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Abstract The molecular basis underlying glioblastoma (GBM) heterogeneity and plasticity is not

fully understood. Using transcriptomic data of human patient-derived brain tumor stem cell lines

(BTSCs), classified based on GBM-intrinsic signatures, we identify the AP-1 transcription factor

FOSL1 as a key regulator of the mesenchymal (MES) subtype. We provide a mechanistic basis to

the role of the neurofibromatosis type 1 gene (NF1), a negative regulator of the RAS/MAPK

pathway, in GBM mesenchymal transformation through the modulation of FOSL1 expression.

Depletion of FOSL1 in NF1-mutant human BTSCs and Kras-mutant mouse neural stem cells results

in loss of the mesenchymal gene signature and reduction in stem cell properties and in vivo

tumorigenic potential. Our data demonstrate that FOSL1 controls GBM plasticity and

aggressiveness in response to NF1 alterations.

Introduction
Gliomas are the most common primary brain tumor in adults. Given the strong association of the iso-

citrate dehydrogenase 1 and 2 (IDH1/2) genes mutations with glioma patients survival, the 2016

WHO classification, which integrates both histological and molecular features, has introduced the

distinction of IDH-wildtype (IDH-wt) or IDH-mutant (IDH-mut) in diffuse gliomas (Louis et al., 2016).

IDH-wt glioblastoma (GBM) represents the most frequent and aggressive form of gliomas, character-

ized by high molecular and cellular inter- and intra-tumoral heterogeneity.

Large-scale sequencing approaches have evidenced how concurrent perturbations of cell cycle

regulators, growth and survival pathways, mediated by RAS/MAPK and PI3K/AKT signaling, play a

significant role in driving adult GBMs (Brennan et al., 2013; Cancer Genome Atlas Research Net-

work, 2008; Verhaak et al., 2010). Moreover, various studies have classified GBM in different sub-

types, using transcriptional profiling, being now the proneural (PN), classical (CL), and mesenchymal

(MES) the most widely accepted (Phillips et al., 2006; Verhaak et al., 2010; Wang et al., 2017).

Marques et al. eLife 2021;10:e64846. DOI: https://doi.org/10.7554/eLife.64846 1 of 37

RESEARCH ARTICLE

https://doi.org/10.1101/834531
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.64846
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Patients with the MES subtype tend to have worse survival rates compared to other subtypes, both

in the primary and recurrent tumor settings (Wang et al., 2017). The most frequent genetic altera-

tions – neurofibromatosis type 1 gene (NF1) copy number loss or mutation – and important regula-

tors of the MES subtype, such as STAT3, CEBPB, and TAZ, have been identified (Bhat et al., 2011;

Carro et al., 2010; Verhaak et al., 2010). Nevertheless, the mechanisms of regulation of MES

GBMs are still not fully understood. For example, whether the MES transcriptional signature is con-

trolled through tumor cell-intrinsic mechanisms or influenced by the tumor microenvironment (TME)

is still an unsolved question. In fact, the critical contribution of the TME adds another layer of com-

plexity to MES GBMs. Tumors from this subtype are highly infiltrated by non-neoplastic cells as com-

pared to PN and CL subtypes (Wang et al., 2017). Additionally, MES tumors express high levels of

angiogenic markers and exhibit high levels of necrosis (Cooper et al., 2012).

Even though each subtype is associated with specific genetic alterations, there is a considerable

plasticity among them: different subtypes coexist in the same tumors and shifts in subtypes can

occur over time (Patel et al., 2014; Sottoriva et al., 2013). This plasticity may be explained by

acquisition of new genetic and epigenetic abnormalities, stem-like reprogramming, or clonal varia-

tion (Fedele et al., 2019). It is also not fully understood whether the distinct subtypes evolve from a

common glioma precursor (Ozawa et al., 2014). For instance, PN and CL tumors often switch phe-

notype to MES upon recurrence, and treatment also increases the mesenchymal gene signature,

suggesting that MES transition, or epithelial to mesenchymal (EMT)-like, in GBM is associated with

tumor progression and therapy resistance (Bhat et al., 2013; Halliday et al., 2014; Phillips et al.,

2006). Yet, the frequency and relevance of this EMT-like phenomenon in glioma progression remains

unclear. EMT has also been associated with stemness in other cancers (Mani et al., 2008; Tam and

Weinberg, 2013; Ye et al., 2015). Glioma stem cells (GSCs) share features with normal neural stem

cells (NSCs) such as self-renewal and ability to differentiate into distinct cellular lineages (astrocytes,

oligodendrocytes, and neurons) but are thought to be responsible for tumor relapse, given their

ability to repopulate tumors and their resistance to treatment (Bao et al., 2006; Chen et al., 2012).

GSCs heterogeneity is also being increasingly observed (Bhat et al., 2013; Mack et al., 2019;

Richards et al., 2021), but whether genotype-to-phenotype connections exist remain to be clarified.

FOSL1, which encodes FRA-1, is an AP-1 transcription factor (TF) with prognostic value in differ-

ent epithelial tumors, where its overexpression correlates with tumor progression or worse patient

survival (Chiappetta et al., 2007; Gao et al., 2017; Usui et al., 2012; Vallejo et al., 2017;

Wu et al., 2015; Xu et al., 2017). Moreover, the role of FOSL1 in EMT has been documented in

breast and colorectal cancers (Andreolas et al., 2008; Bakiri et al., 2015; Diesch et al., 2014). In

GBM, it has been shown that FOSL1 modulates in vitro glioma cell malignancy (Debinski and Gibo,

2005).

Here we report that NF1 loss, by increasing RAS/MAPK activity, modulates FOSL1 expression,

which in turn plays a central function in the regulation of MES GBM. Using a surrogate mouse model

of MES GBM and patient-derived MES brain tumor stem cells (BTSCs), we show that FOSL1 is

responsible for sustaining cell growth in vitro and in vivo, and for the maintenance of stem-like prop-

erties. We propose that FOSL1 is an important regulator of GBM stemness, MES features and plas-

ticity, controlling an EMT-like process with therapeutically relevant implications.

Results

FOSL1 is a key regulator of the MES subtype
To study the tumor cell-intrinsic signaling pathways that modulate the GBM expression subtypes, we

assembled a collection of transcriptomic data (both expression arrays and RNA-sequencing) of 144

samples derived from 116 independent BTSC lines (see Materials and methods for details). Samples

were then classified according to the previously reported 50-gene glioma-intrinsic transcriptional

subtype signatures and the single-sample gene set enrichment analysis (ssGSEA)-based equivalent

distribution resampling classification strategy (Wang et al., 2017). Principal component analysis

(PCA) showed a large overlap of the transcription profile among BTSCs classified either as CL/PN

while most of the MES appeared as separate groups (Figure 1A and Supplementary file 1). This

separation is consistent with early evidence in GSCs (Bhat et al., 2013) and holds 92% of concor-

dance in the identification of a recent two transcriptional subgroups classification of single-GSCs
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defined as developmental (DEV) and injury response (INJ) (Richards et al., 2021). Differential gene

expression analysis comparing mesenchymal versus non-mesenchymal BTSCs confirmed the clear

separation among the two groups, with only a minor fraction of cell lines showing a mixed

Figure 1. FOSL1 is a bona fide regulator of the glioma-intrinsic mesenchymal (MES) transcriptional signature. (A) Principal component (PC) analysis of

the brain tumor stem cells (BTSCs) expression dataset. (B) Heatmap of the top 100 differentially expressed genes between MES and non-MES BTSCs.

(C) One-tail gene set enrichment analysis (GSEA) of the top 10 scoring transcription factors (TFs) in the master regulator analysis (MRA). (D) FOSL1

mRNA expression in the BTSCs dataset. One-way ANOVA with Tukey multiple pairwise comparison, ***p�0.001, ns = not significant. (E) FOSL1 mRNA

expression in the CGGA and TCGA datasets. Tumors were separated according to their molecular subtype classification. One-way ANOVA with Tukey

multiple pairwise comparison, ***p�0.001. (F) Kaplan–Meier survival curves of IDH-wt gliomas in the CGGA and TCGA datasets stratified based on

FOSL1 expression (see Materials and methods for details).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data of Figure 1A, B, D–F.

Figure supplement 1. Expression, bulk and single-cell RNA-seq, of the top 10 transcription factors (TFs) identified in the master regulator
analysis (MRA).

Figure supplement 1—source data 1. Source data of Figure 1—figure supplement 1A, C, D, and E.

Figure supplement 2. Expression in human glioblastomas (GBMs) of FOSL1 and the top 10 transcription factors (TFs) identified in the master regulator
analysis (MRA).

Figure supplement 2—source data 1. Source data of Figure 1—figure supplement 2A–C.
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expression profile (Figure 1B and Supplementary file 2), further supporting that GSCs exist along a

major transcriptional gradient between two cellular states (Bhat et al., 2013; Richards et al., 2021).

To reveal the signaling pathways underlying the differences between MES and non-MES BTSCs,

we then applied a network-based approach based on the Algorithm for the Reconstruction of Accu-

rate Cellular Networks (ARACNe) (Basso et al., 2005; Carro et al., 2010), which identifies a list of

TFs with their predicted targets, defined as regulons. The regulon for each TF is constituted by all

the genes whose expression data exhibit significant mutual information with that of a given TF and

are thus expected to be regulated by that TF (Castro et al., 2016; Fletcher et al., 2013). Enrich-

ment of a relevant gene signature in each of the regulons can point to the TFs acting as master regu-

lators (MRs) of the response or phenotype (Carro et al., 2010; Fletcher et al., 2013). Master

regulator analysis (MRA) identified a series of TFs, among which FOSL1, VDR, OLIG2, SP100, ELF4,

SOX11, BNC2, ASCL1, SALL2, and POU3F3 were the top 10 most statistically significant (Benjamini–

Hochberg p<0.0001) (Figure 1C and Supplementary file 3). FOSL1, VDR, SP100, ELF4, and BNC2

were significantly upregulated in the MES BTSCs, while OLIG2, SOX11, ASCL1, SALL2, and POU3F3

were upregulated in the non-MES BTSCs (Figure 1D and Figure 1—figure supplement 1A). Gene

set enrichment analysis (GSEA) evidenced how the regulons for the top 10 TFs are enriched for

genes that are differentially expressed among the two classes (MES and non-MES) with FOSL1 hav-

ing the highest enrichment score (Figure 1C, Figure 1—figure supplement 1B, and

Supplementary file 3). Lastly, an analysis of an independent BTSCs dataset (Richards et al., 2021)

evidenced that the differential expression of FOSL1 and the other TFs was maintained both at bulk

(Figure 1—figure supplement 1C) and at a single-cell level (Figure 1—figure supplement 1D, E).

We then analyzed the CGGA and TCGA pan-glioma datasets (Ceccarelli et al., 2016;

Zhao et al., 2017) and observed that FOSL1 expression is elevated in the IDH-wt glioma molecular

subgroup (Figure 1E and Supplementary file 4) with a significant upregulation in the MES subtype

in bulk tumors, and it is also enriched in MES-like cells (Neftel et al., 2019) at the single-cell level

(Figure 1—figure supplement 2A–C). Importantly, high expression levels were associated with

worse prognosis in IDH-wt tumors (Figure 1F), thus suggesting that FOSL1 could represent not only

a key regulator of the glioma-intrinsic MES signature, but also a putative key player in MES glioma

pathogenesis.

NF1 modulates the MES signature and FOSL1 expression
NF1 alterations and activation of the RAS/MAPK signaling have been previously associated with the

MES GBM subtype (Brennan et al., 2013; Verhaak et al., 2010; Wang et al., 2016; Wang et al.,

2017). However, whether NF1 plays a broader functional role in the regulation of the MES gene sig-

nature (MGS) in IDH-wt gliomas still remains to be established.

We initially grouped, according to the previously described GBM subtype-specific gene signa-

tures, a subset of IDH-wt glioma samples of the TCGA dataset for which RNA-seq data were avail-

able (n = 229) (see Materials and methods for details). By analyzing the frequency of NF1 alterations

(either point mutations or biallelic gene loss), we confirmed a significant enrichment of NF1 altera-

tions in MES versus non-MES tumors (Fisher’s exact test p=0.0106) (Figure 2A, B). Importantly, we

detected higher level of FOSL1 mRNA in the cohort of IDH-wt gliomas with NF1 alterations (Stu-

dent’s t test p=0.018) (Figure 2C), as well as a significant negative correlation between FOSL1 and

NF1 mRNA levels (Pearson R = �0.44, p=7.8e-12) (Figure 2D and Supplementary file 4).

To test whether a NF1-MAPK signaling is involved in the regulation of FOSL1 and the MES sub-

type, we manipulated NF1 expression in patient-derived GBM tumorspheres of either MES or non-

MES subtypes. To recapitulate the activity of the full-length NF1 protein, we transduced the cells

with the NF1 GTPase-activating domain (NF1-GRD), spanning the whole predicted Ras GTPase-

activating (GAP) domain (McCormick, 1990). NF1-GRD expression in the MES cell line BTSC 233

led to (i) inhibition of RAS activity as confirmed by analysis of pERK expression upon EGF or serum

stimulation (Figure 2—figure supplement 1A, B) as well as by RAS pull-down assay (Figure 2—fig-

ure supplement 1C); (ii) strong reduction of a RAS-induced oncogenic signature expression (NES =

�1.7; FDR q-value < 0.001) (Figure 2—figure supplement 1D); and (iii) diminished cell proliferation

(Figure 2—figure supplement 1E, F). Consistent with the negative correlation of FOSL1 and NF1

mRNA levels in IDH-wt gliomas (Figure 2D), NF1-GRD overexpression in two independent MES

GBM lines (BTSC 233 and BTSC 232) was associated with a significative downregulation of FOSL1

and FOSL1-regulated genes (Figure 2E and Figure 2—figure supplement 2A–C). Concurrently, we
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Figure 2. NF1 is a functional modulator of mesenchymal (MES) transcriptional signatures through FOSL1 expression regulation. (A) Heatmap of the

subtypes single-sample gene set enrichment analysis (ssGSEA) scores and NF1 genetic alterations of the IDH-wt gliomas in the TCGA dataset. (B)

Frequency of NF1 alterations in MES and non-MES IDH-wt gliomas. Colors are as in panel (A). (C) FOSL1 mRNA expression in IDH-wt gliomas, stratified

according to NF1 alterations. Colors are as in panel (A). Student’s t test, p=0.018. (D) Correlation of FOSL1 and NF1 mRNA expression in IDH-wt

gliomas. Colors are as in panel (A). Pearson correlation, R = �0.044, p=7.8e-12. (E) qRT-PCR analysis of FOSL1 expression upon NF1-GRD

overexpression in BTSC 232 and BTSC 233 cells. (F) Western blot analysis of whole-cell extract of BTSC 233 cells showing CHI3L1 mesenchymal marker

expression upon NF1-GRD transduction; a-tubulin was used as loading control. Two biological replicates are shown. (G) Gene set enrichment

analysis (GSEA) results of BTSC 233 cells transduced with NF1-GRD expressing lentivirus versus Ctrl. NES: normalized enrichment score. (H) qRT-PCR

analysis of FOSL1 expression upon NF1 knockdown in BTSC 3021 and BTSC 3047 cells. (I) GSEA results of BTSC 3021 transduced with shNF1_5 versus

Figure 2 continued on next page

Marques et al. eLife 2021;10:e64846. DOI: https://doi.org/10.7554/eLife.64846 5 of 37

Research article Cancer Biology

https://doi.org/10.7554/eLife.64846


also observed a significant decrease of two well-characterized mesenchymal features, namely

CHI3L1 expression (Figure 2F) as well as the ability of MES GBM cells to differentiate into osteo-

cytes, a feature shared with mesenchymal stem cells (Ricci-Vitiani et al., 2008; Tso et al., 2006; Fig-

ure 2—figure supplement 2D). Moreover, NF1-GRD expression led to a significant reduction of the

FOSL1 regulon and the MGSs, with a concurrent increase of the OLIG2 regulon and the non-MES

gene signatures (non-MGSs) (Figure 2G).

Conversely, NF1 knockdown with three independent shRNAs (shNF1_1, shNF1_4, and shNF1_5)

in two non-MES lines (BTSC 3021 and BTSC 3047) (Figure 2—figure supplement 2E) led to an upre-

gulation of FOSL1 (Figure 2H), with a concomitant significant increase in its targets (Figure 2—fig-

ure supplement 2F, G), an upregulation of the MGSs, and downregulation of the N-MGSs

(Figure 2I).

The observed NF1-mediated gene expression changes might be potentially driven by an effect

on FOSL1 or other previously described mesenchymal TFs (such as BHLHB2, CEBPB, FOSL2,

RUNX1, STAT3, and TAZ;) (Bhat et al., 2011; Carro et al., 2010). Interestingly, only FOSL1, and to

some extent CEBPB, was consistently downregulated upon NF1-GRD expression (Figure 2—figure

supplement 2H) and upregulated following NF1 knockdown (Figure 2—figure supplement 2I). To

then test whether FOSL1 was playing a direct role in the NF1-mediated regulation of mesenchymal

genes expression, we overexpressed FOSL1 in the MES GBM lines transduced with the NF1-GRD

(Figure 2—figure supplement 2J). qRT-PCR analysis showed that FOSL1 was able to rescue the

NF1-GRD-mediated downregulation of mesenchymal genes, such as ITGA3, ITGA5, SERPINE1, and

TNC (Figure 3J). Lastly, exposure of NF1 silenced cells to the MEK inhibitor GDC-0623, led to a

reduction of FOSL1 upregulation, both at the protein and the mRNA levels, as well as to a downre-

gulation of the mesenchymal genes ITGA3 and SERPINE1 (Figure 2—figure supplement 3A, B).

Overall these evidences implicate the NF1-MAPK signaling in the regulation of the MGSs through

the modulation of FOSL1 expression.

Fosl1 deletion induces a shift from a MES to a PN gene signature
To further explore the NF1-MAPK-FOSL1 axis in MES GBM, we used a combination of the RCAS-Tva

system with the CRISPR/Cas9 technology, recently developed in our laboratory (Oldrini et al.,

2018), to induce Nf1 loss or Kras mutation. Mouse NSCs from hGFAP-Tva; hGFAP-Cre; Trp53lox;

ROSA26-LSL-Cas9 pups were isolated and infected with viruses produced by DF1 packaging cells

transduced with RCAS vectors targeting the expression of Nf1 through shRNA and sgRNA (shNf1

and sgNf1) or overexpressing a mutant form of Kras (KrasG12V). Loss of NF1 expression was con-

firmed by western blot, and FRA-1 was upregulated in the two models of Nf1 loss compared to

Figure 2 continued

Ctrl. (J) qRT-PCR analysis of MES genes expression upon NF1-GRD and FOSL1 co-expression in BTSC 232 and BTSC 233 cells. qRT-PCR data in (E), (H),

and (J) are presented as mean ± SD (n = 3, technical replicates), normalized to 18S rRNA expression; Student’s t test, *p�0.05, **p�0.01, ***p�0.001,

ns = not significant.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data of Figure 2F.

Source data 2. Source data of Figure 2A, C–E, G–J.

Figure supplement 1. NF1-GRD expression leads to downregulation of RAS signaling.

Figure supplement 1—source data 1. Source data of Figure 2—figure supplement 1A.

Figure supplement 1—source data 2. Source data of Figure 2—figure supplement 1C.

Figure supplement 2. Modulation of NF1 expression regulates FOSL1 targets and mesenchymal genes.

Figure supplement 2—source data 1. Source data of Figure 2—figure supplement 2A.

Figure supplement 2—source data 2. Source data of Figure 2—figure supplement 2E.

Figure supplement 2—source data 3. Source data of Figure 2—figure supplement 2J.

Figure supplement 2—source data 4. Source data of Figure 2—figure supplement 2C, G–I.

Figure supplement 3. MAPK inhibition reverts the effects of NF1 silencing on FOSL1 and mesenchymal genes expression.

Figure supplement 3—source data 1. Source data of Figure 2—figure supplement 3A.

Figure supplement 3—source data 2. Source data of Figure 2—figure supplement 3C.

Figure supplement 3—source data 3. Source data of Figure 2—figure supplement 3E.

Figure supplement 3—source data 4. Source data of Figure 2—figure supplement 3B, D, F, and G.

Marques et al. eLife 2021;10:e64846. DOI: https://doi.org/10.7554/eLife.64846 6 of 37

Research article Cancer Biology

https://doi.org/10.7554/eLife.64846


parental cells and further upregulated in cells infected with KrasG12V (Figure 3A). Consistent with

activation of the Ras signaling, as a result of both Nf1 loss and Kras mutation, the MEK/ERK pathway

was more active in infected cells compared to parental cells (Figure 3A). Higher levels of activation

of the MEK/ERK pathway were more pronounced in the Kras mutant cells and were associated with

a stronger induction of mesenchymal genes such as Plau, Plaur, Timp1, and Cd44 (Figure 3B).

Figure 3. Fosl1 is induced by MAPK kinase activation and is required for mesenchymal (MES) gene expression. (A) Western blot analysis using the

specified antibodies of p53-null neural stem cells (NSCs), parental and infected with sgNf1, shNf1, and KrasG12V; vinculin was used as loading control.

(B) mRNA expression of Fosl1 and MES genes (Plau, Plaur, Timp1, and Cd44) in infected p53-null NSCs compared to parental cells (not infected). Data

from a representative of two experiments are presented as mean ± SD (n = 3), normalized to Gapdh expression. Student’s t test, relative to parental

cells: ns = not significant, *p�0.05, **p�0.01, ***p�0.001. (C) FRA-1 expression detected by western blot in p53-null KrasG12V NSCs upon transduction

with sgRNAs targeting Fosl1, after selection with 1 mg/mL puromycin; vinculin was used as loading control. (D) Gene set enrichment analysis (GSEA)

results of p53-null KrasG12V sgFosl1_1 versus sgCtrl NSCs. (E, F) mRNA expression of MES (E) and PN genes (F) in sgCtrl and sgFosl1_1 p53-null

KrasG12V NSCs. Data from a representative of two experiments are presented as mean ± SD (n = 3, technical replicates), normalized to Gapdh

expression. Student’s t test, relative to sgCtrl: *p�0.05; **p�0.01; ***p�0.001.

The online version of this article includes the following source data for figure 3:

Source data 1. Source data of Figure 3A.

Source data 2. Source data of Figure 3C.

Source data 3. Source data of Figure 3B, D–F.
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Moreover, the upregulation of both FRA-1 and the mesenchymal genes was blocked by exposing

shNf1 and Kras mutant cells to the MAPK inhibitors trametinib or U0126 (Figure 2—figure supple-

ment 3C, D).

Taking advantage of the Cas9 expression in the generated p53-null NSCs models, Fosl1 was

knocked out through sgRNAs. Efficient downregulation of FRA-1 was achieved with two different

sgRNAs (Figure 3C and Figure 2—figure supplement 3E). Cells transduced with sgFosl1_1 and

sgFosl1_3 were then subjected to further studies.

As suggested by the data presented here on the human BTSCs datasets and cell lines, FOSL1

appears to be a key regulator of the MES subtype. Consistently, RNA-seq analysis followed by

GSEA of p53-null KrasG12V sgFosl1_1 versus sgCtrl revealed a significant loss of the MGSs and

increase in the N-MGSs (Figure 3D). These findings were validated by qRT-PCR with a significant

decrease in expression of a panel of MES genes (Plau, Itga7, Timp1, Plaur, Fn1, Cyr61, Actn1,

S100a4, Vim, Cd44) (Figure 3E) and increased expression of PN genes (Olig2, Ncam1, Bcan, Lgr5) in

the Fosl1 knock-out (KO) KrasG12V NSCs (Figure 3F). A similar trend was observed in the Fosl1 KO

shNf1 NSCs (Figure 2—figure supplement 3F, G), and the extent of MSG regulation appeared pro-

portional to the extent of MAPK activation by individual perturbations (Figure 3A).

Altogether, these data indicated that KrasG12V–transduced cells, which show the highest FOSL1

expression and mesenchymal commitment, are a suitable model to functionally study the role of a

MAPK-FOSL1 axis in MES GBM.

Fosl1 depletion affects the chromatin accessibility of the mesenchymal
transcription program and differentiation genes
FOSL1 is a member of the AP-1 TF super family, which may be composed of a diverse set of homo-

and heterodimers of the individual members of the JUN, FOS, ATF, and MAF protein families. In

GBM, AP-1 can act as a pioneer factor for other transcriptional regulators, such as ATF3, to coordi-

nate response to stress in GSCs (Gargiulo et al., 2013). To test the effect of Fosl1 ablation on chro-

matin regulation, we performed open chromatin profiling using ATAC-seq in the p53-null KrasG12V

NSCs model (Figure 3C). This analysis revealed that Fosl1 loss strongly affects chromatin accessibil-

ity of known cis-regulatory elements such as transcription start sites (TSS) and CpG islands (CGI), as

gauged by unsupervised clustering of Fosl1 wild-type and KO cells (Figure 4A). Consistent with a

role for FOSL1/FRA-1 in maintaining chromatin accessibility at direct target genes, deletion of Fosl1

caused the selective closing of chromatin associated with the major AP-1 TFs binding sites

(Figure 4B). Upon Fosl1 loss, profiling of the motifs indicated that chromatin associated with AP-1/2

TFs binding were closed and – conversely – a diverse set of general and lineage-specific TFs, includ-

ing MFZ1, NRF1, RREB1, and others (Figure 4C), were opened. The genes associated with changes

in chromatin accessibility upon Fosl1 loss are involved in several cell fate commitment, differentia-

tion, and morphogenesis programs (Figure 4D, E). Next, we investigated chromatin remodeling

dynamics using limma and identified 9749 regions with significant differential accessibility (absolute

log2 fold-change >1, FDR < 0.05). Importantly, Fosl1 loss induced opening of chromatin associated

with lineage-specific markers, along with closing of chromatin at the loci of genes, associated with

mesenchymal GBM identity in human tumors and BTSC lines (Figure 4F–H). Taken all together, this

evidence further indicates that FOSL1/FRA-1 might modulate the mesenchymal transcriptional pro-

gram by regulating the chromatin accessibility of MES genes.

Fosl1 deletion reduces stemness and tumor growth
Ras activating mutations have been widely used to study gliomagenesis, in combination with other

alterations as Akt mutation, loss of Ink4a/Arf or Trp53 (Friedmann-Morvinski et al., 2012;

Holland et al., 2000; Koschmann et al., 2016; Muñoz et al., 2013; Uhrbom et al., 2002). Thus, we

then explored the possibility that Fosl1 could modulate the tumorigenic potential of the p53-null

Kras mutant cells.

Cell viability was significantly decreased in Fosl1 KO cell lines as compared to sgCtrl (Figure 5A).

Concomitantly, we observed a significant decreased percentage of cells in S-phase (mean values:

sgCtrl = 42.6%; sgFosl1_1 = 21.6%, Student’s t test p�0.001; sgFosl1_3 = 20.4%, Student’s t test

p=0.003), an increase in percentage of cells in G2/M (mean values: sgCtrl = 11.7%, sgFosl1_1 =

28.4%, Student’s t test p�0.001; sgFosl1_3 = 23.4%, Student’s t test p=0.012) (Figure 5B), and a

Marques et al. eLife 2021;10:e64846. DOI: https://doi.org/10.7554/eLife.64846 8 of 37

Research article Cancer Biology

https://doi.org/10.7554/eLife.64846


Figure 4. Fosl1 depletion affects the chromatin accessibility of mesenchymal (MES) transcription program and differentiation genes in mouse glioma-

initiating cells. (A) Correlation heatmap of the ATAC-seq samples. Clustering of the Fosl1-WT (sgCtrl, n = 4) and Fosl1-depleted (sgFosl1_1 and

sgFosl1_3, n = 8) samples is based upon the bias corrected deviations in chromatin accessibility (see Materials and methods). (B) tSNE visualization of

cellular similarity between Fosl1-depleted and control cells based on chromatin accessibility. Samples are color-coded according to the cell type (black,

red, and green for sgCtrl, sgFosl1_1, and sgFosl1_3 cells, respectively), or by directional z-scores. (C) Volcano plot illustrating the mean difference in

bias-corrected accessibility deviations between Fosl1-deficient and control cells against the FDR-corrected p-value for that difference. The top

differential motifs are highlighted in violet and red, indicating decreased and increased accessibility, respectively. (D, E) Top enriched Gene Ontology

(GO) biological processes pathways for the regions with decreased (D) and increased (E) chromatin accessibility upon Fosl1 loss. The nodes represent

the functional categories from the respective databases, color-coded by the significance of enrichment (FDR < 0.05). The node size indicates the

number of query genes represented among the ontology term, and the edges highlight the relative relationships among these categories. (F, G)

Density plots showing the distributions of the log2 fold-changes in chromatin accessibility of the indicated probes, as measured with limma by

comparing Fosl1-KO versus control cells. (H) Representative ATAC-seq tracks of two technical replicates for the MES Bnc2 and non-MES Sox11 markers

loci. Tracks are color-coded as in panels (A) and (B).

The online version of this article includes the following source data for figure 4:

Source data 1. Source data of Figure 4A, C–G.
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Figure 5. Fosl1 knock-out (KO) impairs cell growth and stemness in vitro and increases survival in a orthotopic glioma model. (A) Cell viability of control

and Fosl1 KO p53-null KrasG12V neural stem cells (NSCs) measured by MTT assay; absorbance values were normalized to day 1. Data from a

representative of three independent experiments are presented as mean ± SD (n = 10, technical replicates). Two-way ANOVA, relative to sgCtrl for

both sgFosl1_1 and sgFosl1_3: ***p�0.001. (B) Quantification of cell cycle populations of control and Fosl1 KO p53-null KrasG12V NSCs by flow

cytometry analysis of PI staining. Data from a representative of two independent experiments are presented as mean ± SD (n = 3, technical replicates).

Student’s t test, relative to sgCtrl: *p�0.05; **p�0.01; ***p�0.001. (C) Representative limiting dilution experiment on p53-null KrasG12V sgCtrl and

sgFosl1_1 NSCs, calculated with extreme limiting dilution assay (ELDA) analysis; bar plot inlet shows the estimated stem cell frequency with the

confidence interval; chi-square p<0.0001. (D) Heatmap of expression of stem cell (yellow) and lineage-specific (neuronal – purple, astrocytic – green,

and oligodendrocytic – orange) genes, comparing sgCtrl and sgFosl1_1 p53-null KrasG12V NSCs. Two biological replicates are shown. (E) Quantification

of pixel area (fold-change relative to sgCtrl) of CD44, GFAP, and OLIG2 relative to DAPI pixel area per field of view in control and Fosl1 KO p53-null

KrasG12V NSCs. Data from a representative of two independent experiments; Student’s t test, relative to sgCtrl: ***p�0.001. (F) Kaplan–Meier survival

Figure 5 continued on next page
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reduction of the expression of cell cycle regulator genes (Ccnb1, Ccnd1, Ccne1, and Cdk1, among

others) (Figure 5—figure supplement 1A).

Another aspect that contributes to GBM aggressiveness is its heterogeneity, attributable in part

to the presence of GSCs. By using limiting dilution assays, we found that Fosl1 is required for the

maintenance of stem cell activity, with a stem cell frequency estimate of sgFosl1_1 = 28.6 compared

to sgCtrl = 3 (chi-square p<2.2e-16) (Figure 5C). Moreover, RNA-seq analysis showed that

sgFosl1_1 cells downregulated the expression of stem genes (Elf4, Klf4, Itgb1, Nes, Sall4, L1cam,

Melk, Cd44, Myc, Fut4, Cxcr4, Prom1) while upregulating the expression of lineage-specific genes:

neuronal (Map2, Ncam1, Tubb3, Slc1a2, Rbfox3, Dcx), astrocytic (Aldh1l1, Gfap, S100b, Slc1a3), and

oligodendrocytic (Olig2, Sox10, Cnp, Mbp, Cspg4) (Figure 5D). The different expression of some of

the stem/differentiation markers was confirmed also by immunofluorescence analysis. While Fosl1

KO cells presented low expression of the stem cell marker CD44, differentiation markers as GFAP

and OLIG2 were significantly higher when compared to sgCtrl cells (Figure 5E and Figure 5—figure

supplement 1B).

We then sought to test whether (i) p53-null KrasG12V NSCs were tumorigenic and (ii) Fosl1 played

any role in their tumorigenic potential. Intracranial injections of p53-null KrasG12V NSCs in nu/nu

mice led to the development of high-grade tumors with a median survival of 37 days in control cells

(n = 9). In contrast, sgFosl1_1-injected mice (n = 6) had a significant increase in median survival (54.5

days, log-rank p=0.0263) (Figure 5F). Consistent with our in vitro experiments (Figure 3D–F), Fosl1-

depleted tumors failed to support mesenchymal program (Figure 5G–I). Western blot, immunohisto-

chemical, and qPCR analysis show the reduction of MES markers (VIM, CD44, and S100A4) and the

expression of the PN marker OLIG2 to depend on Fosl1 expression (Figure 5G–J).

Overall, our data in p53-null Kras mutant NSCs support the conclusion that, besides controlling

cell proliferation, Fosl1 plays a critical role in the maintenance of the stem cell activity and

tumorigenicity.

Fosl1 amplifies mesenchymal gene expression
To further assess the role of Fosl1 as a key player in the control of the MGS, we used a mouse model

of inducible Fosl1 overexpression containing the alleles KrasLSLG12V; Trp53lox; ROSA26LSLrtTA-IRES-

EGFP; Col1a1TetO-Fosl1 (here referred to as Fosl1tetON). Similar to the loss-of-function approach here

used, this allelic combination allows the expression of KrasG12V and deletion of p53 after Cre recom-

bination. Moreover, the expression of the reverse tetracycline transactivator (rtTA) allows, upon

induction with doxycycline (Dox), the ectopic expression of Fosl1 (Flag tagged), under the control of

the Col1a1 locus and a tetracycline-responsive element (TRE or Tet-O) (Belteki, 2005;

Hasenfuss et al., 2014).

NSCs derived from Fosl1WT and Fosl1tetON mice were infected in vitro with a lentiviral vector

expressing the Cre recombinase and efficient infection was confirmed by fluorescence microscopy as

the cells expressing the rtTA should express GFP (data not shown). FRA-1 overexpression, as well as

Flag-tag expression, was then tested by western blot after 72 hr of Dox induction (Figure 6A). When

Fosl1tetON NSCs were analyzed by qRT-PCR for the expression of MES/PN markers, a significant

upregulation of most MES genes and downregulation of PN genes was found in the cells overex-

pressing Fosl1 (Figure 6B, C), thereby complementing our findings in Fosl1 KO cells.

Figure 5 continued

curves of nu/nu mice injected with p53-null KrasG12V sgCtrl (n = 9) and sgFosl1_1 (n = 6) NSCs. Log-rank p=0.0263. (G) Western blot analysis using the

indicated antibodies of four sgCtrl and four sgFosl1_1 tumors (showing low or no detectable expression of FRA-1); vinculin was used as loading control.

(H) Representative images of IHCs using the indicated antibodies. Scale bars represent 100 mm. (I) mRNA expression of MES genes in the samples

sgCtrl–T4 (higher FRA-1 expression) and sgFosl1_1–T3 and –T4 (no detectable FRA-1 expression). (J) mRNA expression of PN genes in samples as in

(H). Data from a representative of two experiments are presented as mean ± SD (n = 3, technical replicates), normalized to Gapdh expression. Student’s

t test for sgFosl1_1 tumors, relative to sgCtrl–T4: ns = not significant, *p�0.05, **p�0.01, ***p�0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data of Figure 5G.

Source data 2. Source data of Figure 5A–C, E, F, I, J.

Figure supplement 1. Fosl1 loss is associated with the reduction of proliferative genes and increase in differentiation genes.
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Figure 6. Fosl1 overexpression upregulates the MES gene signature (MGS) and induces larger tumors in vivo. (A) Western blot analysis of FRA-1 and

Flag expression on Fosl1tetON and Fosl1WT neural stem cells (NSCs) derived from KrasLSLG12V; Trp53lox; ROSA26LSLrtTA-IRES-EGFP; Col1a1TetO-Fosl1 mice

upon in vitro infection with Cre and induction of Fosl1 overexpression with 1 mg/mL doxycycline (Dox) for 72 hr; vinculin was used as loading control. (B)

mRNA expression of Fosl1 and mesenchymal (MES) genes in Fosl1tetON p53-null KrasG12V cells upon 72 hr induction with 1 mg/mL Dox. (C) mRNA

expression of PN genes in Fosl1tetON p53-null KrasG12V cells upon 72 hr induction with 1 mg/mL Dox. (D) Quantification of tumor area (mm2) of –Dox and

+Dox tumors (n = 8/8). For each mouse, the brain section on the hematoxylin and eosin (H&E) slide with a larger tumor was considered and quantified

using the ZEN software (Zeiss). (E) Western blot detection of FRA-1 expression in tumorspheres derived from a control (�Dox) tumor. Tumorspheres

were isolated and kept without Dox until first passage, when 1 mg/mL Dox was added and kept for 19 days (+Dox in vitro). (F) mRNA expression of

Fosl1 and MES genes in tumorspheres in the absence or presence of Dox for 19 days. (G) mRNA expression of PN genes in tumorspheres in

the absence or presence of Dox for 19 days. (H) Western blot detection of FRA-1 expression in tumorspheres derived from a Fosl1 overexpressing

(+Dox) tumor. Tumorspheres were isolated and kept with 1 mg/mL Dox until first passage, when Dox was removed for 19 days (�Dox in vitro). (I) mRNA

expression of Fosl1 and MES genes in tumorspheres in the presence or absence of Dox for 19 days. (J) mRNA expression of PN genes in tumorspheres

in the presence or absence of Dox for 19 days. qRT-PCR data from a representative of two experiments are presented as mean ± SD (n = 3, technical

replicates), normalized to Gapdh expression. Student’s t test, relative to the respective control (�Dox in B, C, F, and G; +Dox in I and J): ns = not

significant, *p�0.05, **p�0.01, ***p�0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Source data of Figure 6A.

Source data 2. Source data of Figure 6E.

Source data 3. Source data of Figure 6H.

Source data 4. Source data of Figure 6B–D, F, G, I,J.

Figure supplement 1. Characterization of Fosl1 overexpressing mouse tumors.

Figure supplement 1—source data 1. Source data of Figure 6—figure supplement 1A.
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To investigate if the MES phenotype induced with Fosl1 overexpression would have any effect in

vivo, p53-null KrasG12V Fosl1tetON NSCs were intracranially injected into syngeneic C57BL/6J wild-

type mice. Injected mice were randomized and subjected to Dox diet (food pellets and drinking

water) or kept as controls with regular food and drinking water with 1% sucrose. Fosl1 overexpress-

ing mice (+Dox) developed larger tumors that were more infiltrative and aggressive than controls (–

Dox), which mostly grew as superficial tumor masses instead (Figure 6D). This phenotype appears to

be independent of tumor cells proliferation as gauged by Ki-67 staining and does not affect overall

survival (Figure 6—figure supplement 1A, B).

Tumorspheres were derived from –Dox and +Dox tumor-bearing mice, and Fosl1 expression was

manipulated in vitro through addition or withdrawal of Dox from the culture medium. In the case of

tumorspheres derived from a –Dox tumor, when Dox was added for 19 days, high levels of FRA-1

expression were detected by western blot (Figure 6E). At the mRNA level, Dox treatment also

greatly increased Fosl1 expression, as well as some of the MES genes (Figure 6F), while the expres-

sion of PN genes was downregulated (Figure 6G). Conversely, when Dox was removed from +Dox-

derived tumorspheres for 19 days, the expression of FRA-1 decreased (Figure 6H, I), along with the

expression of MES genes (Figure 6I), while PN genes were upregulated (Figure 6J). These results

confirm the essential role of Fosl1 in the regulation of the MGS in p53-null KrasG12V tumor cells and

the plasticity between the PN and MES subtypes.

FOSL1 controls growth, stemness, and mesenchymal gene expression
in patient-derived BTSCs
To prove the relevance of our findings in the context of human tumors, we analyzed BTSC lines char-

acterized as non-MES (h676, h543, and BTSC 268) or MES (BTSC 349, BTSC 380, and BTSC 233)

(this study and Ozawa et al., 2014). By western blot, we found that consistent with what

was observed either in human BTSCs (Figure 1D) or mouse NSCs (Figure 3A), MES cell lines

expressed high levels of FRA-1 and activation of the MEK/ERK pathway (Figure 7A).

To study the role of FOSL1 in the context of human BTSCs, its expression was modulated in the

MES BTSC 380 using two Dox-inducible shRNAs (shFOSL1_3 and shFOSL1_10). We confirmed by

western blot FRA-1 downregulation after 3 and 7 days of Dox treatment (Figure 7B). In line to what

was observed in mouse glioma-initiating cells, FOSL1 silencing in MES BTSC 380 resulted in reduced

cell growth (Figure 7C) with a significant reduction of the percentage of BrdU positive cells com-

pared to Dox-untreated cells (Figure 7D). Moreover, FOSL1 silencing decreased the sphere-forming

capacity of MES BTSC 380 with an estimated stem cell frequency of shGFP –Dox = 3.5, shGFP +Dox

= 3.4, chi-square p=0.8457; shFOSL1_3 –Dox = 4.3, shFOSL1_3 +Dox = 7.6, chi-square

p=0.0002195; shFOSL1_10 –Dox = 5.4, shFOSL1_10 +Dox = 11.1, chi-square p=5.918e-06

(Figure 7E). Comparable results were also obtained in the MES BTSC 349 cells (Figure 7—figure

supplement 1A–D). In line with our mouse experiments, FOSL1 silencing resulted in the significant

downregulation of the MES genes (Figure 7—figure supplement 1E, left panel), whereas proneural

gene expression was unchanged (Figure 7—figure supplement 1E, right panel). Of note, FOSL1

silencing affected BTSCs fitness also when propagated in differentiation conditions (Figure 7—fig-

ure supplement 1F, G).

Similar to what was observed in mouse tumors (Figure 6—figure supplement 1B), FOSL1 overex-

pression in two non-MES lines (h543 and h676) did not lead to changes in their proliferation capacity

(Figure 7—figure supplement 1H, I). Most importantly, FOSL1 silencing in these non-MES lines had

no impact on cell growth (Figure 7—figure supplement 1J, K), underscoring a mesenchymal con-

text-dependent role for FOSL1 in glioma cells.

We then tested whether FOSL1/FRA-1 modulates the MGS via direct target regulation. To this

end, we first identified high-confidence FOSL1/FRA-1 binding sites in chromatin immunoprecipita-

tion-seq (ChIP-seq) previously generated in the KRAS mutant HCT116 colorectal cancer cell line (see

Materials and methods), and then we determined the counts per million reads (CPM) of the

enhancer histone mark H3K27Ac in a set of MES (n = 10) and non-MES BTSCs (n = 10) (Mack et al.,

2019), selected based on the highest and lowest FOSL1 expression, respectively. PCA showed a

marked separation of the two groups of BTSCs (Figure 7F). Differential enrichment analysis by

DESeq2 revealed 11748 regions statistically significant (FDR < 0.005) for H3K27Ac at FOSL1/FRA-1

binding sites in either MES or non-MES BTSCs (Figure 7G). Next, we compared H3K27Ac distribu-

tion over FOSL1/FRA-1 binding sites to that of the non-MES MR OLIG2. This analysis showed that
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Figure 7. FOSL1 contributes to mesenchymal (MES) genes activation, cell growth, and stemness in MES brain tumor stem cells (BTSCs). (A) Western

blot analysis using the specified antibodies of human BTSC lines, characterized as non-MES (left) and MES (right). (B) Western blot detection of FRA-1

in MES BTSC 380 upon transduction with inducible shRNAs targeting GFP (control) and FOSL1, analyzed after 3 and 7 days of doxycycline (Dox)

treatment; vinculin was used as loading control. (C) Cell growth of BTSC 380 shGFP and shFOSL1, in the absence or presence of Dox, measured by

Figure 7 continued on next page
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FOSL1/FRA-1 binding sites were systematically decorated with H3K27Ac in MES BTSCs, while the

inverse trend was observed at OLIG2 binding sites (Figure 7H, I). Validation by ChIP-qPCR in an

independent MES BTSC line (BTSC 349) confirmed FRA-1 direct binding at promoters of some MES

genes including PLAU, TNC, ITGA5, and CD44 in GBM cells (Figure 7J).

Altogether, our data support that FOSL1/FRA-1 regulates MES gene expression and aggres-

siveness in human gliomas via direct transcriptional regulation, downstream of the NF1-MAPK-

FOSL1 signaling.

Discussion
The most broadly accepted transcriptional classification of GBM was originally based on gene

expression profiles of bulk tumors (Verhaak et al., 2010), which did not discriminate the contribu-

tion of tumor cells and TME to the transcriptional signatures. It is now becoming evident that both

cell-intrinsic and -extrinsic cues can contribute to the specification of the MES subtype (Bhat et al.,

2013; Hara et al., 2021; Neftel et al., 2019; Schmitt et al., 2021; Wang et al., 2017). Bhat and

colleagues had shown that while some of the MES GBMs maintained the mesenchymal characteris-

tics when expanded in vitro as BTSCs, some others lost the MGS after few passages while exhibiting

a higher non-MGSs (Bhat et al., 2013). These data, together with the evidence that xenografts into

immunocompromised mice of BTSCs derived from MES GBMs were also unable to fully restore the

MES phenotype (Bhat et al., 2013), suggested that the presence of an intact TME potentially con-

tributed to the maintenance of a MGS. In support of this, Schmitt and colleagues have recently

shown that innate immune cells divert GBM cells to a proneural-to-mesenchymal transition (PN-to-

MES) that also contributes to therapeutic resistance (Schmitt et al., 2021).

The transcriptional GBM subtypes were lately redefined based on the expression of glioma-intrin-

sic genes, thus excluding the genes expressed by cells of the TME (Richards et al., 2021;

Wang et al., 2017). Our MRA on the BTSCs points to the AP-1 family member FOSL1 as one pio-

neer TF contributing to the cell-intrinsic MGS. Previous tumor bulk analysis identified a related AP-1

family member FOSL2, together with CEBPB, STAT3, and TAZ, as important regulators of the MES

GBM subtype (Bhat et al., 2011; Carro et al., 2010). While FOSL1 was also listed as a putative MES

MR (Carro et al., 2010), its function and mechanism of action have not been further characterized

since then. Our experimental data show that FOSL1 is a key regulator of GBM subtype plasticity and

MES transition, and define the molecular mechanism through which FOSL1 is regulated. While here

Figure 7 continued

MTT assay; absorbance values were normalized to day 1. Data from a representative of three independent experiments are presented as mean ± SD

(n = 15, technical replicates). Two-way ANOVA, –Dox vs. +Dox: ***p�0.001. (D) BrdU of BTSC 380 shGFP and shFOSL1, in the absence or presence of

Dox, analyzed by flow cytometry. Data from a representative of two independent experiments are presented as mean ± SD (n = 3, technical replicates).

Student’s t test, relative to the respective control (–Dox): *p�0.05. (E) Representative limiting dilution analysis on BTSC380 for shGFP and shFOSL1, in

the presence or absence of Dox, calculated with extreme limiting dilution assay (ELDA) analysis; bar plot inlets show the estimated stem cell frequency

with the confidence interval; chi-square p-values are indicated. (F) Principal component analysis of H3K27Ac signal over FOSL1/FRA-1 binding sites,

calculated using MACS on ENCODE samples (see Materials and methods), in non-MES (n = 10) and MES BTSC (n = 10) (from Mack et al., 2019). (G)

Volcano plot illustrating the log2 fold-change differences in H3K27Ac signal between non-MES and MES BTSCs against the p-value for that difference.

Blue and red probes represent statistically significant differences (FDR < 0.005) in H3K27Ac signal between non-MES and MES BTSCs. (H) Heatmap of

ChIP-seq enrichment of FOSL1/FRA-1 or OLIG2 binding sites for the indicated profiles. (I) View of the PLAU, CD44, and OLIG2 loci of selected profiles.

(J) Representative ChIP experiment in BTSC 349 cells. The panel shows FRA-1 binding to the promoter of a subset of MES targets (n = 3, technical

replicates) expressed as a percentage of the initial DNA amount in the immune-precipitated fraction. NANOG gene was used as a negative control.

Student’s t test, relative to IgG: ns = not significant, **p�0.01, ***p�0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Source data of Figure 7A.

Source data 2. Source data of Figure 7B.

Source data 3. Source data of Figure 7C–G, J.

Figure supplement 1. Further characterization of FOSL1 role in human brain tumor stem cells (BTSCs).

Figure supplement 1—source data 1. Source data of Figure 7—figure supplement 1A.

Figure supplement 1—source data 2. Source data of Figure 7—figure supplement 1H.

Figure supplement 1—source data 3. Source data of Figure 7—figure supplement 1J.

Figure supplement 1—source data 4. Source data of Figure 7—figure supplement 1B–E, G, I, K.
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we have focused on the TFs contributing to MES specifications, previous studies had highlighted the

role of other TFs, some of which were also identified in our MRA, such as OLIG2, SALL2, and ASCL1,

as important molecules for non-MES GBM cells (Suvà et al., 2014). Moreover, using a similar MRA,

Wu and colleagues have recently described also SOX10 as another TF that contributes to the iden-

tity of non-MES GBM cells. Strikingly, loss of SOX10 resulted in MES transition associated with

changes in chromatin accessibility in regions that are specifically enriched for FRA-1 binding motifs

(Wu et al., 2020). Lastly, using an unbiased CRISPR/Cas9 genome-wide screening, Richards and col-

leagues had shown that few of the top TFs identified here, such as FOSL1, OLIG2, and ASCL1, are

genes essential specifically either for MES GSCs (FOSL1) or for non-MES GSCs (OLIG2 and ASCL1)

(Richards et al., 2021). This evidence further strengthen the relevance of the MRA that we have per-

formed in the identification of important regulators of GBM subtype-specific cell biology.

Although consistently defined, GBM subtypes do not represent static entities. The plasticity

between subtypes happens at several levels. Besides the referred MES-to-PN change in cultured

GSCs compared to the parental tumor (Bhat et al., 2013), a PN-to-MES shift often occurs upon

treatment and recurrence. Several independent studies comparing matched pairs of primary and

recurrent tumors demonstrated a tendency to shift towards a MES phenotype, associated with a

worse patient survival, likely as a result of treatment-induced changes in the tumor and/or the micro-

environment (Phillips et al., 2006; Varn et al., 2021; Wang et al., 2016; Wang et al., 2017). More-

over, distinct subtypes/cellular states can coexist within the same tumor (Neftel et al., 2019;

Patel et al., 2014; Richards et al., 2021; Sottoriva et al., 2013; Varn et al., 2021; Wang et al.,

2019) and targeting these multiple cellular components could result in more effective treatments

(Wang et al., 2019).

PN-to-MES transition is often considered an EMT-like phenomenon, associated with tumor pro-

gression (Fedele et al., 2019). The role of FOSL1 in EMT has been studied in other tumor types. In

breast cancer cells, FOSL1 expression correlates with mesenchymal features and drives cancer stem

cells (Tam et al., 2013) and the regulation of EMT seems to happen through the direct binding of

FRA-1 to promoters of EMT genes such as Tgfb1, Zeb1, and Zeb2 (Bakiri et al., 2015). In colorectal

cancer cells, FOSL1 was also shown to promote cancer aggressiveness through EMT by direct tran-

scription regulation of EMT-related genes (Diesch et al., 2014; Liu et al., 2015).

It is well established that NF1 inactivation is a major genetic event associated with the MES sub-

type (Verhaak et al., 2010; Wang et al., 2017). However, this is probably a late event in MES glio-

magenesis as all tumors possibly arise from a PN precursor and just later in disease progression

acquire NF1 alterations that are directly associated with a transition to a MES subtype

(Ozawa et al., 2014). Moreover, NF1 deficiency has been linked to macrophage/microglia infiltra-

tion in the MES subtype (Wang et al., 2017). The fact that the enriched macrophage/microglia

microenvironment is also able to modulate a MES phenotype suggests that there might be a two-

way interaction between tumor cells and TME. The mechanisms of NF1-regulated chemotaxis and

whether this relationship between the TME and MGS in GBM is causal remain elusive.

Here, we provide evidence that manipulation of NF1 expression levels in patient-derived BTSCs

has a direct consequence on the tumor-intrinsic MGS activation and that such activation can at least

in part be mediated by the modulation of FOSL1. Among the previously validated MRs, only CEBPB

appears also to be finely tuned by NF1 inactivation. This suggests that among the TFs previously

characterized (such as FOSL2, STAT3, BHLHB2, and RUNX1), FOSL1 and CEBPB might play a domi-

nant role in the NF1-mediated MES transition that occurs in a glioma cell-intrinsic manner. However,

whether FOSL1 contributes also to the cross-talk between the TME and the cell-intrinsic MGS still

has to be established.

Furthermore, we show that FOSL1 is a crucial player in glioma pathogenesis, particularly in a

MAPK-driven MES GBM context (Figure 8). Most likely, the existence of a NF1-MAPK-FOSL1 axis

goes beyond GBM pathogenesis since FOSL1 appears to be upregulated in concomitance with NF1

mutations in multiple tumor types (Figure 8—figure supplement 1). Our findings broaden its previ-

ously described role in KRAS-driven epithelial tumors, such as lung and pancreatic ductal adenocarci-

noma (Vallejo et al., 2017). NF1 inactivation results in Ras activation, which stimulates downstream

pathways as MAPK and PI3K/Akt/mTOR. RAS/MEK/ERK signaling in turn regulates FRA-1 protein

stability (Casalino et al., 2003; Verde et al., 2007). FOSL1 mRNA expression is then most likely

induced by binding of the SRF/Elk1 complex to the serum-responsive element (SRE) on FOSL1 pro-

moter (Esnault et al., 2017). At the same time, FRA-1 can then directly bind to its own promoter to
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activate its own expression (Diesch et al., 2014; Lau et al., 2016) and those of MES genes. This fur-

ther generates a feedback loop that induces MGS, increases proliferation and stemness, sustaining

tumor growth. FRA-1 requires, for its transcriptional activity, heterodimerization with the AP-1 TFs

JUN, JUNB, or JUND (Eferl and Wagner, 2003). Which of the JUN family members participate in

the MES gene regulation and whether FOSL1/FRA-1 activates MES gene expression and simulta-

neously represses non-MES genes requires further investigation. Of note, pancancer analysis of

anatomically distinct solid tumors suggested that c-JUN/JUNB and FOSL1/2 are bona fide canonical

AP-1 TF configurations in mesenchymal states of lung, kidney, and stomach cancers (Serresi et al.,

2021). Intriguingly, in support of a direct role in the repression of non-MES genes in GBM cells, it

has been hypothesized, though not formally demonstrated, that FOSL1/FRA-1 could act as a tran-

scriptional repressor of a core set of neurodevelopmental TFs, including OLIG2 and SALL2

(Fiscon et al., 2018).

In conclusion, FOSL1/FRA-1 is a key regulator of the MES subtype of GBM, significantly contribut-

ing to its stem cell features, which could open new therapeutic options. Although FOSL1/FRA-1

pharmacological inhibition is difficult to achieve due to its enzymatic activity, a gene therapy

Figure 8. Schematic model of NF1-MAPK-FOSL1 axis in mesenchymal (MES) gliomas. NF1 alterations or RAS mutations lead to the activation of the

MAPK signaling that in turn increases FOSL1 expression both at the mRNA and protein levels. FOSL1 then activates the expression of the MES gene

signature and possibly inhibits the non-MES gene signature. The scheme integrates data presented in this work as well as previously published

literature on the regulation of FOSL1 expression by MAPK activation.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. NF1 mutations are associated with higher FOSL1 expression in multiple cancer types.
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approach targeting FOSL1/FRA-1 expression through CRISPR/Cas9 or PROTAC, for instance, could

constitute attractive alternatives to treat mesenchymal GBM patients.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-FRA-1 (Rabbit
polyclonal)

Santa Cruz
Biotechnology

Cat#sc-183;
RRID:AB_2106928

WB(1:1000)

Antibody Anti-FRA-1 (Rabbit
polyclonal)

Santa Cruz
Biotechnology

Cat#sc-605,
RRID:AB_2106927

WB(1:1000)

Antibody anti-CD44 (Rat
monoclonal)

BD Biosciences Cat#550538;
RRID:AB_393732

IF(1:100)

Antibody Anti-S100A4
(Rabbit polyclonal)

Abcam Cat#ab27957, RRID:AB_2183775 IHC(1:300)

Antibody Anti-Ki67
(Rabbit monoclonal)

Master
Diagnostica

Cat#000310QD IHC(undiluted)

Antibody Anti-FLAG (DYKDDDDK
Tag) (Rabbit
polyclonal)

Cell Signaling
Technology

Cat#2368,
RRID:AB_2217020

WB(1:2000)

Antibody Anti-GFAP (Mouse
monoclonal)

Sigma-Aldrich Cat#G3893,
RRID:AB_477010

WB(1:5000)

Antibody Anti-GFAP (Mouse
monoclonal)

Millipore Cat#MAB360,
RRID:AB_11212597

IF(1:400)

Antibody Anti-NF1 (Rabbit
polyclonal)

Santa Cruz
Biotechnology

Cat#sc-67,
RRID:AB_2149681

WB(1:500)

Antibody Anti-NF1 (Rabbit
polyclonal)

Bethyl Cat#A300-140A,
RRID:AB_2149790

WB(1:1000)

Antibody Anti-OLIG2 (Rabbit
polyclonal)

Millipore Cat#AB9610,
RRID:AB_570666

WB(1:2000)

Antibody Anti-VIMENTIN
(Rabbit
monoclonal)

Cell Signaling
Technology

Cat#5741,
RRID:AB_10695459

WB(1:3000)

Antibody Anti-phospho-p44/42
MAPK (Erk1/2)
(Thr202/Tyr204)
(Rabbit polyclonal)

Cell Signaling
Technology

Cat#9101,
RRID:AB_331646

WB(1:2000)

Antibody Anti-p44/42 MAPK
(Erk1/2) (Rabbit
polyclonal)

Cell Signaling
Technology

Cat#9102,
RRID:AB_330744

WB(1:1000)

Antibody Anti-phospho-MEK1/2
(Ser217/221) (Rabbit
polyclonal)

Cell Signaling
Technology

Cat#9154,
RRID:AB_2138017

WB(1:500)

Antibody Anti-MEK1/2 (Rabbit
polyclonal)

Cell Signaling
Technology

Cat#9122,
RRID:AB_823567

WB(1:1000)

Antibody Anti-human YKL40
(Rabbit polyclonal)

Qidel Cat#4815,
RRID:AB_452475

WB(1:1000)

Antibody Anti-PI3 kinase,
p85
(Rabbit polyclonal)

Millipore Cat#06-195,
RRID:AB_310069

WB(1:10,000)

Antibody Anti-vinculin (Mouse
monoclonal)

Sigma-Aldrich Cat#V9131,
RRID:AB_477629

WB(1:10,000)

Antibody Anti-a-tubulin
(Mouse monoclonal)

Abcam Cat#ab7291,
RRID:AB_2241126

WB(1:10,000)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Biotinylated anti-
rabbit IgG (Goat
polyclonal)

Vector Laboratories Cat#BA-1000,
RRID:AB_2313606

IHC(1:200)

Antibody Anti-rat IgG (H+L)
(goat unknown)

Vector Laboratories Cat#BA-9400,
RRID:AB_2336202

IHC(1:200)

Antibody Peroxidase-AffiniPure
anti-mouse IgG
(Goat polyclonal)

Jackson Immuno
Research Labs

Cat#115-035-003,
RRID:AB_10015289

WB(1:10,000)

Antibody Peroxidase-AffiniPure
anti-rabbit
IgG (Goat
polyclonal)

Jackson Immuno
Research Labs

Cat#111-035-003,
RRID:AB_2313567

WB(1:10,000)

Antibody Alexa Fluor 488
anti-rabbit IgG
(H+L)
(Donkey
polyclonal)

Thermo Fisher
Scientific

Cat#A21206;
RRID:AB_2535792

IF(1:400)

Antibody Alexa Fluor 488
anti-mouse
IgG (H+L)
(Donkey
polyclonal)

Thermo Fisher
Scientific

Cat#A21202;
RRID:AB_141607

IF(1:400)

Antibody Alexa Fluor 594
anti-rat IgG (H+L)
(Donkey
polyclonal)

Thermo Fisher
Scientific

Cat#A21209;
RRID:AB_2535795

IF(1:400)

Chemical
compound,
drug

Ovomucoid Worthington Cat#LS003087

Chemical
compound,
drug

N-acetyl-L-
cysteine

Sigma-Aldrich Cat#A9165

Peptide,
recombinant
protein

Recombinant
human EGF

Gibco Cat#PHG0313

Peptide,
recombinant
protein

Basic-FGF Millipore Cat#GF003-AF

Peptide,
recombinant
protein

Heparin Stem Cell
Technologies

Cat#07980

Chemical
compound,
drug

L-glutamine Hyclone Cat#SH3003401

Chemical
compound,
drug

Accumax Thermo Fisher
Scientific

Cat#00-4666-56

Chemical
compound,
drug

Polybrene Sigma-Aldrich Cat#H9268

Chemical
compound,
drug

Puromycin Sigma-Aldrich Cat#P8833

Chemical
compound,
drug

Doxycycline PanReac AppliChem Cat#A29510025

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound,
drug

Hydrogen
peroxide

Sigma-Aldrich Cat#H1009

Peptide,
recombinant
protein

BSA Sigma-Aldrich Cat#A7906

Chemical
compound,
drug

BrdU Sigma-Aldrich Cat#B9285

Chemical
compound,
drug

Peroxidase
substrate DAB

Vector Laboratories Cat#SK-4100

Chemical
compound,
drug

TRIzol Invitrogen Cat#15596-026

Chemical
compound,
drug

MTT Sigma-Aldrich Cat#M5655

Chemical
compound,
drug

PI Sigma-Aldrich Cat#P4170

Other Goat serum Sigma-Aldrich Cat#G9023

Other RNase A Roche Cat#10109142001

Other DAPI Sigma-Aldrich Cat#D8417

Other ProLong
Gold Antifade

Invitrogen Cat#P10144

Other Protein A/G plus-
agarose beads

Santa Cruz
Biotechnology

Cat#sc-2003

Other Salmon
sperm DNA

Thermo Fisher
Scientific

Cat#AM9680

Other Neurobasal medium Gibco Cat#10888022

Other B27 supplement Gibco Cat#12587010

Other N2 supplement Gibco Cat#17502048

Other Earl’s Balanced
Salt Solution

Gibco Cat#14155-08

Other Papain Worthington Cat#LS003119

Other DNaseI Roche Cat#10104159001

Other Mouse NeuroCult
basal medium

Stem Cell
Technologies

Cat#05700

Other Mouse NeuroCult
Proliferation
supplement

Stem Cell
Technologies

Cat#05701

Other ACK lysing buffer Gibco Cat#A1049201

Other DMEM Sigma-Aldrich Cat#D5796

Commercial
assay or kit

High Capacity
cDNA
Reverse
Transcription Kit

Applied Biosystems Cat#4368814

Commercial
assay or kit

SYBR Select
Master Mix

Applied Biosystems Cat#4472908

Commercial
assay or kit

SuperscriptIII reverse
transcriptase

Life Technologies Cat#18080-085

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Commercial
assay or kit

QuantSeq 30

mRNA-Seq
Library Prep
Kit (FWD)
for Illumina

Lexogen Cat#015

Commercial
assay or kit

StemPro Osteogenesis
Differentiation Kit

Life Technologies Cat#A1007201

Commercial
assay or kit

Active Ras pull
down assay kit

Thermo Fisher
Scientific

Cat#16117

Commercial
assay or kit

QIAquick PCR
purification kit

QIAGEN Cat#28104

Commercial
assay or kit

QIAGEN PCR
cloning kit

QIAGEN Cat#231124

Recombinant
DNA reagent

pCHMWS-
NF1-GRD

This paper N/A NF1-GRD overexpressing
construct
generated
in the
Carro’s lab

Recombinant
DNA reagent

pLKO-shNF1 Sigma-Aldrich TRCN0000238778

Recombinant
DNA reagent

pGIPZ-shNF1 This paper N/A Human NF1
shRNA construct
generated in
the Carro’s lab

Recombinant
DNA reagent

pGIPZ-shNF1 clone
V2LHS_76027 (clone 4)

Open Biosystems RHS4430-
98894408

Recombinant
DNA reagent

pGIPZ-shNF1 clone
V2LHS_260806
(clone 5)

Open Biosystems RHS4430-
98912463

Recombinant
DNA reagent

pKLV-U6gRNA-
PGKpuro2ABFP

Kosuke Yusa
(Wellcome
Sanger Institute)

Addgene
plasmid #50946

Recombinant
DNA reagent

pLVX-Cre Maria A. Blasco (CNIO) N/A

Recombinant
DNA reagent

pLKO.1-TET-
shFOSL1_3 and
shFOSL1_10

Silve Vicent (CIMA) N/A

Recombinant
DNA reagent

pMD2.G Carro’s lab Addgene
plasmid #12259

Recombinant
DNA reagent

psPAX2 Carro’s lab Addgene
plasmid #12260

Recombinant
DNA reagent

pBabe-FOSL1 Matsuo et al., 2000 N/A

Recombinant
DNA reagent

pSIN-EF1-puro-
FLAG-FOSL1

Silve Vicent (CIMA) N/A

Recombinant
DNA reagent

pSIN-EF1-puro-eGFP Silve Vicent (CIMA) N/A

Recombinant
DNA reagent

RCAS-sgNf1 This paper N/A Mouse Nf1 sgRNA
construct generated
in the Squatrito’s lab

Recombinant
DNA reagent

RCAS-shNf1 Ozawa et al., 2014 N/A

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Recombinant
DNA reagent

RCAS-KrasG12V This paper N/A KRASG12V construct
generated
in the
Squatrito’s lab

Software,
algorithm

FlowJo v10 BD (Becton,
Dickinson and
Company)

N/A

Software,
algorithm

RStudio https://rstudio.
com/products/rstudio/

N/A

Software,
algorithm

Nextpresso
RNA-Seq pipeline

Graña et al., 2018 https://hub.docker.
com/r/osvaldogc/
nextpresso

Software,
algorithm

deepTools2 Ramı́rez et al., 2016 https://deeptools.
readthedocs.io/
en/develop/

Software,
algorithm

bowtie2 v2.3.5 Langmead and
Salzberg, 2012

Bowtie 2,

RRID:SCR_016368

Software,
algorithm

SeqMonk https://www.
bioinformatics.
babraham.ac.uk/
projects/seqmonk/

SeqMonk,
RRID:SCR_001913

Software,
algorithm

ChaSE Younesy et al., 2016 http://chase.cs.
univie.ac.at/
overview

Software,
algorithm

GSEA Subramanian et al., 2005 Gene Set
Enrichment
Analysis,
RRID:SCR_003199

Software,
algorithm

R programming
language

R Core team 2013 R Project for
Statistical Computing,
RRID:SCR_001905

Software,
algorithm

trim-galore v0.6.2 https://www.
bioinformatics.
babraham.ac.uk/
projects/trim_galore/

N/A

Cell line
(Gallus gallus)

DF1 ATCC Cat#CRL-12203

Cell line
(Homo sapiens)

Gp2-293 Clontech Cat#631458

Cell line
(Homo sapiens)

BTSC 232 Fedele et al., 2017 N/A

Cell line
(Homo sapiens)

BTSC 233, BTSC
3021,
BTSC 3047, BTSC
349, BTSC 380

This paper N/A Human patient-
derived lines
generated at Freiburg
University; see
Materials and
methods for details

Cell line
(Homo sapiens)

h543, h676 Ozawa et al., 2014 N/A

Generation of the BTSCs dataset and MRA
The BTSC lines dataset (n = 144) was assembled with new and previously generated transcriptomic

data: 22 Illumina HumanHT-12v4 expression BeadChip microarrays newly generated at Freiburg Uni-

versity (GSE137310, this study), 44 RNA-seq samples (Illumina HiSeq 2500) from GSE119834

(Mack et al., 2019), 14 RNA-seq samples (Illumina HiSeq 2000) from SRP057855 (Cusulin et al.,
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2015), 30 Affymetrix Human Genome U219 microarrays from GSE67089 (Mao et al., 2013), 17 Affy-

metrix Human Genome U133 Plus 2.0 microarrays from GSE8049 (Günther et al., 2008), and 17

Affymetrix GeneChip Human Genome U133A 2.0 microarrays from GSE49161 (Bhat et al., 2013).

To analyze the RNA-seq samples, we used the Nextpresso pipeline (Graña et al., 2018). For the

Affymetrix microarrays, raw data were downloaded from the GEO repository (https://www.ncbi.nlm.

nih.gov/geo/) and subsequently the ‘affy’ R package (Gautier et al., 2004) was used for robust

multi-array average normalization followed by quantile normalization. For genes with several probe

sets, the median of all probes had been chosen and only common genes among all the datasets (n =

9889) were used for further analysis. To avoid issues with the use of different transcriptomic plat-

forms, each dataset was then scaled (mean = 0, SD = 1) before assembling the combined final data-

set. Transcriptional subtypes were obtained using the ‘ssgsea.GBM.classification’ R package

(Wang et al., 2017), using 1000 permutations. For differential gene expression studies, we selected

the 133 BTSCs lines that had concordant ssGSEA results, with MES BTSCs classified both as MES

and INJ and non-MES BTSCs classified both as PN/CL and DEV. Differential gene expression (MES

vs. non-MES BTSCs) was performed using the ‘limma’ R package (Ritchie et al., 2015), taking into

account the possible batch differences due the different datasets assembled.

The MRA was performed using the ‘RTN’ R package (Castro et al., 2016). Normalized BTSC

expression data were used as input to build a transcriptional network (TN) for 887 TFs present in the

dataset. TF annotations were obtained from the human TF atlas version 1.0.1 (http://humantfs.ccbr.

utoronto.ca/) (Lambert et al., 2018). p-Values for network edges were computed from a pooled null

distribution using 1000 permutations. Edges with an adjusted-p-value<0.05 were kept for data proc-

essing inequality (DPI) filtering. In the TN, each target can be connected to multiple TFs and regula-

tion can occur as a result of both direct and indirect interactions. DPI filtering removes the weakest

interaction in any triangle of two TFs and a target gene, therefore preserving the dominant TF-target

pairs and resulting in a filtered TN that highlights the most significant interactions (Fletcher et al.,

2013). Post-DPI filtering, the MRA computes the overlap between the transcriptional regulatory uni-

ties (regulons) and the input signature genes using the hypergeometric distribution (with multiple

hypothesis testing corrections). To identify MRs, the differential gene expression between MES and

non-MES was used as a phenotype.

TCGA and CGGA data analysis
RSEM normalized RNA-seq data for the TCGA GBMLGG and CGGA datasets were downloaded

from the Broad Institute Firebrowse (http://gdac.broadinstitute.org) and the Chinese Glioma

Genome Atlas (updated November 2019) (http://www.cgga.org.cn/), respectively. NF1 copy number

alterations and point mutations for the TCGA GBMLGG were obtained at the cBioPortal (https://

www.cbioportal.org). FOSL1 expression and NF1 mutational status for the TCGA datasets in Fig-

ure 8—figure supplement 1 were obtained from the Timer2.0 web portal (http://timer.cistrome.

org/) (Li et al., 2020). Transcriptional subtypes were inferred using the ‘ssgsea.GBM.classification’ R

package as indicated above. Glioma molecular subtypes information was downloaded from the Glio-

Vis web portal (http://gliovis.bioinfo.cnio.es) (Bowman et al., 2017). Survival analysis was performed

using the ‘survival’ R package. Stratification of the patients has been done by comparing the patients

with the 30% FOSL1 high expression to the 30% FOSL1 low expression.

scRNA-seq datasets
Preprocessed scRNA-seq data were downloaded from the Broad Institute Single-Cell Portal (https://

singlecell.broadinstitute.org/single_cell/), study numbers SCP503 (Richards et al., 2021) and

SCP393 (Neftel et al., 2019).

Gene expression array and GSEA
For gene expression profiling of the BTSC lines of the Freiburg dataset, total RNA was prepared

using the RNeasy kit (QIAGEN #74104) or the AllPrep DNA/RNA/Protein mini kit (QIAGEN #80004)

and quantified using 2100 Bioanalyzer (Agilent). One-and-a-half microgram of total RNA for each

sample was sent to the genomic facility of the German Cancer Research Center (DKFZ) in Heidelberg

(Germany), where hybridization and data normalization were performed. Hybridization was carried

out on Illumina HumanHT-12v4 expression BeadChip. GSEA was performed using the GSEA
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software (http://www.broadinstitute.org/gsea/index.jsp) (Subramanian et al., 2005). Gene signa-

tures are listed in Supplementary file 5.

ATAC-seq
ATAC-seq was performed on 60,000 p53-null KrasG12V mouse NSCs transduced with either

sgFosl1_1, sgFosl1_3, or sgCtrl. Briefly, the cells were pelleted in PBS and tagmentation was per-

formed in either 50 mL of master mix containing 25 mL 2xTD buffer, 2.5 mL transposase, and 22.5 mL

nuclease-free water (Nextera DNA Library Prep, Illumina #FC-121-1030) or in 50 mL of tagmentation

mix containing 25 mL of TAPS-DMF buffer (80 mM TAPS, 40 mM MgCl2, 50% vol/vol DMF), 0.625 mL

in-house-produced hyperactive Tn5 enzyme and 24.4 mL nuclease-free water (adapted from

Hennig et al., 2018). The tagmentation reactions were incubated for 1 hr at 37˚C with moderate agi-

tation (500–800 rpm). After the incubation, 5 mL of Proteinase K (Invitrogen #AM2548) were added

to the samples to stop the transposition. The cells were subsequently lysed by adding 50 mL of AL

buffer (QIAGEN #19075) and incubating for 10 min at 56˚C. The DNA was extracted by means of

1.8� vol/vol AMPure XP beads (Beckman Coulter #A63881) and eluted in 18 mL. To determine the

optimal number of PCR cycles required for library amplification, 2 mL of each sample were taken as

template for qPCR using KAPA HiFi HotStart ReadyMix (Roche #7958927001) and 1xEvaGreen Dye

(Biotium #31000). The whole probe amplification was performed in 50 mL qPCR volume with 8–12 mL

of template DNA. Primers were previously described (Buenrostro et al., 2013). Each library was

individually quantified utilizing the Qubit 3.0 Fluorometer (Life Technologies). The appropriate

ATAC-seq libraries laddering pattern was determined with TapeStation High Sensitivity D1000

ScreenTapes (Agilent #5067-5584). The libraries were sequenced on the Illumina NextSeq500 using

the High Output V2 150 cycles chemistry kit in a 2 � 75 bp mode.

ATAC-seq analysis
The reads were adaptor-trimmed using the trim-galore v0.6.2 –nextera (https://www.bioinformat-

ics.babraham.ac.uk/projects/trim_galore/). The mapping was conducted using the bowtie2 v2.3.5

(Langmead and Salzberg, 2012) default parameters. The differential chromatin accessibility analysis

was performed in SeqMonk taking mouse CpG islands (mCGI) and TSSs ± 500 bp as the probe set

(GRCm38 assembly). Counts were normalized by means of the ‘Read Count Quantification’ function

with additional correction for total count (CPM), log transformation, and size factor normalization.

The differential accessibility between the Fosl1-WT and Fosl1-depleted cells was determined utilizing

the limma pipeline (Ritchie et al., 2015).

The ‘chromVAR’ R package (Schep et al., 2017) was used to analyze the chromatin accessibility

data, perform corrections for known technical biases, and identify motifs with differential deviation

in chromatin accessibility between the samples. The enrichGO function from the ‘clusterProfiler’ R

package (Yu et al., 2012) was used to visualize the relevant pathways in Figure 4D, E. The bamCo-

verage function of the deepTools2 tool (Ramı́rez et al., 2016) was used to generate BigWig from

aligned files for subsequent visualization with the ‘karyoploteR’ R package (Gel and Serra, 2017).

ChIP-seq analysis
We downloaded FOSL1 ChIP-seq profiling from the KRAS mutant HCT116 cell line ENCODE tracks

ENCFF000OZR and ENCFF000OZQ. FOSL1/FRA-1 peaks (29,738) were identified with SeqMonk

using the MACS algorithm (Zhang et al., 2008) with a 10�7p-value cutoff. OLIG2 binding sites and

ChIP-seq profiles were downloaded from GEO: GSM1306365_MGG8TPC.OLIG2r1c and

GSM1306367_MGG8TPC.OLIG2r2 (Suvà et al., 2014). H3K27Ac data were downloaded from

GSE119755 (Mack et al., 2019) for GSM3382275_GSC1_H3K27AC,

GSM3382277_GSC10_H3K27AC, GSM3382285_GSC14_H3K27AC, GSM3382289_GSC16_H3K27AC,

GSM3382291_GSC17_H3K27AC, GSM3382293_GSC18_H3K27AC, GSM3382295_GSC19_H3K27AC,

GSM3382299_GSC20_H3K27AC, GSM3382303_GSC22_H3K27AC, GSM3382313_GSC27_H3K27AC,

GSM3382319_GSC3_H3K27AC, GSM3382327_GSC33_H3K27AC, GSM3382331_GSC35_H3K27AC,

GSM3382333_GSC36_H3K27AC, GSM3382341_GSC4_H3K27AC, GSM3382343_GSC40_H3K27AC,

GSM3382345_GSC41_H3K27AC, GSM3382347_GSC43_H3K27AC, GSM3382351_GSC5_H3K27AC,

GSM3382355_GSC7_H3K27AC. Quantitation was Read Count Quantitation using all reads correct-

ing for total count only in probes normalized to the largest store, log transformed, and duplicates
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ignored. Differential H3K27Ac signal was measured through the DESeq2 pipeline (Love et al.,

2014). Heatmaps were generated with ChaSE (Younesy et al., 2016), plotting H3K27AC signal over

FOSL1 (3532 probes, MES vs. non-MES log2 fold-change >2) or OLIG2 (15800 probes) peaks, with a

10,000 bp probe window.

Mouse strains and husbandry
GFAP-tv-a; hGFAP-Cre; Rosa26-LSL-Cas9 mice were previously described (Oldrini et al., 2018).

KrasLSLG12V; Trp53lox; Rosa26LSLrtTA-IRES-EGFP; Col1a1TetO-Fosl1 mouse strain corresponds to the MGI

Allele References 3582830, 1931011, 3583817, and 5585716, respectively. Immunodeficient nu/nu

mice (MGI: 1856108) were obtained at the Spanish National Cancer Research Centre Animal Facility.

Mice were housed in the specific pathogen-free animal house of the Spanish National Cancer

Research Centre under conditions in accordance with the recommendations of the Federation of

European Laboratory Animal Science Associations (FELASA). All animal experiments were approved

by the Ethical Committee (CEIyBA) (# CBA 31_2019-V2) and performed in accordance with the

guidelines stated in the International Guiding Principles for Biomedical Research Involving Animals,

developed by the Council for International Organizations of Medical Sciences (CIOMS).

Cell lines, cell culture, and drug treatments
Mouse NSCs were derived from the whole brain of newborn mice of Gtv-a; hGFAP-Cre; LSL-Cas9;

Trp53lox (referred to as p53-null NSCs) and KrasLSLG12V; Trp53lox; Rosa26LSLrtTA-IRES-EGFP; Col1a1TetO-

Fosl1 (referred to as Fosl1TetON NSCs). Tumorsphere lines were derived from tumors of C57BL/6J

injected with Fosl1TetON NSCs when mice were sacrificed after showing symptoms of brain tumor

disease. For the derivation of mouse NSCs and tumorspheres, tissue was enzymatically digested

with 5 mL of papain digestion solution (0.94 mg/mL papain [Worthington #LS003119], 0.48 mM

EDTA, 0.18 mg/mL N-acetyl-L-cysteine [Sigma-Aldrich #A9165] in Earl’s Balanced Salt Solution

[Gibco #14155-08]) and incubated at 37˚C for 8 min. After digestion, the enzyme was inactivated by

the addition of 2 mL of 0.71 mg/mL ovomucoid (Worthington #LS003087) and 0.06 mg/mL DNaseI

(Roche #10104159001) diluted in Mouse NeuroCult basal medium (Stem Cell Technologies #05700)

without growth factors. Cell suspension was centrifuged at a low speed and then passed through a

40 mm mesh filter to remove undigested tissue, washed first with PBS and then with ACK lysing

buffer (Gibco #A1049201) to remove red blood cells. NSCs and tumorspheres were grown in Mouse

NeuroCult basal medium, supplemented with Proliferation supplement (Stem Cell Technologies

#05701), 20 ng/mL recombinant human EGF (Gibco #PHG0313), 10 ng/mL basic-FGF (Millipore

#GF003-AF), 2 mg/mL heparin (Stem Cell Technologies #07980), and L-glutamine (2 mM, Hyclone

#SH3003401). Spheres were dissociated with Accumax (Thermo Fisher Scientific #00-4666-56) and

re-plated every 4–5 days.

Patient-derived GBM stem cells (BTSCs) from Freiburg University were prepared from tumor

specimens under IRB-approved guidelines (#407/09_120965) as described before (Fedele et al.,

2017). The gender of the main BTSCs lines used in this study are BTSC 232 (male), BTSC 233

(female), BTSC 349 (female), and BTSC 380 (male). BTSCs were grown as neurospheres in Neuro-

basal medium (Gibco #10888022) containing B27 supplement (Gibco #12587010), N2 supplement

(Gibco #17502048), b-FGF (20 ng/mL), EGF (20 ng/mL), LIF (10 ng/mL, CellGS #GFH200-20), and 2

mg/mL heparin and L-glutamine (2 mM). Patient-derived GBM stem cell lines h543 and h676, kindly

provided by Eric C. Holland, were grown as neurospheres Human NeuroCult basal medium, supple-

mented with Proliferation supplement (Stem Cell Technologies #05751) and growth factors, as the

mouse NSCs or tumorspheres (see above). BTSC 380 were differentiated by culturing them for 5

days with 0.5% FBS and 5 ng/mL of TNFalpha (Tebu-bio #300-01A-A) (Schmitt et al., 2021). All cell

lines used were routinely tested for mycoplasma contamination by PCR.

The MAPK inhibitors GDC-0623, trametinib, and U0126 were purchased from Merck (Cat#

AMBH303C5C40), Selleckchem (Cat# S2673), and Sigma-Aldrich (Cat# 662005), respectively.

Vectors, virus production, and infection
Flag-tagged NF1-GRD (aminoacids 1131–1534) was amplified by PCR from human cortical tissue

(epilepsy patient) and first cloned in the pDRIVE vector (QIAGEN #231124). Primers are listed in

Supplementary file 6. The NF1-GRD sequence was then excised by restriction digestion using PmeI
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and SpeI enzymes and subcloned in the modified pCHMWS lentiviral vector (kind gift from V. Baeke-

landt, University of Leuven, Belgium) sites by removing the fLUC region. The correct sequence was

verified by sequencing. For NF1 silencing, shNF1 from pLKO (Sigma, TRCN0000238778) (shNF1_1)

was subcloned in pGIPZ lentiviral vector (Open Biosystems). The corresponding short hairpin

sequence was synthetized (GATC) and amplified by PCR using XhoI and EcoRI sites containing pri-

mers. The PCR product was digested using XhoI and EcoRI and subcloned into the pGIPZ vector

previously digested with XhoI and PmeI followed by digestion with EcoRI. The two vector fragments

were ligated with NF1 short hairpin fragment. The correct insertion and sequence was validated by

sequencing. In addition, experiments were performed using shNF1-pGIPZ clone V2LHS_76027

(shNF1_4) and V2LHS_260806 (shNF1_5).

RCAS viruses (RCAS-shNf1, RCAS-sgNf1, and RCAS-KrasG12V) used for infection of p53-null NSCs

were obtained from previously transfected DF1 chicken fibroblasts (ATCC #CRL-12203) using

FuGENE 6 Transfection reagent (Promega #E2691), according to the manufacturer’s protocol. DF1

cells were grown at 39˚C in DMEM containing GlutaMAX (Gibco #31966-021) and 10% FBS (Sigma-

Aldrich #F7524).

The pKLV-U6gRNA-PGKpuro2ABFP was a gift from Dr. Kosuke Yusa (Wellcome Sanger Institute)

(Addgene plasmid #50946). For cloning of single gRNAs, oligonucleotides containing the BbsI site

and the specific gRNA sequences were annealed, phosphorylated, and ligated into the pKLV-

U6gRNA(BbsI)-PGKpuro2ABFP previously digested with BbsI. Single gRNAs to target Fosl1 were

designed with Guide Scan (http://www.guidescan.com/) and the sequences cloned were sgFosl1_1:

TACCGAGACTACGGGGAACC; sgFosl1_2: CCTAGGGCTCGTATGACTCC; sgFosl1_3: ACCG

TACGGGCTGCCAGCCC. These vectors and a non-targeting sgRNA control were used to transduce

p53-null KrasG12V NSCs.

The pLVX-Cre and respective control vector were kindly provided by Dr. Maria Blasco (CNIO) and

used to transduce Fosl1TetON NSCs; pSIN-EF1-puro-FLAG-FOSL1 pLKO.1-TET-shFOSL1_3 and

shFOSL1_10 and respective control vectors were a gift from Dr. Silve Vicent (CIMA, Navarra Univer-

sity); pBabe-FOSL1 was previously described (Matsuo et al., 2000).

Gp2-293 packaging cell line (Clontech #631458) was grown in DMEM (Sigma-Aldrich #D5796)

with 10% FBS. Lentiviruses generated in this cell line were produced using calcium-phosphate pre-

cipitate transfection and co-transfected with second-generation packaging vectors (pMD2G and

psPAX2). High-titer virus was collected at 36 and 60 hr following transfection.

All cells were infected with lenti- or retroviruses by four cycles of spin infection (200 � g for 2 hr)

in the presence of 8 mg/mL polybrene (Sigma-Aldrich #H9268). Transduced cells were selected after

48 hr from the last infection with 1 mg/mL puromycin (Sigma-Aldrich #P8833).

Generation of murine gliomas p53-null KrasG12V

Fosl1TetON NSCs (5 � 105 cells) were intracranially injected into 4- to 5-week-old wildtype C57Bl/6J

female mice that were fed ad libitum with 2 g/kg doxycycline-containing pellets. Due to the limited

penetration of the blood–brain barrier and to ensure enough Dox was reaching the brain, 2 mg/mL

Dox (PanReac AppliChem #A29510025) was also added to drinking water with 1% sucrose (Sigma-

Aldrich #S0389) (Annibali et al., 2014; Mansuy and Bujard, 2000). Control mice were kept with reg-

ular food and 1% sucrose drinking water.

Mice were anesthetized with 4% isofluorane and then injected with a stereotactic apparatus

(Stoelting) as previously described (Hambardzumyan et al., 2009). After intracranial injection, all

mice were routinely checked and sacrificed when developed symptoms of disease (lethargy, poor

grooming, weight loss, and macrocephaly).

Immunohistochemistry
Tissue samples were fixed in 10% formalin, paraffin-embedded, and cut in 3 mm sections, which

were mounted in Superfrost Plus microscope slides (Thermo Scientific #J1810AMNZ) and dried. Tis-

sues were deparaffinized in xylene and re-hydrated through graded concentrations of ethanol in

water, ending in a final rinse in water.

For histopathological analysis, sections were stained with hematoxylin and eosin (H&E).

For immunohistochemistry, deparaffinized sections underwent heat-induced antigen retrieval,

endogenous peroxidase activity was blocked with 3% hydrogen peroxide (Sigma-Aldrich #H1009)
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for 15 min, and slides were then incubated in blocking solution (2.5% BSA [Sigma-Aldrich #A7906]

and 10% Goat serum [Sigma-Aldrich #G9023], diluted in PBS) for at least 1 hr. Incubations with anti-

FRA-1 (Santa Cruz #sc-183, 1:100) and anti-CD44 (BD Biosciences #550538, 1:100) were carried out

overnight at 4˚C. Slides were then incubated with secondary anti-rabbit (Vector #BA-1000) or anti-rat

(Vector #BA-9400) for 1 hr at RT and with AB (avidin and biotinylated peroxidase) solution (Vectas-

tain Elite ABC HRP Kit, Vector, PK-6100) for 30 min. Slides were developed by incubation with per-

oxidase substrate DAB (Vector SK-4100) until desired stain intensity. Finally, slides were

counterstained with hematoxylin, cleared, and mounted with a permanent mounting medium.

Immunohistochemistry for S100A4 (Abcam #ab27957, 1:300) and Ki67 (Master Diagnostica

#0003110QD, undiluted) was performed using an automated immunostaining platform (Ventana dis-

covery XT, Roche).

Immunoblotting
Cell pellets or frozen tumor tissues were lysed with JS lysis buffer (50 mM HEPES, 150 mM NaCl, 1%

glycerol, 1% Triton X-100, 1.5 mM MgCl2, 5 mM EGTA), and protein concentrations were deter-

mined by DC protein assay kit II (Bio-Rad #5000112). Proteins were separated on house-made SDS-

PAGE gels and transferred to nitrocellulose membranes (Amersham #10600003). Membranes were

incubated in blocking buffer (5% milk in TBST) and then with primary antibody overnight at 4˚C. The

following primary antibodies and respective dilutions were used: FLAG (Cell Signaling Technology

#2368S, 1:2000), FRA-1 (Santa Cruz #sc-183, 1:1000; #sc-605, 1:1000), GFAP (Sigma-Aldrich

#G3893, 1:5000), NF1 (Santa Cruz #sc-67, 1:500; Bethyl #A300-140A, 1:1000), OLIG2 (Millipore

#AB9610, 1:2000), VIMENTIN (Cell Signaling Technology #5741, 1:3000), p-ERK1/2 (T202/Y204)

(Cell Signaling Technology, #9101, 1:2000/3000; Assay Designs #ADI-905-651, 1:250), ERK1/2 (Cell

Signaling Technology, #9102, 1:1000; Abcam #ab17942, 1:1000), p-MEK (S217/221) (Cell Signaling

Technology, #9154, 1:500/1000), MEK (Cell Signaling Technology, #9122 1:1000), CHI3L1 (Qidel

#4815, 1:1000), p85 (Millipore #06-195, 1:10,000), vinculin (Sigma-Aldrich #V9131, 1:10,000), and a-

tubulin (Abcam #ab7291, 1:10,000). Anti-mouse or rabbit-HRP-conjugated antibodies (Jackson

ImmunoResearch, #115-035-003 and #111-035-003) were used to detect desired protein by chemilu-

minescence with ECL Detection Reagent (Amersham, #RPN2106).

Reverse transcription quantitative PCR
RNA from NSCs and frozen tissue was isolated with TRIzol reagent (Invitrogen #15596-026) accord-

ing to the manufacturer’s instructions. For reverse transcription PCR (RT-PCR), 500 ng of total RNA

was reverse transcribed using the High Capacity cDNA Reverse Transcription Kit (Applied Biosys-

tems #4368814). Quantitative PCR was performed using the SYBR Select Master Mix (Applied Bio-

systems #4472908) according to the manufacturer’s instructions. qPCRs were run and the melting

curves of the amplified products were used to determine the specificity of the amplification. The

threshold cycle number for the genes analyzed was normalized to GAPDH. Mouse and human

primer sequences are listed in Supplementary file 6.

RNA from BTSC cells was prepared using the RNeasy kit or the AllPrep DNA/RNA Protein Mini

Kit and used for first-strand cDNA synthesis using random primers and SuperscriptIII reverse tran-

scriptase (Life Technologies #18080-085). Primer sequences used in qRT-PCR with SYBR Green are

listed in Supplementary file 6. Quantitative real-time PCR (qRT-PCR) STAT3 and CEBPB were per-

formed using pre-validated TaqMan assays (Applied Biosystems): STAT3: Hs01047580, CEBPB:

Hs00270923 and 18S rRNA: Hs99999901.

MTT assay
Cells were seeded in 96-well culture plates (1000 cells per well, 10 wells per cell line) and grown for

7 days. At each timepoint (days 1, 3, 5, and 7), cell viability was determined by MTT assay. Briefly,

10 mL of 5 mg/mL MTT (Sigma-Aldrich #M5655) was added to each well and cells were incubated for

4 hr before lysing with a formazan solubilization solution (10% SDS in 0.01 M HCl). Colorimetric

intensity was quantified using a plate reader at 590 nm. Values were obtained after subtraction of

matched blanks (medium only).
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Cell cycle analysis: propidium iodide (PI) staining
Cells were harvested and washed twice with PBS prior to fixation with 70% cold ethanol, added

drop-wise to the cell pellet while vortexing. Fixed cells were then washed, first with 1% BSA in PBS,

then with PBS only and stained overnight with 50 mg/mL PI (Sigma-Aldrich #P4170) and 100 mg/mL

RNase A (Roche #10109142001) in PBS. Samples were acquired in a FACSCanto II cytometer (BD

Biosciences), and data were analyzed using FlowJo software.

BrdU and EdU incorporation assays
Cells were pulse-labeled with 10 mM BrdU (Sigma-Aldrich #B9285) for 2 hr, harvested and washed

twice with PBS prior to fixation with 70% cold ethanol, and added drop-wise to the cell pellet while

vortexing. DNA denaturation was performed by incubating samples for 10 min on ice with 0.1 M

HCl with 0.5% Tween-20, and samples were then resuspended in water and boiled at 100˚C for 10

min. Anti-BrdU-FITC antibody (BD Biosciences #556028) was incubated according to the manufac-

turer’s protocol. After washing with PBSTB (PBS with 0.5% Tween-20% and 1% BSA), samples were

resuspended in 25 mg/mL PI and 100 mg/mL RNase A diluted in PBS. Samples were acquired in a

FACSCanto II cytometer (BD Biosciences), and data were analyzed using FlowJo software.

EdU incorporation was assessed using the EdU-Click594 Cell Proliferation Imaging Kit (Baseclick

GmbH) according to the manufacturer’s instructions. 96 hr after transduction, 2.0 � 104 BTSC 233

cells were seeded on laminin-coated glass coverslips in a 24-well cell culture plate. Pictures were

acquired using an Axiovert Microscope (Zeiss).

Immunofluorescence
Cells were plated in laminin-coated coverslips and fixed with 4% PFA for 15 min. Cells were then

permeabilized with 0.1% Triton X-100 in 0.2% BSA, and coverslips were washed and blocked with

10% donkey serum in 0.2% BSA for 1 hr. The following primary antibodies were incubated overnight

at 4˚C: CD44 (BD Biosciences #550538, 1:100), GFAP (Millipore #MAB360, 1:400), and OLIG2 (Milli-

pore #AB9610, 1:100). Secondary antibodies at 1:400 dilution (from Invitrogen, Alexa-Fluor anti-rab-

bit-488, anti-mouse-488, and anti-rat 594) were incubated for 1 hr at RT and after washing coverslips

were incubated for 4 min with DAPI (1:4000, Sigma-Aldrich #D8417) and mounted with ProLong

Gold Antifade reagent (Invitrogen #P10144).

Fluorescence signal was quantified as the ratio of green/red pixel area relative to DAPI pixel area

per field of view in a total of 36 fields per condition analyzed.

Neurosphere formation assay and limiting dilution analysis
Neurospheres were dissociated and passed through a 40 mm mesh filter to eliminate non-single cells.

Decreasing cell densities were plated in ultra-low attachment 96-well plates (Corning #CLS3474),

and fresh medium was added every 3–4 days. The number of positive wells for the presence of

spheres was counted 2 weeks after plating. Limiting dilution analysis was performed using ELDA R

package (http://bioinf.wehi.edu.au/software/elda/).

RNA-sequencing and analysis on mouse NSCs
For the p53-null KrasG12V NSCs, 1 mg of total RNA from the samples was used. cDNA libraries were

prepared using the ‘QuantSeq 3 ‘mRNA-Seq Library Prep Kit (FWD) for Illumina’ (Lexogen #015) by

following the manufacturer’s instructions. Library generation is initiated by reverse transcription with

oligo(dT) priming, and a second-strand synthesis is performed from random primers by a DNA poly-

merase. Primers from both steps contain Illumina-compatible sequences. Adapter-ligated libraries

were completed by PCR, applied to an Illumina flow cell for cluster generation, and sequenced on

an Illumina HiSeq 2500 by following the manufacturer’s protocols. Sequencing read alignment and

quantification and differential gene expression analysis was performed in the Bluebee Genomics

Platform, a cloud-based service provider (https://www.illumina.com/company/about-us/mergers-

acquisitions/bluebee.html). Briefly, reads were first trimmed with bbduk from BBTools (BBMap –

Bushnell B, https://sourceforge.net/projects/bbmap/) to remove adapter sequences and polyA tails.

Trimmed reads were aligned to the GRCm38/mm10 genome assembly with STAR v 2.5

(Dobin et al., 2013). Read counting was performed with HTSeq (Anders et al., 2015). The list of
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stem/differentiation markers was compiled by combining a previously described gene list

(Sandberg et al., 2013) with other markers (Bazzoli et al., 2012).

For the p53-null shNf1 NSCs, total RNA samples (500 ng) were converted into sequencing librar-

ies with the ‘NEBNext Ultra II Directional RNA Library Prep Kit for Illumina’ (NEB #E7760), as recom-

mended by the manufacturer. Briefly, polyA+ fraction is purified and randomly fragmented,

converted to double-stranded cDNA, and processed through subsequent enzymatic treatments of

end-repair, dA-tailing, and ligation to adapters. Adapter-ligated library is completed by PCR with

Illumina PE primers. The resulting purified cDNA libraries were applied to an Illumina flow cell for

cluster generation and sequenced on an Illumina NextSeq 550 by following the manufacturer’s pro-

tocols. We then used the Nextpresso pipeline (Graña et al., 2018) for alignment and quantification.

Osteogenesis differentiation assay
The osteogenesis differentiation assay was performed using the StemPro Osteogenesis Differentia-

tion Kit (Life Technologies #A1007201) according to the manufacturer’s instructions. Briefly, 5 � 103

cells/cm2 were seeded on laminin-coated glass coverslips in a 24-well cell culture plate. Cells were

incubated in MSC Growth Medium at 37˚C, 5% CO2 for 21 days, replacing the medium every 4 days.

Cells were then fixed with 4% formaldehyde, stained with Alizarin Red S solution (pH 4.2), and

mounted on microscope slides. Pictures were acquired using an Axiovert Microscope (Zeiss).

Active Ras pull-down assay
Active Ras pull-down assay was performed using Active Ras pull-down assay kit (Thermo Fisher Sci-

entific #16117) according to the manufacturer’s instructions. Briefly, cells were grown in 10 cm plates

at 80–90% confluency in the presence or absence of growth factors (EGF, FGF, and LIF) and lysed

with the provided buffer. Lysates were incubated with either GDP or GTP for 30 min followed by

precipitation with GST-Raf1-RBD. Western blot was performed with the provided anti-RAS antibody

(1:250).

Chromatin preparation and FRA-1 ChIP
BTSC cells were collected at 2 � 106 cells confluency, washed in PBS, and fixed by addition of 1%

formaldehyde for 20 min at room temperature. The cells were resuspended in 2 mL lysis buffer (50

mM Tris pH 7.5; 1 mM EDTA pH 8.0; 1% Triton; 0.1% Na-deoxycholate; 150 mM NaCl; protease

inhibitors) on ice for 20 min. The suspension was sonicated in a cooled Bioruptor Pico (Diagenode)

and cleared by centrifugation for 10 min at 13,000 rpm. The chromatin (DNA) concentration was

quantified using NanoDrop (Thermo Scientific), and the sonication efficiency was monitored on an

agarose gel. Protein A/G plus-agarose beads (Santa Cruz #sc-2003) were blocked with sonicated

salmon sperm (Thermo Fisher #AM9680, 200 mg/mL beads) and BSA (NEB #B9000S, 250 mg/mL

beads) in dilution buffer (0.5% NP40; 200 mM NaCl; 50 mM Tris pH 8.0; protease inhibitors) for 2 hr

at room temperature. The chromatin was pre-cleared with 80 mL of blocked beads for 1 hr at 4˚C.

Pre-cleared chromatin was incubated with 5 mg of FRA-1 antibody (Santa Cruz #sc-605) overnight at

4˚C, then with 40 mL of blocked beads for further 2 hr at 4˚C. Control mock immunoprecipitation was

performed with blocked beads. The beads were washed 1� with Wash1 (20 mM Tris pH 7.5; 2 mM

EDTA pH 8.0; 1% Triton; 0.1% SDS; 150 mM NaCl), 1� with Wash2 (20 mM Tris pH 7.5; 2 mM EDTA

pH 8.0; 1% Triton; 0.1% SDS; 500 mM NaCl), 1� with LiCl Wash (20 mM Tris pH 7.5; 1 mM EDTA

pH 8.0; 1% NP40; 1% deoxycholate; 250 mM LiCl), and 2� in TE (10 mM Tris pH 7.5; 1 mM EDTA).

The immuno-complexes were eluted by two 15 min incubations at 30˚C with 100 mL Elution buffer

(1% SDS, 100 mM NaHCO3), and de-crosslinked overnight at 65˚C in the presence of 10 U RNase A

(Ambion #AM9780). The immune-precipitated DNA was then purified with the QIAquick PCR purifi-

cation kit (QIAGEN #28104) according to the manufacturer’s protocol and analyzed by quantitative

real-time PCR.

Statistical analysis
All statistical analyses were performed using R programming language (3.6.3). Statistical differences

between groups were assessed by one-way ANOVA, two-way ANOVA, or unpaired two-tailed Stu-

dent’s t tests unless otherwise specified.
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Kaplan–Meier survival curves were produced with GraphPad Prism, and p-values were generated

using the log-rank statistics.

Results are presented as mean ± standard deviation (SD), and statistical significance was defined

as p�0.05 for a 95% confidence interval.

Code availability
The accession numbers for data reported in this paper are GEO: GSE137310 (Freiburg BTSCs) and

GSE138010 (mouse p53-null KrasG12V NSCs). All the R code and data used for analysis and plots

generation are available at: https://github.com/squatrim/Marques2020 [copy archived at swh:1:rev:

45e31e7d17f006d2d3a17e66a63449f758bf5998 (Squatrito, 2021)].
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Intratumor heterogeneity in human glioblastoma reflects Cancer evolutionary dynamics. PNAS 110:4009–4014.
DOI: https://doi.org/10.1073/pnas.1219747110, PMID: 23412337

Squatrito M. 2021. marques2020. Software Heritage. swh:1:rev:45e31e7d17f006d2d3a17e66a63449f758bf5998.
https://archive.softwareheritage.org/swh:1:dir:9a190c31dcd2e5c1208d3701aedd95ee40cd3a52;origin=https://
github.com/squatrim/marques2020;visit=swh:1:snp:d5d44f19da835e0a371b432aa30cf3dedc117fa1;anchor=swh:1:
rev:45e31e7d17f006d2d3a17e66a63449f758bf5998

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR,
Lander ES, Mesirov JP. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. PNAS 102:15545–15550. DOI: https://doi.org/10.1073/pnas.0506580102,
PMID: 16199517
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