. 11. Table in panel (D) shows the fit results. 

 

4. CCFPIE amplitude to study Protein-Protein Interaction (PPI) 

Finally, a common use case for PIE-based FCS in live cells is to study the interaction between 

two different proteins. Here, the read-out parameter is the amplitude of the CCFPIE, or more 

precise the ratio of the autocorrelation amplitudes ACFgp and ACFrd to the amplitude of CCFPIE. 

To exemplify the effect of increasing co-diffusion on CCFPIE, simulations have been performed 

based on the two single-labeled constructs, β2AR-IL3-eGFP and NT-SNAP-β2AR, described 

above (Figure 8A). Figure 8B shows how the amplitude of CCFPIE increases when the fraction 

of co-diffusing molecules change from 0 % to 100 %. Please note that the diffusion components 

were modeled as above and that a 1 % crosstalk of green signal into the red channels in the 

delay time window was added.  
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Figure 8. The CCFPIE can be used to study the interaction of two proteins. (A) Here, a co-transfection study 

of β2AR-IL3-eGFP with NT-SNAP-β2AR (carrying a “red” SNAP-label) was simulated. (B) For an increasing 

amount of co-diffusing molecules (0 % (dark blue) -> 100 % (light blue)) the amplitude G(tc) increases. The 

diffusion term was again modeled as a bimodal distribution with 30 % of fast diffusing molecules at tD1 = 1 ms 

and the rest of the molecules diffusing slowly with tD2 = 100 ms. Additionally, 1 % crosstalk of green signal 

into the red delay time window was added. 

 

Discussion 
The use of FCS techniques in GPCRs allows the mobility and interactions of receptors inside 

the cell to be assessed 40. The advantage of FRET-FCS technique is that, along with mobility 

we can investigate the conformational dynamics of GPCRs. However, performing FRET-FCS 

in live cells is challenging and requires good transfected (not overexpressed) cells, a well-

calibrated setup and a good pipeline to analyze the data globally. Here, first the critical points 

in the sample preparation and experimental procedure are discussed concerning all, the 

biological, spectroscopic and technical point of view. 

 

Critical experimental steps include the minimization of background and autofluorescence (by 

using extensively cleaned coverslips and phenol-red free media), the optimization of 

transfection conditions (e.g. amount of plasmid DNA and time after transfection) to achieve 

low expression levels and efficient labeling. Of course, it is also vital to assure that the function 

of the labeled protein is not hampered. Thus, in live cell experiments, the decision for the 

labeling strategy and label position is often made in favor of fluorescent proteins or SNAP/CLIP 

tag attached to the flexible N- or C-terminus 41,42. Alternative labeling strategies like the 

insertion of an unnatural amino acid with a reactive side chain for labeling with an organic 

fluorophore are emerging in the last years 43. 

 

For dual-color PIE-FCS, where solely the interaction of two molecules of interest are to be 

investigated, the fluorophores can be selected from quite a pool of available ones. Here, 

spectroscopy-wise the goal should be select a pair such that little crosstalk and direct acceptor 

excitation occur. Additionally, the fluorophores should be photostable and show little or no 

bleaching under the chosen experimental conditions. It is recommend selecting rather 

fluorophores in the red spectral range as (1) the autofluorescence background from the cell is 
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reduced and (2) the excitation light is of longer wavelength, thus less phototoxic14. 

Photobleaching can be minimized by conducting a so-called “powerseries” first, in which the 

laser power is increased stepwise and the molecular brightness is observed. The optimal 

excitation intensity range lies in the linear range of the results44. 

If the two labels are supposed to report also on protein conformational dynamics, either in a 

protein assembly or by being placed inside the same protein, by FRET the choice of available 

fluorophore is more restricted. Here, the possible minimal / maximal distance between the two 

fluorophores should be estimated beforehand e.g. based on available structures or molecular 

size, and fluorophore pair selected with a reasonable Förster radius R0 such that FRET can 

actually occur 20.  

Here, eGFP and a SNAP tag were chosen for labeling and the SNAP tag was labeled with either 

an intracellular or a membrane-impermeable surface substrate. The spectra are similar to the 

ones shown in Figure 2C-D. This combination shows high crosstalk and direct acceptor 

excitation, and results in significant “false” signal in the red channels in the prompt time 

window. Ideally, both values should not exceed 5 % 5,6,38. However, with a Förster radius of 57 

Å it is ideally suited to probe the distance between the labels in the β2AR-IL3-eGFP-CT-SNAP 

construct as can be evaluated from the quenched eGFP lifetime (Supplementary Note 5).  

 

Technically, - of course – as for any fluorescence spectroscopy experiment, the device should 

be well aligned and possess suitable excitation sources, emission filter and sensitive detectors. 

To avoid artifacts from detector afterpulsing on the µs timescale, at least two detectors of each 

color should be present, which can be cross-correlated. In modern counting electronics, dead 

time of the detection card in the ns time range hardly plays a role due to the independent routing 

channels, however, it might be checked 16 and for high time resolutions each detection channel 

should be doubled, i.e. four detector per color should be used, to also bypass detector dead times 

2,15,29,45. If the fluorescence lifetime and distance between the fluorophores are to be analyzed, 

the emission has to be collected polarization-dependent as is the case here (Supplementary Note 

1). Finally, in PIE experiments, the distance between the prompt and delay pulse is critical and 

should be chosen such that the fluorescence intensity of the fluorophores has been largely 

decayed (Figure 1B). A common rule is to place the two pulses 5x the fluorescence lifetime 

apart, i.e. for eGFP with a fluorescence lifetime of 2.5 ns the distance should be 12.5 ns at 

minimum 22.  
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After having detailed all consideration for the experimental procedure, the data and its analysis 

is discussed in more detail. As already mentioned in the protocol section, the alignment of the 

setup must be checked daily, including the analysis of the calibration measurements. The data 

shown in Figure 2A-C e.g. shows an additional relaxation component in 8-40 µs. Typical triplet 

blinking of the green calibration fluorophore is known to occur in the 2-10 µs range 13,15,46. The 

slow relaxation component required in all curves of the DNA sample (Figure3C) – too slow for 

actual triplet blinking – might stem from interactions of the DNA with the fluorophores 39. 

However, this component would not be expected in CCFPIE, and most likely stems from residual 

crosstalk. Thus, it is highly advisable to perform the analysis of the calibration samples directly 

prior to proceeding to the cell experiments to judge the quality of the day’s alignment. 

 

The proper calibration of the confocal overlap volume requires a sample with 100 % co-

diffusion of the green and red label. Here, commonly DNA double-strands are used. Single 

DNA strands with fluorophores inserted can be bought tailored to the specific fluorescence 

properties required and annealed with high yield to the DNA double strands with a specific 

fluorophore spacing. However, Good Laboratory Practice advises to check the integrity and 

labeling degree of the DNA strands by agarose gel electrophoresis and measuring the absorption 

spectrum. Also, the yield of the double-strand assembly should be checked as this DNA 

calibration measurement critically relies on the fact that the assumption of a 100 % co-diffusion 

of the green with the red label is valid, else correction factors might have to be applied 16,22. In 

the calibration measurements shown in Figure 2 and Figure 3, a detection volume of 1.4 fL and 

1.9 fL in the green and red channel was obtained. This size difference is expected for a setup 

with nearly diffraction-limited excitation volumes (Supplementary Note 2), where the size of 

the excitation volume scales with the excitation wavelength. This in turn explains the different 

correlation amplitudes observed in Figure 3B. The derived correction factors rGR = 0.56 and rRG 

= 0.72 correct for this size discrepancy and potential non-perfect overlap of the two excitation 

volumes 3,4. 

 

Figure 4-7 showcase the exemplary workflow of a PIE-F(C)CS based study aimed toward 

understanding the conformation protein dynamics. First, the two single-labeled constructs 

β2AR-IL3-eGFP and NT-SNAP-β2AR serve as controls to characterize the fluorophore 

properties in cells in the absence of the respective other fluorophore (Figure 4). Next, the 

double-labeled construct NT-SNAP-β2AR-IL3-eGFP carries a SNAPtag facing the cell outside 

and an eGFP on the cytoplasmic side. It serves as a “100 % co-diffusion” control (Figure 5). 
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The last construct, β2AR-IL3-eGFP-CT-SNAP, carries both fluorophores on the cytoplasmic 

side and close enough together to undergo FRET. Here, again a 100 % co-diffusion would be 

expected next to anti-correlated intensity fluctuation in the green and red channels signal in the 

prompt time window, i.e. after donor excitation, due to protein dynamics influencing the FRET 

efficiency 31-33 (Figure 6-7). 

 

All GPCR β2AR constructs show bimodal diffusion on the cell membrane (Figure 4A). Whereas 

the β2AR-IL3-eGFP shows only the expected triplet blinking (Figure 5B) 13,15, NT-SNAP-β2AR 

shows an additional slow relaxation time (Figure 5C-D). It is likely that tR2 might stem from 

unbound SNAP substrate. This could be elucidated by further experiments, e.g. by also 

measuring the diffusion and photophysical properties of the used SNAP substrate free in 

solution. Of note, a straightforward experiment to differentiate between diffusion and relaxation 

times is to change the pinhole of the confocal setup, i.e. increasing the effective volume: While 

the diffusion times increase with increasing effective volumes, relaxations term are unaltered 

13. When determining the concentration of fluorescent protein (FP) based on the fit results, be 

aware that FPs in general undergo a maturation process, in which finally the chromophore is 

formed 12. This maturation time may differ from FP to FP in addition to photophysics that 

depends on the local chemical environment 13,15. Thus, the actual protein concentration present 

in the sample reported by FCS is usually underestimated, which can be corrected, if the fraction 

of non-fluorescent FPs can be determined in the experiment. Finally, it is advisable to check 

the fluorophore spectra in live cells – if possible - as most fluorophores react sensitive to their 

environment 13,15,46, and to correct the values for α and δ, if required. Here, the background to 

subtract is determined by the signal collected in non-transfected cells. Additionally, the 

autocorrelation of the respective other color channel and the CCFPIE should be checked to be 

able to identify false signals (Supplementary Note 4 – Figure 30). 

 

The two measurements from the NT-SNAP-β2AR-IL3-eGFP (Figure 5D), where the 

fluorophores are located on different sides of the membrane, were acquired on different days 

and show very different results. One has a high degree of labeling and due to averaging of 

measurements relatively lower noise (Figure 5B), while from the other cell, only two 

measurements could be collected and it shows quite high noise (Figure 5A). This emphasizes 

the fact to collect sufficient amount of data – from a single cell and from different cells on 

multiple independent sample preparations, to critically evaluate the results timely and to 

optimize the labeling strategy, especially when working with labeling substrates. Be aware that 
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here no FRET can occur due to the large distance between the fluorophores. This can also be 

cross-checked by evaluating the unaltered eGFP fluorescence lifetime (Supplementary Note 5). 

In the β2AR-IL3-eGFP-CT-SNAP construct (Figure 6A), FRET occurs as can be evaluated 

from the quenched eGFP lifetime (Supplementary Note 5). However, no anticorrelation term is 

visible (Figure 6B). Up to three additional relaxation term are required in ACFgp, ACFrp, ACFrd 

and CCFFRET (Figure 6C). The slow component in ACFrp, ACFrd and CCFFRET might be due to 

acceptor bleaching and of course influences the obtained value of the slow diffusion found in 

these curves (~350 ms compared to 117 ms in ACFgp). tD in red is supposed to be slightly larger 

than in green due to the differently sized confocal volumes (Figure 2) – but only by a factor 

comparable to the size difference. The very fast relaxation time of 3 µs reflects the triplet 

blinking of the fluorophores 13,15,46, where the slower one of 37 µs might be due to FRET: 

Similarly as FRET induces an anticorrelation in the CCFFRET, positive correlations are expected 

in the autocorrelations 31-33. The presence of this term as “positive” in CCFFRET and at all in the 

ACFrd might be explained with the high crosstalk and should be further elucidated. Note that 

the CCFPIE is flat as expected. 

 

On other terms it should be noted that the occurrence of FRET in a system of interest leads to 

non-linear effects on the correlation curves 6. The molecular brightness e.g. of a molecule scales 

into the correlation amplitude squared and each FRET-state (and the always present molecules 

without an active receptor) shows different molecular brightness. Indeed, FRET decreases the 

apparent concentration of green molecules detected (i.e. increases ACFgp amplitude) and the 

number of red molecules (determined from red-prompt) is overestimated 5. Both effects 

influence the amount of interaction derived from both CCFFRET and CCFPIE. However, global 

analysis shown e.g. for the intramolecular dynamics of Calmodulin 31,32 or Syntaxin 33 can 

reveal the protein dynamics. When carefully calibrated, the average FRET efficiency may be 

extracted from the relative CCFPIE and ACF amplitudes 22, whereas the limiting states might be 

determined from the analysis of the donor fluorescence lifetime distribution 33. 

 

Considering the fact that in live cell experiment with large fluorophores like eGFP the FRET 

contrast is likely to be even lower and that the direct excitation of the acceptor was not added 

in the simulation, might explain why the identification of the anticorrelation in live cell 

experiments provides a challenge. A promising analysis alternative relies on harvesting the 

information encoded in the photon arrival time histograms (Figure 1B) accessible due to the 

time-correlated single photon counting data collection 29,30. If the fluorescence lifetime 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 12, 2021. ; https://doi.org/10.1101/2021.09.10.459760doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.10.459760
http://creativecommons.org/licenses/by/4.0/


(~patterns) of the two (or more) (FRET) species inside the sample are known (Figure 7A), 

“filter” or weights can be constructed which are applied during the correlation process (Figure 

7B) 17-19. Obtained are the correlation curves, which no longer represent the correlation of 

detection channels but rather the auto- or crosscorrelations between two different (FRET) 

species, thus renamed to species-ACF (sACF) or species-CCF (sCCF). Applying this approach 

to the simulated data with moderate FRET contrast, high crosstalk and triplet blinking recovers 

the anticorrelation term (Figure 7C-D). However, it should be noted that relaxation times can 

be obtained but the relationship to amplitude are lost 18. This approach has been applied 

previously in live cell experiment e.g. to study the interaction of EGFR with its antagonist 47 or 

to separate the fluorescence from proteins attached to a short and long lived eGFP variant 48. 

 

While PIE-based FRET measurements in purified proteins are largely used to study protein 

dynamics 36 22, in live cells it focuses on understanding protein-protein interactions. This 

approach has been applied e.g. to study the regulation MAP kinase activity in yeast 49 or to 

resolve the interaction of membrane proteins with their cytosolic binding partner as summarized 

in this recent article 50. Here, complications may arise e.g. when significant crosstalk of green 

fluorophores is still present in the delay time window of the red channels or red signal in the 

green channels in the prompt time window. The former might be caused by an insufficient delay 

of the red pulse with respect to the green pulse while both effects stem from too strongly 

overlapping excitation and emission spectra of the chosen fluorophores. It is recommended to 

check the respective single labeled constructs carefully and correct for false-positive CCFPIE 

amplitudes, especially in cells where (short-lived) autofluorescence might be another 

complicating factor 22. 

 

To conclude, the FRET-FCS approach described here has great potential to understand the 

interaction between proteins and protein dynamics in live cells under near physiological 

concentrations. In this protocol, the focus was laid on the required calibration measurements 

and the necessary quantitative analysis to be performed during live cell measurements. To this 

end, different live cell measurements were shown complemented with simulations, in which 

parameter were varied systematically, and the composition of tailored fit models to the specific 

mobility and photophysical properties of the respective data set was presented. The analysis 

was performed with open-source software tools with an extensive step-by-step protocol and 

easy-to-adapt templates. Finally, the technical advancements, and thus the availability of ready-

to-buy stable PIE-FCS systems together with the spread of open-source software for data 
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analysis will make this technique easily accessible. Thus, live cell PIE-FCS shows great 

promise in unraveling live cell protein interaction and dynamics. 
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Table of Symbols 
Table 1 List of variables and abbreviations. For the use of symbols and definition in fluorescence and FRET 

experiments, the guidelines of the FRET community 51 are recommended. 

Symbol Meaning (common unit) 

α crosstalk of the green fluorophore after green excitation into the red detection channels (%) 

a1 fraction of first diffusion component in bimodal diffusion model of membrane receptors 

af total amplitude of the anticorrelation term 

aR amplitude of photophysics /triplet blinking 

A488 Alexa Flour 488, green calibration fluorophore 

A568 Alexa Flour 568, red calibration fluorophore 

b baseline / offset of a correlation curve 

B molecular brightness of a fluorophore ((kilo-)counts per molecule and second) 

BG background (e.g. from an appropriate reference sample: ddH2O, buffer, untransfected cell etc.) 

c concentration 

CR count rate (KHz or (kilo-) counts per second) 

d direct excitation of the red fluorophore after green excitation (%) 

D diffusion coefficient (µm²/s) 

G(tc) correlation function 

N number of molecules in focus 

NA Avogadro’s number (6.022*1023 Mol-1) 

rGR, rRG amplitude ratio of green or red autocorrelation function to the PIE-based cross-correlation function 

s shape factor of confocal volume element 

tc correlation time (usually in millisecond) 

tD diffusion time (usually in millisecond or microsecond) 

tR relaxation time of photophysics (usually in microsecond) 

tT relaxation time of triplet blinking (usually in microsecond) 

ω0 half-width of confocal volume element (µm) 

z0 half-height of confocal volume element (µm) 
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Table of Material 
Name of Material/ Equipment Company Catalog Number Comments/Description 

1x Telescope in 4f configuration with 

five lenses 
Qioptiq, Rhyl, UK G063126000 Optics 

2x Band pass filters Brightline AHF, Tübingen, Germany HC 525/50 and HC 600/52 Filter 

2x Dichroic beam splitter AHF, Tübingen, Germany HC BS F38-573 Filter 

6-well culture plate Nunc Thermo Scientific (Waltham, USA) 140675 Reagent 

Alexa Fluor 488 NHS Ester (green 

calibration standard) 

Invitrogen, Life Technologies (Carlsbad, 

USA) 
A20000 Reagent 

Alexa Fluor 568 NHS Eater (red 

calibration standard) 

Invitrogen, Life Technologies (Carlsbad, 

USA) 
A20003 Reagent 

ASI stage PZ-2000 XYZ 
Visitron Systems GmbH, Puchheim, 

Germany 
WK-XYB-PZ-IX71 Microscope Parts 

Attofluor Cell Chamber, 35 mm 

diameter for  25 mm round coverslips 

Invitrogen, Life Technologies (Carlsbad, 

USA) 
A7816 Glass coverslip holder 

Avalanche photodiode Perkin Elmer 

(SPCM-AQR-14) 

Laser Components GmbH, Olching, 

Germany 
SPCM-AQR-14 Single photon counting detector 

Beamsplitter Newport, Darmstadt, Germany 10FC16PB.3 Filter 

Biorender (Software) 
Science Suite Inc - o/a BioRender 

(Toronto, Canada) 
--- 

Software used to create GPCR sketch, 

https://app.biorender.com/ 

Chinese hamster ovary (CHO) cell line ATCC CCL-61 Cell lines 

ChiSurf (Data analysis Software) 

Thomas-Otavio Peulen, Department of 

Bioengineering and Therapeutic Sciences, 

University of California, San Francisco, 

USA 

--- 

tttrlib-based software to analyze 

fluorescence correlation data and 

fluorescence decay histograms, 

https://github.com/Fluorescence-

Tools/chisurf 

Tutorial: 

https://www.youtube.com/watch?v=k9Ng

YbyLyXk&t=2s  

Ref: Peulen et al. J Phys Chem B. 121 

(35), 8211-8241, (2017) 

Chloroform Sigma-Aldrich (St. Louis, USA) 472476-2.5L Reagent 

DMSO AppliChem GmbH (Darmstadt, Germany) A3672,0250 Reagent 

DNA strand (40 bp fluorophore 

distance) 

IBA Lifesciences GmbH (Göttingen, 

Germany) 
--- 

Reagent, 5’ CGC ACT GAA CAG CAT 

ATG ACA CGC GAT AGG CTA TCC 

TGC AGT ACG CT(Alexa568)C AGG 
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3’, 3’ GCG TGA CT(Alexa488)T GTC 

GTA TAC TGT GCG CTA TCC GAT 

AGG ACG TCA TGC GAG TCC 5’ 

Dulbecco’s Modified Eagle Medium: 

Nutrient Mixture F12 (with and 

without phenol red) 

GIBCO, Life Technologies (Carlsbad, 

USA) 
P04-41250, P04-41650 Reagent 

Ethanol (absolute) Sigma-Aldrich (St. Louis, USA) 34852-1L-M Reagent 

Erythrosin B,Dye content >=95 % Sigma-Aldrich (St. Louis, USA) 200964-5G 
Reagent, Instrument Response function, 

solve in EtOH to 10 mg/mL 

Fetal Bovine Serum (FBS) Biochrom  (Berlin, Germany) S 0615 Reagent 

Fluorescence Light Source X-Cite 120 

Q 
Excelitas Technologies, Ontario, Canada XI120-Q-5060 Microscope Parts 

Fluorescent SNAP-substrate cell : 

SNAP Cell TMR- STAR 

New England BioLabs (Frankfurt am 

Main, Germany) 
S9105S Reagent 

Fluorescent SNAP-substrate surface : 

DY-549 

New England BioLabs (Frankfurt am 

Main, Germany) 
S9112S Reagent 

Glass coverslips (Dimensions: diameter 

24 mm, thickness 0.13 - 0.16 mm) 

Marienfeld-Superior (Lauda-Königshofen, 

Germany) 
111640 Reagent 

Laser Controller Picoquant, Berlin, Germany 910020 (PDL 828-S "SEPIA II") Optics 

Laser lines (480 nm and 560 nm) Picoquant, Berlin, Germany 
912485 (LDH-D-C-485), 912561 (LDH-

D-TA-560) 
Optics 

Lipofectamine 2000 
Invitrogen, Life Technologies (Carlsbad, 

USA) 
11668-019 Reagent 

MFD suite (Software) 
AG Seidel, Heinrich-Heine-University 

Duesseldorf, Germany 
--- 

Software package for analysis of single-

molecule fluorescence experiments 

including e.g. Kristine (correlation of tttr 

data), Burbulator (simulation of single-

molecule experiment), 

https://www.mpc.hhu.de/software/3-

software-package-for-mfd-fcs-and-mfis 

Mounted Achromatic Doublet, ARC: 

400-700 nm, f=150 mm, D=25.4 mm 
Thorlabs, Bergkirchen, Germany AC254-150-A-ML Second part of Beam expander 

Neubauer Chamber (deepness 0.1 mm) 
Marienfeld-Superior (Lauda-Königshofen, 

Germany) 
640110 Reagent 

Olympus IX 71 stand Olympus, Hamburg, Germany IX2-ILL100 Microscope Parts 

Opti-MEM (Reduced-Serum Medium) 
GIBCO, Life Technologies (Carlsbad, 

USA) 
31985-047 Reagent 

Penicillin/Streptomycin Sigma-Aldrich (St. Louis, USA) 049M4857V Reagent 
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Phosphate-buffered Saline (PBS) 
GIBCO, Life Technologies (Carlsbad, 

USA) 
14190144 Reagent 

Pinhole (50 µM) Newport, Darmstadt, Germany PNH-50 Pinhole 

PMT Hybrid-40 Picoquant, Berlin, Germany 932200 (PMA Hybrid 40) Single photon counting detector 

Python scripts (Software) 

Katherina Hemmen, Rudolf-Virchow 

Center for Integrative and Translational 

Imaging, University Wuerzburg, Germany 

--- 

Collection of self-written Python scripts 

based on tttrlib 

(https://github.com/Fluorescence-

Tools/tttrlib) used to (1) determine the 

average count rates, (2) correlate the data 

and (3) build fluorescence decay 

histograms, 

https://github.com/HeinzeLab/JOVE-FCS 

Quad band beamsplitter (zt405/473-

488/561/640 rpc phase r uf1) 
AHF, Tübingen, Germany F73-421PH Filter 

Single mode fiber polarization keeping, 

NA = 0.08 with collimator 
Picoquant, Berlin, Germany 02126 Optics 

Sodium Hydroxide (NaOH) Carl Roth (Karlsruhe, Germany) 6771.1 Reagent 

SymPhotime x64 Software (Data 

collection and data export software) 
Picoquant, Berlin, Germany 931073 (SPT64-1+2 single user ) 

Time-tag time-resolved (tttr) data 

collection at the self-built FCCS setup, 

data export 

Time-Correlated Single Photon 

Counting (TCSPC) system Hydraharp 

400 

Picoquant, Berlin, Germany 930010 (Hydraharp 400) Optics 

Trypsin-EDTA Sigma-Aldrich (St. Louis, USA) T4299-100ml Reagent 

Unmounted Achromatic Doublets, 

ARC: 400 - 700 nm, D=12.7 mm, F=-20 

mm 

Thorlabs, Bergkirchen, Germany ACN127-020-A First part of Beam expander 

Water immersion objective 

(UPlanSApo 60x/1.20 W) 
Olympus, Hamburg, Germany UPLSAPO60XW Objective 
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