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Abstract: Mutations in splicing factor genes have a severe impact on the survival of cancer patients.
Splicing factor 3b subunit 1 (SF3B1) is one of the most frequently mutated genes in chronic lympho-
cytic leukemia (CLL); patients carrying these mutations have a poor prognosis. Since the splicing
machinery and the epigenome are closely interconnected, we investigated whether these alterations
may affect the epigenomes of CLL patients. While an overall hypomethylation during CLL carcino-
genesis has been observed, the interplay between the epigenetic stage of the originating B cells and
SF3B1 mutations, and the subsequent effect of the mutations on methylation alterations in CLL, have
not been investigated. We profiled the genome-wide DNA methylation patterns of 27 CLL patients
with and without SF3B1 mutations and identified local decreases in methylation levels in SF3B1mut

CLL patients at 67 genomic regions, mostly in proximity to telomeric regions. These differentially
methylated regions (DMRs) were enriched in gene bodies of cancer-related signaling genes, e.g.,
NOTCH1, HTRA3, and BCL9L. In our study, SF3B1 mutations exclusively emerged in two out of three
epigenetic stages of the originating B cells. However, not all the DMRs could be associated with the
methylation programming of B cells during development, suggesting that mutations in SF3B1 cause
additional epigenetic aberrations during carcinogenesis.

Keywords: chronic lymphocytic leukemia; CLL; DNA methylation; SF3B1 mutation; NOTCH; IKAROS

1. Introduction

Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western
world and mainly affects elderly people [1]. Although the CLL phenotype is quite specific
and homogenous, the clinical outcome is extremely heterogeneous [1]. The clinical outcome
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is partly associated with the mutational status of the immunoglobulin heavy chain variable
region (IGHV) as patients with a high level of somatic mutations in IGHV (M-CLL) have a
better prognosis than patients with no or a low level of somatic mutations in this region
(U-CLL) [1–3].

Through the development of new high-throughput sequencing technologies, addi-
tional genomic alterations have been identified, which are associated with poor prognosis
or insufficient therapy response. The strongest impact has been found for del(17p) and
mutations in tumor protein P53 (TP53). Additionally, shorter progression-free survival is
conferred by mutations in the splicing factor 3b subunit 1 (SF3B1), ATM serine/threonine
kinase (ATM), ribosomal protein 15 (RPS15), and Notch receptor 1 (NOTCH1) [4–10].
Mechanistic insight into how these genomic alterations lead to poor prognosis or therapy
resistance in CLL is largely missing. One of the most frequently mutated genes in CLL is
SF3B1, encoding a component of the splicing machinery. Patients with SF3B1 mutations
(SF3B1mut) have a poor prognosis [5] and SF3B1 alterations are associated with chemother-
apy refractory disease [7]. SF3B1 mutations cluster in the HEAT repeat domain (Huntingtin,
Elongation factor 3—EF3), protein phosphatase 2A (PP2A), and the yeast kinase TOR1)
with the most common mutation in CLL being p.K700E [5,9]. Depletion of SF3B1 tran-
scripts by small interfering RNA (siRNA) in cell culture leads to an alteration of exon usage,
in most cases causing a decrease in cassette exon inclusion [11]. Long read sequencing
also revealed differential 3′ splice site changes and a strong downregulation of intron
retention events associated with SF3B1 mutations [12]. Recently, it has been shown that
blood malignancies, in particular, such as leukemias, have a strong link between mutations
in splicing factors and epigenetic dysregulation [13]. As such, SF3B1 interacts with the
chromatin remodeling complex WICH (WSTF-SNF2H) [14] and with the polycomb group
proteins: polycomb group ring finger 2 (PCGF2) and ring finger protein 2 (RNF2) [15]. A
direct interaction between SF3B1 and polycomb repressive complex 2 (PRC2) was shown
in mice. As such Sf3b1+/− mice exhibited a similar phenotype as PcGmut mice, i.e., various
skeletal alterations along the anterior-posterior axis [15]. Moreover, hypermethylation
of polycomb-repressed regions was observed in the proliferating fraction of circulating
CLL [16]. Furthermore, SF3B1 interacts with nucleosomes in an RNA-independent manner
and is preferentially associated with GC-rich exons [11]. However, a detailed characteriza-
tion of epigenomic changes associated with SF3B1mut CLL is still largely missing.

Epigenomic alterations are emerging as powerful prognostic indicators in CLL [17,18].
It has been found that CLL genomes, when compared to normal B cells, are globally
hypomethylated [19–21] and that M- and U-CLL classes show distinct methylomes [22].
Hypomethylations are found at gene bodies [23], especially at repetitive sequences, such as
Alu, long interspersed nuclear elements-1 (LINE-1), and satellite-α (SAT-α) repeats [24].
Epigenetic profiling using DNA methylation arrays identified three subgroups of CLL,
reflecting the developmental stage of the B cells from which the CLL cells originated [23,25].
Normal B cell maturation from naive to high-maturity memory B cells is accompanied
by unidirectional DNA methylation changes, of which most show a decrease in DNA
methylation. Such epigenetic changes during differentiation processes are also referred
to as epigenetic programming. Epigenetic-defined CLL subgroups were therefore named
low-programmed CLL (LP-CLL), intermediate-programmed CLL (IP-CLL), and high-
programmed CLL (HP-CLL) [25]. LP-CLL is enriched for unmutated IGHV (U-CLL) and
is associated with a poor prognosis, whereas HP-CLL is enriched for mutated IGHV (M-
CLL) [23].

Recent studies have revealed wide-spread intratumor heterogeneity of the methylation
in CLL [18,26,27]. Upon maintenance of DNA methylation, the methylation of one CpG is
influenced by neighboring CpGs, yielding concordant methylation states [28]. In contrast,
discordant methylation states are associated with active reprogramming. In cancer, a
higher degree of discordant neighboring CpG methylation at promoter sites has been
associated with worse prognosis [26]. According to this study, the median time for ‘failure
free survival’ (FFS), meaning the time between the first and the second treatment or
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death, decreases from 44 months to 16.5 months for patients with a high proportion of
discordant methylation in the promoter. This suggests that DNA methylation is a predictor
for prognosis, but whether it is causative or just a confounding factor to the malignant
process is so far unknown. Along this line, it is unclear whether DNA methylation and
oncogenic mutations are independent prognostic factors or if are functionally related.
Landau et al. observed that the presence of sub-clonal drivers overruled the increased risk
associated with the elevated PDR (proportion of discordant reads), suggesting that either
the heterogeneous methylation facilitates mutational processes, or that the mutations exert
their functions through epigenetic mechanisms [26].

Moreover, all three DNA methyltransferases (DNMTs) are subjected to alternative
splicing [29–31] and, therefore, mutations in splicing factors can potentially lead to changes
in the methylation profiles, either directly by affecting the splicing of the DNA methyl-
transferases and DNA demethylases genes, or by alternatively spliced isoforms of the
chromatin and methylation regulators, such as non-coding RNAs [32]. Thus, to achieve a
better understanding on the methylome changes in CLL patients and how they might be
connected to mutations in SF3B1, we compared genome-wide methylation profiles of CLL
patients with (SF3B1mut) and without (SF3B1WT) SF3B1 mutations.

2. Results
2.1. CLL Patients with SF3B1 Mutations Feature Local Hypomethylations

Although overall hypomethylation in CLL patients compared to normal B cells is
known [23,24], the impact of the SF3B1 mutations on the epigenome is unclear. We used
DNA of 27 patients with (SF3B1mut, n = 13) and without (SF3B1WT, n = 14) SF3B1 mutations
(Table S1), and investigated genome-wide methylation profiles using the methylated DNA
immunoprecipitation sequencing (MeDIP-seq) technology. Although principal component
analysis with the 1,000 most variable regions within CG islands (CGIs) revealed that
samples clustered according to the IGHV mutational status, and some separation could also
be observed based on the SF3B1 mutational status, no clear clusters grouped by the SF3B1
genotype were visible (Figure 1A). This suggested that SF3B1mut has no widespread effect
on the methylation patterns of the CLL patients. The distribution of sex or age between
the SF3B1WT and SF3B1mut patients was not significantly different (Mann–Whitney test
p-value = 0.94) (Table S1). Using the QSEA package [33], we identified 67 significantly
hypomethylated, but no hypermethylated regions (adjusted p-value (false discovery rate,
FDR) < 0.05, and |log2(fold change)| ≥ 1) (Table S2). We validated 16 of the significantly
differentially methylated regions (DMRs) with the EpiTYPER (Tables S3 and S4) and
observed a significant correlation (R = 0.71, p-value < 2.2 × 10−16) between the methylation
levels of the regions estimated with MeDIP-seq/QSEA and EpiTYPER (Figures 1B,C and S1).
Although the EpiTYPER data cannot provide methylation information for individual CpGs
localized on the same DNA strand, the bulk methylation level of neighboring CpG sites at
14 DMRs with more than one CpG tested seems mostly concordant (Table S4). A hierarchical
clustering using the beta normalized methylation values at the 67 DMRs clearly separated
SF3B1mut from SF3B1WT (Figure 2A).
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Figure 1. Hypomethylation in chronic lymphocytic leukemia (CLL) patients with SF3B1 mutation. (A) Principal 
component analysis (PCA) of the samples revealed clustering of the SF3B1mut samples with darker points corresponding 
to the samples with a mutation. PCA was performed using beta normalized values for the 1,000 most variable 250 bp 
windows within CpG islands. Points colors correspond to the SF3B1 mutational status. Sample IDs were colored according 
to IGHV mutational status. (B,C) Validation of 16 from 67 differentially methylated regions (DMRs) identified with the 
subset of samples (6 SF3B1WT and 6 SF3B1mut) using the EpiTYPER to estimate CpGs methylation levels within the DMRs: 
(B)—correlation between EpiTYPER and beta methylation for each sample and every DMR/CpG; (C) comparison of the 
methylation difference between SF3B1mut and SF3B1WT CLL mean methylation levels. 

Figure 1. Hypomethylation in chronic lymphocytic leukemia (CLL) patients with SF3B1 mutation. (A) Principal component
analysis (PCA) of the samples revealed clustering of the SF3B1mut samples with darker points corresponding to the samples
with a mutation. PCA was performed using beta normalized values for the 1,000 most variable 250 bp windows within CpG
islands. Points colors correspond to the SF3B1 mutational status. Sample IDs were colored according to IGHV mutational
status. (B,C) Validation of 16 from 67 differentially methylated regions (DMRs) identified with the subset of samples
(6 SF3B1WT and 6 SF3B1mut) using the EpiTYPER to estimate CpGs methylation levels within the DMRs: (B)—correlation
between EpiTYPER and beta methylation for each sample and every DMR/CpG; (C) comparison of the methylation
difference between SF3B1mut and SF3B1WT CLL mean methylation levels.

We next compared our results to published methylation data created with methylation
arrays that, even though they did not focus on the SF3B1mut effect, did contain methylation
data of SF3B1mut patients. Kulis et al. used 139 CLL patients, 8 of which with SF3B1 muta-
tion [23]. The authors identified 64 hypo- and 30 hypermethylated differentially methylated
CpGs between SF3B1mut and SF3B1WT. Although 74 of these 94 CpGs (79%) were within
genomic regions sufficiently covered by sequencing reads in our data and tested for dif-
ferential methylation, none of the DMRs identified overlapped the exact differentially
methylated CpGs identified by Kulis et al. [23]. However, we identified DMRs within three
genes that contained a differentially methylated CpG reported by Kulis et al. [23]: BCL9L,
MYB, and NCOR2. The CpGs and DMRs within these genes had the same direction of
the methylation change; they were hypomethylated in CLL with SF3B1mut compared to
CLL with SF3B1WT. We next used an even larger dataset, one that encompasses the dataset
from Kulis et al. [23], available from BloodCancerMultiOmics2017 R package [34]. In total,
174 CLL patients with known SF3B1 mutational status (148 SF3B1WT and 26 SF3B1mut)
were analyzed for 435,102 CpGs (all CpG sites with a single nucleotide polymorphism,
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SNP, were removed by the authors). We used the limma R package [35] to analyze the array
data sets and found that only 18 from our 67 DMRs (27%) overlapped at least one CpG (in
total, 27 CpGs) included in the methylation array dataset, suggesting that the differential
methylation might be located outside of regions captured with the array technology. The
methylation values of the array data within all of these 18 regions were altered in the
same direction as we have identified it within our dataset. Apart from one CpG with no
change in methylation, the CpGs overlapping these DMRs showed a slight hypomethy-
lation in CLL SF3B1mut patients with a maximum |log2(fold change)| = 0.3, within the
ACOX3 gene (Table S2, column AI). This again puts our results in line with previously
published data. Among the 27 CpGs overlapping the 18 DMRs, there were CpGs already
reported by Wierzbińska as CLL-specific (n = 8), or B cell-specific (n = 8) [36] (Table S2).
The mean methylation values for CLL SF3B1WT and CLL SF3B1mut of the 18 CpGs were
significantly correlated between the array and the MeDIP-seq based data (Pearson R = 0.47,
p-value = 0.0038) (Figure S2).
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missing information. CLL-subtype was defined by Oakes et al. based on the 18 loci selected by the authors [25]: low-
programmed (LP-CLL), intermediate-programmed (IP-CLL), and high-programmed (HP-CLL). See Figures 4 and S7. (B) 
Numbers of DMRs between CLL patients with and without SF3B1 mutation identified per chromosome. (C) Circos plot 
with the outer panel showing the log2 fold change in the 67 DMRs between SF3B1mut and SF3B1WT CLL patients in a −3.7 
to 0.2 range. The next three panels show, from outside to inside, the average density of 250 bp regions tested for differential 
methylation per chromosome within (i) genes; (ii) CpG islands (CGI); (iii) gene promoters. The darker the grey color, the 
higher the density. 
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Figure 2. Differentially methylated regions (DMRs) in chronic lymphocytic leukemia (CLL) patients with SF3B1 mutation.
(A) Methylation levels of 67 DMRs between CLL patients with and without SF3B1 mutation. The samples were clustered
based on Euclidean distances with a complete linkage agglomeration method. White cells in the IGHV annotation denote
missing information. CLL-subtype was defined by Oakes et al. based on the 18 loci selected by the authors [25]: low-
programmed (LP-CLL), intermediate-programmed (IP-CLL), and high-programmed (HP-CLL). See Figures 4 and S7.
(B) Numbers of DMRs between CLL patients with and without SF3B1 mutation identified per chromosome. (C) Circos plot
with the outer panel showing the log2 fold change in the 67 DMRs between SF3B1mut and SF3B1WT CLL patients in a −3.7
to 0.2 range. The next three panels show, from outside to inside, the average density of 250 bp regions tested for differential
methylation per chromosome within (i) genes; (ii) CpG islands (CGI); (iii) gene promoters. The darker the grey color, the
higher the density.
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2.2. Hypomethylations in CLL Patients with SF3B1 Mutation Are Enriched in Gene Bodies and
Subtelomeric Regions

We next asked if the changes in DNA methylation in SF3B1mut samples are enriched in
certain genomic regions or if they are evenly distributed across the genome. While we iden-
tified DMRs on almost all chromosomes, except chromosomes 14 and 18 (Figure 2B,C), the
density of DMRs for the chromosomes varied (chi-squared test p-value = 0.00015). We ob-
served the highest number of DMRs on chromosomes 9 and 19 (Figure 2B,C) (Figure S3A,B).
Chromosome 19 is known for its high density of genes and CG content [37]. We therefore
corrected the analysis for the CGI content and identified the largest enrichment of DMRs
on chromosome 9 (Figure S3C). We did not observe any major deletions or insertions on
chromosomes 9 or 19 based on the QSEA estimation (Figure S4). All eight DMRs identified
on chromosome 9 (as well as many DMRs on other chromosomes) were located within
15 Mbp from the chromosome end in proximity of telomeric regions (Figure 2C) [38]. In fact,
43 of our 67 DMRs (64%) were located within 10 Mbp from the chromosomal start/end,
and 28 of these (42% total) were located even more peripheral, within 5Mbp from the
chromosomal ends. This result suggested that the hypomethylation may involve spatially
and therefore possibly functionally related chromosomal regions. The subtelomeric DMRs
on chr9 overlapped gene bodies of EHMT1, NOTCH1, VAV2, PRRC2B, NEK6, and the
promoter region of LCN10.

Furthermore, to examine the distribution of DMRs in the genomic context, we an-
notated the DMRs and counted how many DMRs spanned different genomic features
(Figure 3A). DMRs were significantly enriched in gene bodies (Figure 3B) with more
than half (n = 48, 72%) of the DMRs located within gene bodies, mostly intronic regions
(n = 40). Furthermore, we observed that DMRs were enriched in transcription factor bind-
ing sites (TFBS, n = 29, 43%). These TFBS were mostly downstream to gene promoters,
except six, which were located in the promoters of TGFBR3, RGPD8, HTRA3, LCN10,
FAM174B, and IL17C (Table S2). Of those, four had a CpG island annotated within the
promoter region (RGPD8, HTRA3, FAM174B, IL17C). We next performed TFBS enrichment
analysis of the 122 transcription factors (TFs) included in the ENCODE Uniform TFBS
track [39] derived from ChIP-seq experiments [40–42]. We identified IKZF1 (IKAROS)
and BHLHE40 as the most significantly enriched transcription factors with 12 and 8 hy-
pomethylated DMRs at their binding sites, respectively (Figure 3C). Both TFs are critical
for B cell development [43,44]. This is particularly interesting in regard to the question
if the detected differential methylations are due to different B cell developmental stages
where the SF3B1mut cases develop from. However, the highest odds ratio was identified
for the histone deacetylase HDAC6 with two DMRs at the promoter regions of HTRA3 and
FAM174B. HDACs’ role in the initiation and progression of cancer has been extensively
studied, as reviewed in [45]. Among chromatin states, we found weak and strong en-
hancers as predominant sites for DNA hypomethylations (Figure 3D). Among the 29 DMRs
within enhancer regions, 21 (72%) were within 1 Mb from a promotor of a gene with
significantly different expression levels (FDR < 0.05, no threshold on log2(fold change,
Table S2), e.g., XXYLT1, HTRA3, and ARID3A genes. Eleven DMRs (16%) were located at
ten unique promoter regions (BCL9L, HTRA3, HPCAL1, IL17C, RGPD8, NCOR2, LCN10,
AC107959.1, FAM1748, TGFBR3) and two genes (HTRA3 and FAM1748) had higher expres-
sion and hypomethylated promoters in CLL patients with SF3B1mut compared to SF3B1WT

(Table S2).
Subsequently, to gain more biological insight into the differential methylations in

CLL patients with SF3B1 mutation, we used all 40 genes containing at least one DMR
within their gene body or promoter region and subjected the list to a gProfiler functional
enrichment analysis. This analysis identified the NOTCH signaling pathway (KEGG
pathway, g:SCS adjusted [46] p-value = 1.49 × 10−2) containing three of the genes (DTX1,
NCOR2, NOTCH1) as significantly affected by differential methylations (Figure S5).

Motif enrichment analysis of the 67 regions did not reveal any significantly enriched
transcription factor motif after multiple testing correction (Table S5).
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Figure 3. Genomic features of SF3B1mut vs. SF3B1WT differentially methylated regions (DMRs) at binding sites.
(A) Schematic visualization of features used in (B) A promoter was defined as a region +/− 2000 base pairs (kbp) from a
transcription start site. CpG islands (CGI) were obtained from [47]. A CGI shore was defined as a 2-kbp region flanking
a CGI up—and downstream. A distal CGI is any CGI outside of promoter regions. (B) Enrichment analysis of genomic
features with differentially methylated regions (DMRs) shown by odds ratio. Enhancer regions are taken from [48]. Tran-
scription factor binding sites (TFBS, n = 122) were derived from ENCODE Encyclopedia v.3. PRC2 binding sites were
defined as binding sites for EZH2 or SUZ12. (C) Enrichment analysis of the TFBS listed in (B)—only 11 TFBSs with the
highest odds ratio are shown. (D) Enrichment analysis of the chromatin states as derived from GM12878 cell line [49,50].
Significance is denoted by stars with adjusted p-value (false discovery rate) < 0.05 = “*”; < 0.01 = “**”; < 0.001 = “***”;
< 0.0001 = “****”; ≥ 0.05 = “ns”.

2.3. SF3B1mut Is Associated with Aberrant Methylation and Is Partially Related to the
Developmental B Cell Epigenetic State

It has been previously shown that the methylation profile in CLL reflects, besides
tumor specific alterations, the developmental state of the B cells from which the tumor
has derived [25]. Accordingly, CLL cases have been classified into three stages of B cell
development: low-programmed (LP-CLL), intermediate-programmed (IP-CLL), and high-
programmed (HP-CLL) [25]. This classification is based on clustering of methylation
levels from regions containing binding sites for transcription factors involved in B cell
development (AP-1, EBF1, RUNX3) and transcriptional elongation [25]. The authors
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identified 18 regions, which sufficiently separate the three B cell developmental stages [25].
Using beta-transformed methylation levels calculated by the QSEA software [33] for these
18 regions, we clustered our 27 samples together with the 329 CLL Research Consortium
samples analyzed by Oakes et al. [25] (Figures 4A and S6).
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Figure 4. Changes in the DNA methylome in SF3B1mut chronic lymphocytic leukemia (CLL) samples occur partly inde-
pendent of B cell maturation. (A) Heatmap showing unsupervised clustering of 27 samples from this study and 329 CLL
Research Consortium (CRC) samples from Oakes et al. [25] based on beta methylation values of the 18 most variable
regions among the three CLL subtypes. White cells in the SF3B1 and IGHV annotations denote missing information. The
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programming between CLL patients with and without SF3B1 mutation within 67 differentially methylated regions (DMRs)
identified between SF3B1mut CLL and SF3B1WT CLL samples. Due to the lack of high-programmed CLL samples with
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The occurrence of SF3B1 mutations have been associated with less differentiated states
of B cells with the SF3B1mut CLL resembling more naïve B cells whereas SF3B1WT CLL
resembling more memory B cells based on their methylation profiles [51–53]. We therefore
tested to what extent the SF3B1mut-associated hypomethylated regions can be explained
by the developmental stage, and to what extend they can be attributed to the effects of
the SF3B1mut during carcinogenesis. While four of the SF3B1WT samples clustered within
the HP-CLL cluster, we did not observe any sample with a SF3B1 mutation in this cluster
(Figure 4A,B). This was confirmed by independent clustering of our 27 samples, as all
HP-CLL samples (19, 21, 22, 36), none of which carried SF3B1mut, created a separate cluster
(Figures 1A and S6).

In order to evaluate if the identified 67 DMRs between SF3B1mut and SF3B1WT were
due to different developmental stages of the originating B cells, we looked at the methy-
lation differences based on beta-normalized methylation values at the 67 regions among
the developmental stages represented by LP-, IP-, and HP-CLL subtypes (Figure 4C). We
observed that, for SF3B1WT CLL, the methylation levels at these regions significantly in-
creased between the LP- and IP-CLL stages, whereas SF3B1mut CLL samples showed stable
methylation levels, which were significantly lower compared to the corresponding stage in
the SF3B1WT CLL (Figure 4C). At 22 from the 67 DMRs (33%) identified between SF3B1mut

CLL and SF3B1WT CLL samples the methylation level changed (≥20%) between LP- and
IP-CLL among the SF3B1WT CLL samples (Figure 4D, Table S2), suggesting that these
DMRs are involved in the normal B cell developmental process.

These 22 B cell development-related DMRs are located in 16 genes, including genes
involved in B cell-specific functionality, epigenetic remodeling, and carcinogenesis, such as
TGFBR3, EHMT1, ACOX3, SEPTIN9, MYB, FAM174B, ARID3A, XXYLT1, and RHOBTB2.
Although we observed ≥ 20% change in the methylation at the 22 of 67 DMRs between
LP-CLL and IP-CLL among the SF3B1WT CLL samples, the difference was lost in SF3B1mut

(Figure 4C). An additional 12 of our DMRs showed methylation differences (≥20%) when
we compared HP-CLL to IP-CLL among the SF3B1WT CLL samples, and 33 of the 67 DMRs
(49%) showed stable methylation profiles among the SF3B1WT CLL samples (LP-CLL vs.
IP-CLL and IP-CLL vs. HP-CLL, Table S2), indicating that about half of the methylation
changes observed between SF3B1WT and SF3B1mut are independent of B cell developmen-
tal stages.

Furthermore, we compared our list of DMRs with the 10,000 regions from Oakes et al.
and concluded that most significantly change their methylation levels during physiolog-
ical B cell maturation [25]. Only 4 of our 67 DMRs (6%) overlapped the 10,000 regions
associated with B cell development reported by the authors [25] (Table S2). It is worth
noting that all four overlapping DMRs, including DMRs within BCL9L and NOTCH1, were
hypermethylated in high-maturity memory B cells and hypomethylated when comparing
SF3B1mut vs. SF3B1WT CLL, suggesting an association of SF3B1 mutations with less mature
B cell developmental stages in CLL.

In addition, to further investigate if the observed DMRs between SF3B1mut and
SF3B1WT were related to the B cell maturation or not, we compared our list of DMRs with
epigenetic B cell programming sites identified using a methylome-based cell-of-origin
modelling framework [36]. The authors identified linear dynamics of the methylation
changes at 59,329 CpGs occurring during normal B cell development across six B cell
differentiation stages, from naive to memory B cells (B cell-specific sites). CpGs with
deviations from the expected methylation levels in CLL (CLL-specific) were classified into
four classes: B cell-specific developmental sites hypomethylated (class A, n = 5757) and
hypermethylated (class B, n = 183); and non B cell-specific sites hypomethylated in CLL
(class C, n = 4238) and hypermethylation in CLL (class D, n = 157). The CLL-specific CpGs
are expected to be associated with the tumorigenic transformation to CLL [36]. Eight (12%)
of our DMRs overlapped the B cell-specific developmental sites reported by the authors [36],
and seven (10%) overlapped CLL-specific CpGs not related to the B cell differentiation
program (Table S2). This indicates that a part of the differential methylations detected
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in SF3B1mut compared to SF3B1WT patients is related to the normal B cell differentiation
process, and that the other part is specific to SF3B1mut CLL.

3. Discussion

Methylation is known to regulate splicing [54–57], but alternative isoforms of DNA
methyltransferases genes or genes regulating chromatin conformation or methylation can
also modulate methylation profiles [32]. Although mutations in genes required for splicing
and methylation commonly occur in leukemia, and a mutation in a splicing factor (SRSF2)
has been shown to impact methylation in acute myeloid leukaemia [58], the interaction of
these two processes has not been described in CLL patients carrying SF3B1mut. To acquire
additional insight into the methylome differences in CLL patients with and without SF3B1
mutations, we analyzed genome-wide methylation profiles using MeDIP-seq. We identified
67 regions with significantly lower methylation levels in SF3B1mut CLL (Figure 2A) which
we partly validated with the EpiTYPER assay.

The question remains what the cause for the altered methylation pattern might be.
So far, there are no reports on the SF3B1 mutation causing differentially spliced isoforms
of DNMTs in CLL patients, which is also in line with our data. However, altered splice
variants in euchromatic histone lysine methyltransferase 1 (EHMT1) have been significantly
associated with SF3B1mut CLL patients [59], and were also detected by us to contain a
hypomethylated region (Table S2). In fact, the EHMT1 and UCKL1 genes were the only
genes that overlapped the DMRs reported here, and were listed as genes with altered
splicing associated with SF3B1 mutation in CLL patients [59]. Although most histone
methyltransferases are independent from DNA methylation, they are involved in gene
repression [60] and DNA damage [61]. Furthermore, EHMT1, in particular, has also been
associated with DNA methylation [62,63] and, therefore, this enzyme requires further
investigation in SF3B1mut CLL patients.

The methylation changes observed seemed to be only partially affected by the IGHV
mutational status and allowed to clearly separate the samples by the SF3B1 mutational
status (Figure 2A). The hypomethylated regions were distributed across the genome;
however, chromosomes 9 and 19 showed higher numbers of DMRs with many DMRs
located close to telomeric regions (Figure 2C). The hypomethylation of regions in CLL
compared to normal B cells [19,24] and further hypomethylation of CLL patients with
SF3B1mut may have a role in the worse prognosis of these patients. Interestingly, all eight
DMRs on chr9, which contained, for example, a DMR within the NOTCH1 gene, as well as
many DMRs on other chromosomes, were located in a close proximity to telomeric regions.
Short telomers have been already associated with anomalies in SF3B1 showing worse
prognosis in CLL patients [59,64,65]. However, the potential link between differential
methylation close to the subtelomeric region and shorter telomeres in CLL patients with
SF3B1mut requires further studies. We also observed hypomethylation in two other genes
involved in NOTCH signaling: DTX1 and NCOR2. Mutations in the NOTCH1 gene are
frequent in CLL [4–10] and NOTCH signaling was associated with CLL progression [66–68].
In addition, NOTCH1 pathway was shown to be activated in CLL patients with SF3B1
mutation [59,69].

In agreement with previous studies, most of our DMRs were located in genic regions
(Figure 3B). The genes with DMRs were significantly enriched within the NOTCH signaling
pathway (Figure S5). Interestingly, 12 DMRs included a binding site for the IKAROS (IKZF1)
transcription factor (TF). These 12 DMRs were associated with eight genes: ACOX3, ADAT3,
ARID3A, FAM174B, NOTCH1, RGPD8, SCAMP4, and XXYLT1. IKAROS is involved in
B cell development [59] and has previously been implicated with CLL [70]. IKAROS
expression increases during B cell differentiation and half of all genes upregulated during
B cell development are IKAROS targets [71]. Moreover, IKAROS proteins are destructed by
lenalidomide [72,73], a drug shown to act on CLL cells in vitro [74] and tested in the CLLM1
trial, where it improved progression-free survival. However, since a subset of treated
patients developed B cell acute lymphoblastic leukemia, lenalidomide treatment was
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terminated in the CLLM1 study [75]. Of note, none of the patients analyzed in this study
were treated with lenalidomide. Not surprisingly, 9 of the 12 DMRs within IKAROS binding
sites were in regions identified as associated with B cell development and reported here or
in previous studies [25,36]. The differential methylation between SF3B1mut and SF3B1WT

CLL patients may, at least in part, be influenced by the differentiation state of the originating
B cells [51–53]. In agreement with this hypothesis, all of our 14 SF3B1mut samples were
classified as early- (LP-CLL) and intermediate- (IP-CLL) programmed CLLs, and the role
of IKAROS in B cell development has been highlighted in the early stages [43,76–78].
However, about half of the DMRs reported here seem to be independent from the B cell
differentiation process.

Induction of IKAROS in CLL cells is associated with poor disease outcome [79]
and promotes BCR signaling [80]. Taking into account that IKAROS tumor suppressive
capacity includes an induction of enhancers in T cells [81], the hypomethylation in SF3B1mut

patients at IKAROS binding sites and the enrichment of the hypomethylation sites in weak
enhancers is noticeable and requires further investigation.

IKAROS family proteins interact with nucleosome remodeling and deacetylase (NuRD)
and PRC2 [82]. In T cells, IKAROS interacts with PRC2, thereby mediating epigenetic
repression at stem cell-associated genes [83]. Such an interaction of IKAROS with PRC2
links IKAROS to DNA methylation regulation. Although binding of IKAROS to PRC2 was
not observed in B cells, a loss of IKAROS function results in ectopic enhancer activation
accompanied by a loss of the PRC2-mediated repressive histone modification H3K27me3 in
the corresponding promoter regions [84]. In addition, the IKAROS family member, IKZF3
(AIOLOS), is recurrently mutated in CLL, with an incidence of 2% carrying the hotspot
mutation p.L162R [5], emphasizing the importance of this transcription factor family for
lymphoid malignancies.

Although significant, but with only two DMRs in TFBSs, is the histone deacetylase,
HDAC6. The hypomethylated two sites for this region were located within promoter
regions HTRA3 and FAM174B. Although FAM174B has binding sites for more TFs, HTRA3
has binding sites in this region only for HDAC6 and the PRC2 component, SUZ12. Histone
deacetylase inhibitors have been already in phase II clinical trials to treat patients with
breast cancer [85]. Furthermore, 30% of the DMRs had a TCF7L2 binding motif (Table S5),
a key player in Wnt signaling [86–88]. A DMR was also identified in the BCL9L gene—an
activator of Wnt signaling associated with B cell malignancies that have been implicated in
cancer development and epithelial-mesenchymal transition through a down-regulation of
c-Myc, cyclin D1, CD44, and vascular growth factor in tumor cells [89]. Hypomethylation
within this gene in CLL patients with SF3B1 mutation has been previously reported [23]
and it has been recently shown that BCL9 and BCL9L promote tumorigenicity in a triple
negative breast cancer mouse model through immune-dependent (TGF-β) and immune-
independent (Wnt) pathways [90]. Interestingly, 25 of the 67 DMRs (34%) contained a
TCF7L2 TF motif, and transcription factor 7-like 2 plays a key role in the Wnt signaling
pathway [86–88]. A potential role of the BCL9L hypomethylation in poor prognosis of the
CLL patients with SF3B1mut should be further investigated.

In comparison with previous studies, our MeDIP-seq approach covers a broader part
of the genome. For example, 450-K methylome arrays analyze 482,486 CpGs, most of
which are located in genic regions and CpG islands [91]. Since the human genome contains
roughly 28 million CpGs, around 1.6% of all CpGs are amenable by 450-K arrays. In
contrast, MeDIP-seq accesses the mappable genome with a CpG content of at least 3% [92]
at a resolution of approximately 250 bp. Only 435,102 CpGs from the 450-K methylation
array [34] were amenable for the differential methylation testing, whereas MeDIP-seq
analyzed by QSEA allowed for testing of 6,540,448 250 bp windows, covering 335,033 CpGs
(77%) from the 450-K methylation array. This difference in coverage may also explain the
small overlap of our results with previous studies. The larger fraction of the epigenome
analyzed our study added new insight into the understanding of the disease.
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It has been previously suggested that methylation differences identified among CLL
samples may derive from a different maturation status of the B cells at the time of tumori-
genesis [25,36]. We therefore classified our patients to the three CLL subtypes as defined
previously [25]. Similarly to other studies, SF3B1mut CLL samples were classified as LP-
and IP-CLL subtypes [51–53]. Even though this dependency is not significant in our data
due to a low number of samples (chi-squared test p-value = 0.09), it is in agreement with
other studies, which reported the highest occurrence of CLL with SF3B1mut in naïve B cell-
like CLL (LP-CLL), and lowest in memory B cell-like CLL (HP-CLL) [51–53]. In line with
this, we observed an intersection between DMRs reported here and regions differentially
methylated during physiological B cell maturation [25,36], indicating that SF3B1 mutations
are, at least in part, associated with B cell developmental stages (Table S2). Some of them
have been already associated with CLL-specific methylation changes [36]. However, there
remains a large fraction of DMRs not related to B cell development, indicating that these
regions are associated with SF3B1 specific functions. How SF3B1mut and changes in the
methylome are exactly related needs further investigation. So far, we have shown that
CLLs carrying SF3B1mut contain differences in their DNA methylation patterns and that
these changes affect genes involved in BCL9 and NOTCH signaling, among other processes.
Thus, our findings provide a rich insight for further studies of the causes and consequences
of SF3B1mut induced changes in gene expression. This might, in the long term, provide the
basis for the development of new therapeutic options.

4. Materials and Methods
4.1. Sample Preparation

Clinical information of the patients is summarized in Table S1. Staging was performed,
according to Binet et al. [93], using blood cell counts. Patients were classified into Binet
stage C when patients were anemic (hemoglobin < 10 g/mL) and/or displayed throm-
bocytopenia (thrombocytes < 100,000/µL), and into stage A/B when patients had more
hemoglobin or thrombocytes. One patient had exactly 100,000 thrombocytes/µL and was
therefore staged B/C (Table S1). TP53, SF3B1, ATM, XPO1, and NOTCH1 mutational status
were analyzed by a PCR panel followed by next-generation sequencing, as described in [94].
In particular, the complete coding region for SF3B1, TP53, and ATM was analyzed, and
XPO1 exons 12, 13, and 15 were evaluated. IGHV mutational status was determined, as
previously described [95]. Peripheral blood B cells were isolated via negative selection
using RosetteSep immunodensity-based cell separation (Stemcell Technologies, Vancouver,
BC, Canada). The cell purity of CLL B cells was analyzed by flow cytometry, and cells
co-expressing CD5/CD19 were ≥ 90%. DNA was isolated from frozen B cells using the
QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) or obtained from the local biobank.
Informed consent was obtained from all patients and the study was approved by the local
ethics committee. RNA was isolated using TRIzol (Thermo Fisher Scientific, Waltham,
MA, USA) according to the manufacturer’s instructions. A DNAse digest was performed
using 2 µg of RNA, and the quality of the RNA was assessed using a Bioanalyzer (Agilent
Technologies, Waldbronn, Germany).

4.2. Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq)

The integrity of DNA was evaluated on a 1% agarose gel and 1.3 µg was subjected to
MeDIP. Methylated DNA immunoprecipitation (MeDIP) was based on a method developed
by [96] with modifications. In brief, 1.3 µg of DNA in 65 µL of TE was sheared to a size of
100–300 bp using a Covaris M220 (Covaris Ltd., Brighton, UK). The size was controlled
on a 1% agarose gel. Library preparation was performed using the TruSeq DNA sample
preparation kit (Illumina, San Diego, CA, USA) and unmethylated TruSeq indexed adaptors.
Library preparation reactions were purified using AMPure XP beads (Beckman Coulter
GmbH, Krefeld, Germany) and the adapter-ligated DNA was denatured at 95 ◦C for
10 min and subjected to MeDIP. For the MeDIP reaction, 5 µg of the monoclonal antibody
clone 33D3 directed against 5-methylcytidine (Eurogentec GmbH, Cologne, Germany) was
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coupled over night at 4 ◦C to magnetic Dynabeads M-280 sheep anti-mouse IgG (Thermo
Fisher Scientific, Waltham, MA, USA). Subsequently, denatured DNA and antibody coupled
Dynabeads were incubated at 4 ◦C for 4 h in immunoprecipitation buffer (IP: 10 mM sodium
phosphate buffer (pH 7.0), 140 mM NaCl, 0.25% Triton X100) followed by three washes with
IP buffer. DNA was eluted from the beads in 50 mM of Tris-HCl (pH 7.5), 10 mM of EDTA,
and 1% SDS at 65 ◦C for 15 min. The eluted DNA was diluted 1 to 1 with 10 mM of Tris at
pH 8.0 and 1 mM of EDTA, and treated with proteinase K (0.2 µg/µL) for 2 h at 55 ◦C. The
methylated DNA was purified using the QIAquick PCR Purification Kit (Qiagen, Hilden,
Germany). Following MeDIP enrichment, libraries were amplified using 10 PCR-cycles,
size-selected using an agarose gel, and purified DNA was quantified using the Quant-iT
dsDNA HS Assay Kit and a Qubit 1.0 Fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA). Next, 50 bp single-end reads were generated on a HiSeq4000 (Illumina, San
Diego, CA, USA).

4.3. Sequencing Reads Processing

MeDIP sequencing reads were aligned to the hg38 reference genome (Genome Refer-
ence Consortium GRCh38) with BWA v0.7.15 aln followed by samse modules [97]. Patients’
sequencing data are available from the corresponding author upon reasonable request.

4.4. Differential Methylation Analysis

MeDIP-seq reads were processed in R with QSEA v.1.14.0 [33], according to the pack-
age recommendations. In brief, reads where counted per genomic 250 base window, and
CpG enrichment profiles were calibrated based on highly methylated genomic regions in
196 primary CLL samples of the PACE project, as retrieved from the Bioconductor package
CLLmethylation [34] (methylation > 80% in at least 95% of the samples). Differentially
methylated regions (DMRs) were called with the implemented likelihood ratio test, based
on generalized linear models, and p-values were corrected for multiple testing by false
discovery rate (FDR) [98]. We considered a region to be differentially methylated if the
FDR was smaller than 0.05 and |log2 fold change| ≥ 1. Moreover, we excluded regions
with expected CpG density below 4 CpGs per sequencing fragment and all fragments from
X and Y chromosomes. DMRs were annotated with BSgenome v.1.56.0. and RefSeq release
71, ENCODE Encyclopedia v.3 as of 24th April 2014, enhancer data from [48], and CGI as
described in [47], transcription factor binding sites (TFBS) from ENCODE Uniform TFBS
track [39–42]. Chromatin states coordinates for GM12878 cell line [49,50] were converted
from hg19 to hg38 reference genome with liftOver UCSC tool [99]. Promoters were defined
as 2 kb upstream and downstream from transcription start sites. Copy number variation
(CNV) was calculated from MeDIP-seq data by considering only fragments without any
CpG, based on 2-Mb windows and a fragment size of 250 bp.

Methylation microarray data from 196 CLL patients’ samples (CLLmethylation) cov-
ering 435,155 CpGs (we were able to determine hg38 positions for 435,102 CpGs) were
obtained via BloodCancerMultiOmics2017 R packages [34] with ExperimentHub and fil-
tered out 53 CpGs without hg38 genomic information. We excluded data from 22 patients
without SF3B1 mutational status information. Differentially methylated probes were called
using lmFit and eBayes functions of limma [35] and filtered according to adjusted p-value
and fold change thresholds applied for the MeDIP-seq data, as described above.

4.5. RNA-Seq and Differential Expression Analysis

RNA libraries were generated using the TruSeq Stranded Total RNA sample prepara-
tion kit (Illumina, San Diego, CA, USA) which includes a Ribo-Zero depletion of ribosomal
RNAs prior to library preparation. Sequencing of 50 bp paired-end reads was performed
on a HiSeq2000 (Illumina, San Diego, CA, USA). RNA-seq reads were mapped to the same
reference with STAR v2.6.0c [100] and GENCODE gene annotation v36 [101]. Differential
expression analysis was performed with edgeR v. 3.30.3 [102]. A gene was considered
significantly differentially expressed if the FDR-adjusted p-value was < 0.05. To identify
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possible genes affected by the differential methylation of weak enhancers, no threshold on
log2(fold change) was set.

4.6. Bisulfite Mass Spectrometry (BS-MS) with Agena Bioscience EpiTYPER-Assay

We selected 16 DMRs with |log2 fold change| > 2 for validation by the EpiTYPER.
Primers were designed for CpGs within 16 DMRs. We used a subset of six CLL samples
with and six CLL samples without SF3B1mut.

For the validation of the differentially methylated regions identified by MeDIP-seq, we
used the EpiTYPER assay, which is based on bisulfite conversion followed by PCR amplifica-
tion using one primer containing a T7 promoter sequence, followed by in vitro transcription
and Uracil-specific cleavage of the RNA. Fragments were then analyzed by matrix-assisted
time-of-flight mass spectrometry (MALDI-TOF) mass array analysis [103,104].

Primers for the EpiTYPER assay were designed using the online tool EpiDesigner with
default settings (www.epidesigner.com accessed on 24 March 2021) and purchased from
Integrated DNA Technologies (Leuven, Belgium). Oligo sequences, genomic coordinates,
and annealing temperatures are given in Table S3. For the assay, 1 µg of genomic DNA
was bisulfite-converted using the EZ DNA Methylation kit (Zymo Research Europe GmbH,
Freiburg, Germany) according to the manufacturer’s recommendations. Bisulfite converted
DNA was eluted in 60 µL and 1 µL of the dilution was used for amplification in 384-well
plates in a 5-µL reaction volume using 0.2 U of HotStarTaq (Qiagen, Hilden, Germany),
1 pmol of each oligo, and 1 nmol of dNTPs. The reaction was run in a thermocycler at
95 ◦C for 15 min and 35 to 45 cycles at 94 ◦C for 30 s, annealing (52, 56, or 60 ◦C) for
30 s, 72 ◦C for 1 min, and a final extension of 5 min at 72 ◦C. Subsequently, the PCR
product was in vitro transcribed and enzymatically cleaved using the MASSCleave T7
Kit (Agena Bioscience GmbH, Hamburg, Germany) and run on a MassArrayDX (Agena
Bioscience GmbH, Hamburg, Germany). A DNA methylation standard was generated by
whole genome amplification, WGA using Repli-G (Qiagen, Hilden, Germany) and in vitro
methylation using M.SssI (CpG) methyltransferase (New England Biolabs, Frankfurt am
Main, Germany). Standards of 0%, 20%, 40%, 60%, 80%, and 100% were generated by
mixing WGA DNA with WGA and in vitro-methylated DNA. For each assay, a methylation
standard was run in parallel. Methylation for individual CpG units was calculated with the
EpiTYPER 1.3 software. Subsequently, methylation values (0 to 1) for a given region were
calculated as the mean of the analyzed CpG units that passed the quality criteria. CpG
units were excluded from the analysis when: (i) less than 50% of all samples had values;
(ii) CpG units within one amplicon had an identical mass; and (iii) > 3 CpGs within one
CpG unit. DNA methylation values for the amplicons are given in Table S4.

4.7. Gene Set Enrichment Analysis

We collected unique genes that contained at least one significant DMR (FDR < 0.05,
|log2 fold change|≥ 1) within their gene bodies or promoter regions and subjected to func-
tional enrichment analysis with gProfiler2 with default options (version e103_eg50_p15_
eadf141) [105,106].

4.8. Motif Enrichment Analysis

Differentially methylated 250-bp regions in CLL patients with SF3B1 mutation com-
pared to CLL without SF3B1 mutation were used as input for findMotifsGenome.pl module
of HOMER v4.11.1 [107] with the following additional options: -nomotif -known -cpg -size
250. The DMRs were analyzed against 440 known motifs identified in vertebrate genomes
and available for hg38 annotation provided by HOMER.

4.9. Assessing the CLL Subtype

For this part of analysis, we remapped samples to the hg19 reference genome (Genome
Reference Consortium—GRCh37) and ran the QSEA R package v.1.14.0 [33], as before. We
used mean beta normalized values of the 250 bp bins that overlapped at least 145 bp with
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the loci defined to classify CLL samples into methylation programming subtypes from
Oakes et al. [25]. The merged table with beta values of 27 samples from this study and
329 from the CLL Research Consortium (CRC) in Oakes et al., available in Supplementary
Table S10, was used to cluster the samples and draw a heat map with the same software
(Qlucore, Lund, Sweden, trial version) and settings used by the authors [25].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22179337/s1.

Author Contributions: Acquisition of Data A.K., C.G., O.M., B.T. and J.A.; Analysis of Data A.P.,
M.L., C.G., R.H. and M.R.S.; Collection of Specimens and Clinical Data C.D.H., H.C.R. and M.H.;
Bioinformatics Analyses A.P., M.L. and R.H., Drafting of the Manuscript A.P., C.G., M.L. and M.R.S.;
Reviewing of the Manuscript A.P., C.G., C.D.H. M.L., A.K., B.T., J.A., O.M., C.P., R.H., H.C.R., M.H.
and M.R.S.; Supervision H.C.R., C.P., M.H. and M.R.S.; Study Design and Coordination A.P., C.G.
and M.R.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded through the German Research Foundation (KFO-286-RP2 and RE
2246/13-1 to H.C.R.; KFO-286-RP8 to M.R.S, KFO-286-RP6 to M.H., KFO-286-CP to C.D.H., SFB1399
to M.R.S.), the GO-LONG project (SCHW 1605/4-1 to M.R.S. and HE 4607/7-1 to R.H), the Centre
for Molecular Medicine CMMC (A12 to M.R.S.), the German-Israeli Foundation for Research and
Development (I-65-412.20-2016 to H.C.R.), the Deutsche Jose Carreras Leukämie Stiftung (R12/08 to
H.C.R.), the Deutsche Krebshilfe (1117240 and 70113041 to H.C.R.), the German Ministry of Education
and Research (BMBF e:Med 01ZX1303A to H.C.R.), the Deutsche Krebshilfe (70113869 to C.P.).

Institutional Review Board Statement: The study was approved by the Ethics Committee of the
University of Cologne (Ethikvotum 11-319 from 11 December 2011, with an amendment from
7 June 2016). For investigations involving human subjects, informed consent has been obtained from
the participants involved. Patient samples were obtained from the Biobank of the University Clinic
Cologne, Germany.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The authors will provide the data upon reasonable request.

Acknowledgments: We are grateful to the patients and their families for their contribution in the
study. We would like to also acknowledge the Cologne High Efficient Operating Platform for Science
for their computational resources provided by the Regional Computing Centre of Cologne (RRZK)
together with the HPC expert Bull. We thank Elena Wasserburger for technical support.

Conflicts of Interest: H.C.R. received consulting and lecture fees from Abbvie, Astra-Zeneca, Vertex
and Merck. H.C.R. received research funding from Gilead Pharmaceuticals. H.C.R. is a co-founder of
CDL Therapeutics GmbH. M.H. received research funding, consulting and lecture fees from Roche,
Abbvie, Gilead, Janssen, Celgene and Astra Zeneca. The remaining authors declare no competing
financial interest.

References
1. Damle, R.N.; Wasil, T.; Fais, F.; Ghiotto, F.; Valetto, A.; Allen, S.L.; Buchbinder, A.; Budman, D.; Dittmar, K.; Kolitz, J.; et al. Ig

V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999, 94,
1840–1847. [CrossRef] [PubMed]

2. Hamblin, T.J.; Davis, Z.; Gardiner, A.; Oscier, D.G.; Stevenson, F.K. Unmutated Ig V(H) genes are associated with a more
aggressive form of chronic lymphocytic leukemia. Blood 1999, 94, 1848–1854. [CrossRef]

3. Fabbri, G.; Dalla-Favera, R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat. Rev. Cancer 2016, 16, 145–162.
[CrossRef]

4. Guièze, R.; Robbe, P.; Clifford, R.; de Guibert, S.; Pereira, B.; Timbs, A.; Dilhuydy, M.S.; Cabes, M.; Ysebaert, L.; Burns, A.; et al.
Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL. Blood 2015, 126, 2110–2117.
[CrossRef] [PubMed]

5. Landau, D.A.; Tausch, E.; Taylor-Weiner, A.N.; Stewart, C.; Reiter, J.G.; Bahlo, J.; Kluth, S.; Bozic, I.; Lawrence, M.; Böttcher, S.;
et al. Mutations driving CLL and their evolution in progression and relapse. Nature 2015, 526, 525–530. [CrossRef]

6. Ljungström, V.; Cortese, D.; Young, E.; Pandzic, T.; Mansouri, L.; Plevova, K.; Ntoufa, S.; Baliakas, P.; Clifford, R.; Sutton, L.A.;
et al. Whole-exome sequencing in relapsing chronic lymphocytic leukemia: Clinical impact of recurrent RPS15 mutations. Blood
2016, 127, 1007–1016. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms22179337/s1
https://www.mdpi.com/article/10.3390/ijms22179337/s1
http://doi.org/10.1182/blood.V94.6.1840
http://www.ncbi.nlm.nih.gov/pubmed/10477712
http://doi.org/10.1182/blood.V94.6.1848
http://doi.org/10.1038/nrc.2016.8
http://doi.org/10.1182/blood-2015-05-647578
http://www.ncbi.nlm.nih.gov/pubmed/26316624
http://doi.org/10.1038/nature15395
http://doi.org/10.1182/blood-2015-10-674572


Int. J. Mol. Sci. 2021, 22, 9337 16 of 20

7. Rossi, D.; Bruscaggin, A.; Spina, V.; Rasi, S.; Khiabanian, H.; Messina, M.; Fangazio, M.; Vaisitti, T.; Monti, S.; Chiaretti, S.;
et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: Association with progression and fludarabine-
refractoriness. Blood 2011, 118, 6904–6908. [CrossRef] [PubMed]

8. Stilgenbauer, S.; Schnaiter, A.; Paschka, P.; Zenz, T.; Rossi, M.; Döhner, K.; Bühler, A.; Böttcher, S.; Ritgen, M.; Kneba, M.; et al.
Gene Mutations and Treatment Outcome in Chronic Lymphocytic Leukemia. Blood 2014, 123, 3247–3254. [CrossRef] [PubMed]

9. Quesada, V.; Conde, L.; Villamor, N.; Ordóñez, G.R.; Jares, P.; Bassaganyas, L.; Ramsay, A.J.; Beà, S.; Pinyol, M.; Martínez-Trillos,
A.; et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat.
Genet. 2012, 44, 47–52. [CrossRef] [PubMed]

10. Wang, L.; Lawrence, M.S.; Wan, Y.; Stojanov, P.; Sougnez, C.; Stevenson, K.; Werner, L.; Sivachenko, A.; DeLuca, D.S.; Zhang, L.;
et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 2011, 365, 2497–2506. [CrossRef]
[PubMed]

11. Kfir, N.; Lev-Maor, G.; Glaich, O.; Alajem, A.; Datta, A.; Sze, S.K.; Meshorer, E.; Ast, G. SF3B1 Association with Chromatin
Determines Splicing Outcomes. Cell Rep. 2015, 11, 618–629. [CrossRef] [PubMed]

12. Tang, A.D.; Soulette, C.M.; van Baren, M.J.; Hart, K.; Hrabeta-Robinson, E.; Wu, C.J.; Brooks, A.N. Full-length transcript
characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun.
2020, 11, 1438. [CrossRef]

13. Ntziachristos, P.; Abdel-Wahab, O.; Aifantis, I. Emerging concepts of epigenetic dysregulation in hematological malignancies.
Nat. Immunol. 2016, 17, 1016–1024. [CrossRef] [PubMed]

14. Cavellán, E.; Asp, P.; Percipalle, P.; Farrants, A.K.Ö. The WSTF-SNF2h chromatin remodeling complex interacts with several
nuclear proteins in transcription. J. Biol. Chem. 2006, 281, 16264–16271. [CrossRef]

15. Isono, K.; Mizutani-Koseki, Y.; Komori, T.; Schmidt-Zachmann, M.S.; Koseki, H. Mammalian Polycomb-mediated repression of
Hox genes requires the essential spliceosomal protein Sf3b1. Genes Dev. 2005, 19, 536–541. [CrossRef]

16. Bartholdy, B.A.; Wang, X.; Yan, X.J.; Pascual, M.; Fan, M.; Barrientos, J.; Allen, S.L.; Martinez-Climent, J.A.; Rai, K.R.; Chiorazzi,
N.; et al. CLL intraclonal fractions exhibit established and recently acquired patterns of DNA methylation. Blood Adv. 2020, 4,
893–905. [CrossRef] [PubMed]

17. Cahill, N.; Rosenquist, R. Uncovering the DNA methylome in chronic lymphocytic leukemia. Epigenetics 2013, 8, 138–148.
[CrossRef]

18. Oakes, C.C.; Claus, R.; Gu, L.; Assenov, Y.; Hüllein, J.; Zucknick, M.; Bieg, M.; Brocks, D.; Bogatyrova, O.; Schmidt, C.R.; et al.
Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia. Cancer Discov. 2014, 4, 348–361.
[CrossRef]

19. Pastore, A.; Gaiti, F.; Lu, S.X.; Brand, R.M.; Kulm, S.; Chaligne, R.; Gu, H.; Huang, K.Y.; Stamenova, E.K.; Béguelin, W.; et al.
Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL.
Nat. Commun. 2019, 10, 1874. [CrossRef]

20. Wernig-Zorc, S.; Yadav, M.P.; Kopparapu, P.K.; Bemark, M.; Kristjansdottir, H.L.; Andersson, P.-O.; Kanduri, C.; Kanduri, M.
Global distribution of DNA hydroxymethylation and DNA methylation in chronic lymphocytic leukemia. Epigenetics Chromatin
2019, 12, 4. [CrossRef] [PubMed]

21. Subhash, S.; Andersson, P.-O.; Kosalai, S.T.; Kanduri, C.; Kanduri, M. Global DNA methylation profiling reveals new insights into
epigenetically deregulated protein coding and long noncoding RNAs in CLL. Clin. Epigenetics 2016, 8, 106. [CrossRef]

22. Cahill, N.; Bergh, A.C.; Kanduri, M.; Göransson-Kultima, H.; Mansouri, L.; Isaksson, A.; Ryan, F.; Smedby, K.E.; Juliusson, G.;
Sundström, C.; et al. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively
stable over time and similar in resting and proliferative compartments. Leukemia 2013, 27, 150–158. [CrossRef]

23. Kulis, M.; Heath, S.; Bibikova, M.; Queirós, A.C.; Navarro, A.; Clot, G.; Martínez-Trillos, A.; Castellano, G.; Brun-Heath, I.; Pinyol,
M.; et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat.
Genet. 2012, 44, 1236–1242. [CrossRef]

24. Fabris, S.; Bollati, V.; Agnelli, L.; Morabito, F.; Motta, V.; Cutrona, G.; Matis, S.; Recchia, A.G.; Gigliotti, V.; Gentile, M.; et al.
Biological and clinical relevance of quantitative global methylation of repetitive DNA sequences in chronic lymphocytic leukemia.
Epigenetics 2011, 6, 188–194. [CrossRef]

25. Oakes, C.C.; Seifert, M.; Assenov, Y.; Gu, L.; Przekopowitz, M.; Ruppert, A.S.; Wang, Q.; Imbusch, C.D.; Serva, A.; Koser, S.D.;
et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic
leukemia. Nat. Genet. 2016, 48, 253–264. [CrossRef]

26. Landau, D.A.; Clement, K.; Ziller, M.J.; Boyle, P.; Fan, J.; Gu, H.; Stevenson, K.; Sougnez, C.; Wang, L.; Li, S.; et al. Locally
Disordered Methylation Forms the Basis of Intratumor Methylome Variation in Chronic Lymphocytic Leukemia. Cancer Cell 2014,
26, 813–825. [CrossRef]

27. Gaiti, F.; Chaligne, R.; Gu, H.; Brand, R.M.; Kothen-Hill, S.; Schulman, R.C.; Grigorev, K.; Risso, D.; Kim, K.T.; Pastore, A.; et al.
Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. Nature 2019, 569, 576–580. [CrossRef] [PubMed]

28. Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492.
[CrossRef] [PubMed]

29. Hsu, D.W.; Lin, M.J.; Lee, T.L.; Wen, S.C.; Chen, X.; Shen, C.K. Two major forms of DNA (cytosine-5) methyltransferase in human
somatic tissues. Proc. Natl. Acad. Sci. USA 1999, 96, 9751–9756. [CrossRef] [PubMed]

http://doi.org/10.1182/blood-2011-08-373159
http://www.ncbi.nlm.nih.gov/pubmed/22039264
http://doi.org/10.1182/blood-2014-01-546150
http://www.ncbi.nlm.nih.gov/pubmed/24652989
http://doi.org/10.1038/ng.1032
http://www.ncbi.nlm.nih.gov/pubmed/22158541
http://doi.org/10.1056/NEJMoa1109016
http://www.ncbi.nlm.nih.gov/pubmed/22150006
http://doi.org/10.1016/j.celrep.2015.03.048
http://www.ncbi.nlm.nih.gov/pubmed/25892229
http://doi.org/10.1038/s41467-020-15171-6
http://doi.org/10.1038/ni.3517
http://www.ncbi.nlm.nih.gov/pubmed/27478938
http://doi.org/10.1074/jbc.M600233200
http://doi.org/10.1101/gad.1284605
http://doi.org/10.1182/bloodadvances.2019000817
http://www.ncbi.nlm.nih.gov/pubmed/32150608
http://doi.org/10.4161/epi.23439
http://doi.org/10.1158/2159-8290.CD-13-0349
http://doi.org/10.1038/s41467-019-09645-5
http://doi.org/10.1186/s13072-018-0252-7
http://www.ncbi.nlm.nih.gov/pubmed/30616658
http://doi.org/10.1186/s13148-016-0274-6
http://doi.org/10.1038/leu.2012.245
http://doi.org/10.1038/ng.2443
http://doi.org/10.4161/epi.6.2.13528
http://doi.org/10.1038/ng.3488
http://doi.org/10.1016/j.ccell.2014.10.012
http://doi.org/10.1038/s41586-019-1198-z
http://www.ncbi.nlm.nih.gov/pubmed/31092926
http://doi.org/10.1038/nrg3230
http://www.ncbi.nlm.nih.gov/pubmed/22641018
http://doi.org/10.1073/pnas.96.17.9751
http://www.ncbi.nlm.nih.gov/pubmed/10449766


Int. J. Mol. Sci. 2021, 22, 9337 17 of 20

30. Franchina, M.; Hooper, J.; Kay, P.H. Five novel alternatively spliced transcripts of DNA (cytosine-5) methyltransferase 2 in human
peripheral blood leukocytes. Int. J. Biochem. Cell Biol. 2001, 33, 1104–1115. [CrossRef]

31. Weisenberger, D.J.; Velicescu, M.; Preciado-Lopez, M.A.; Gonzales, F.A.; Tsai, Y.C.; Liang, G.; Jones, P.A. Identification and
characterization of alternatively spliced variants of DNA methyltransferase 3a in mammalian cells. Gene 2002, 298, 91–99.
[CrossRef]

32. Zhang, J.; Zhang, Y.-Z.; Jiang, J.; Duan, C.-G. The Crosstalk Between Epigenetic Mechanisms and Alternative RNA Processing
Regulation. Front. Genet. 2020, 11, 998. [CrossRef]

33. Lienhard, M.; Grasse, S.; Rolff, J.; Frese, S.; Schirmer, U.; Becker, M.; Börno, S.; Timmermann, B.; Chavez, L.; Sültmann, H.; et al.
QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments. Nucleic Acids Res. 2017, 45, e44.
[CrossRef] [PubMed]
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