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Sodium-glucose linked transporter type 2 inhibitors (SGLT-2i), also known as gliflozins, 

are a recently discovered class of oral antidiabetic drugs1. SGLT-2i promote urinary 

glucose excretion through inhibition of SGLT-2 and SGLT-1, which are responsible for 

approximately 90% and 10% of glucose reabsorption in the kidney glomerulus. Despite 

gliflozins show variable SGLT-2 over SGLT-1 affinity – with Empagliflozin being the most 

selective SGLT2i followed by Dapagliflozin, Canagliflozin and Sotagliflozin – inhibition of 

SGLT-2 became eponymous to this class of drugs, since glucose transporter is the 

primary site of these agents intended use: blood glucose lowering 2. 

In 2015, the Empagliflozin Cardivascular Outcome Event Trial in Type 2 Diabetes 

Mellitus Patients (EMPAREG-OUTCOME) reported improved cardiovascular outcomes 

in patients with type 2 diabetes (T2D) treated with Empagliflozin 3. In 2019 and 2020, the 

Study to Evaluate the Effect of Dapagliflozin on the Incidence of Worsening Heart Failure 

or Cardiovascular Death in Patients With Chronic Heart Failure (DAPA-HF) trial and 

EMPagliflozin outcome tRial in Patients with chronic heart Failure with Reduced Ejection 

Fraction (EMPEROR-REDUCED) trial confirmed the cardiovascular benefits of these 

drugs in patients with heart failure with reduced ejection fraction (HFrEF) independently 

of the presence of diabetes (DAPA-HF) and independently of their blood glucose lowering 

effect (EMPEROR-REDUCED) 4, 5. Similar results, albeit with more variability on 

cardiovascular outcomes, were obtained with other glifozins6-8. 

Given the striking cardiovascular effects of SGLT2i in heart failure, great efforts have 

been taken by the cardiovascular research community to unveil the underlying 

mechanisms of their beneficial effects in the myocardium. In this context, in the current 

issue of the journal, Kondo et al9. report that Canagliflozin – but, interestingly, not 
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Empagliflozin – mitigates oxidative stress in in human atrial myocardium and ventricular 

cardiomyocyte cell lines increasing the coupling of nitric oxide synthase (NOS) and 

reducing NADPH oxidase activity. While SGLT-2 localizes almost exclusively in the 

kidney, SGLT-1 is predominantly expressed in the intestine and heart/skeletal muscle10. 

Whereas SGLT-1 function is critical for intestinal glucose absorption and glucose-

dependent insulin secretion, little is known about its role in muscle.  Previous studies have 

shown changes in myocardial SGLT-1 expression occurs in several cardiovascular 

diseases and documented the absence of SGLT-2 in the myocardium  10, 11. Here, the 

authors confirm this observation in a large set of human right atrial myocardial samples 

(n=365) and further associate SGLT-1 expression with oxidative damage, inflammation, 

fibrosis and wall-stretch. Incubation of right atrial myocardium with Canagliflozin as low 

as 3µM – a clinically relevant concentration – reduced NADPH oxidase and NOS driven 

production of reactive oxygen species (ROS) in a dose-independent manner. 

Interestingly, high-dose treatment of Empagliflozin (100µM) did not show the same effect. 

The authors interpret these results as a consequence of a higher binding affinity to SGLT-

1 of Canagliflozin compared to Empagliflozin and proceed to evaluate its upstream effects 

on myocardial redox signalling. Canagliflozin induced the rapid activation of AMPKα2, 

inhibiting the NADPH oxidase activator Rac1 improving enzymatic coupling of NOS by 

enhancing bioavailability of its cofactor tetrahydrobiopterin. The authors successfully 

transfer their observations from human right atrial myocardium to immortalized human 

and rat ventricular cardiomyocytes cell lines, making similar observations regarding 

SGLT-1/2 expression and Canagliflozin’s effect on AMPK/GTP-Rac1 signalling. By 

incorporating a SGLT-1 loss-of-function approach and modulating glucose concentration 
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of cell culture media – to mimic diabetic conditions – the authors showed that 

Canagliflozin enhances cellular ADP/ATP ratio by regulating SGLT-1 mediated glucose 

influx. The authors finally report that 24h treatment with Canagliflozin in human primary 

cardiomyocyte cell line downregulates a set of pro-inflammatory genes promoting cell 

survival. 

As with all good studies, new hypothesis-generating considerations and questions 

emerge from this work (Figure 1). So far, all major SGLT-2i (Empagliflozin, Dapagliflozin, 

Canagliflozin, Sotagliflozin) have performed exceedingly well with regards to 

cardiovascular outcome in randomized clinical trials for heart failure, despite their vastly 

different profiles of SGLT-1/2 affinity. This raises the question whether SGLT-1 (and its 

inhibition) is a clinically relevant target and if so, whether it would be aimed by SGLT-2i 

with a higher type 2 selectivity such as Empagliflozin and Dapagliflozin. 

Following the notion of differential effects of SGLT-2i compounds on 

SGLT1/AMPK/Rac1-GTP mediated myocardial redox signalling, it would be of interest to 

know which patients will benefit most from a SGLT-1 targeted therapy with regards to 

specific cardiovascular disease, comorbidities and overall demographics. Can selective 

SGLT-1i therapy be considered as a future cardiac-specific therapy? Similar SGLT-1 

expression between T2D and non-diabetic patients suggest the potential use of these 

drugs in a large group of patients. 

Accumulating evidence suggests that the anti-ROS beneficial effects of SGLT-2i are 

not limited to HFrEF. It has been recently reported that Empagliflozin, at a concentration 

of 0.5µM (for comparison, 100µM was the dose of Empagliflozin used in the current 

study), can ameliorate myocardial oxidative damage in left ventricular biopsies of patients 
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with heart failure with preserved ejection fraction (HFpEF)12. As nitrosative stress 

stemming from alterations in various NOS sources has been identified as critical driver of 

HFpEF and diastolic dysfunction13, 14, improving NOS coupling through enhanced 

tetrahydrobiopterin availability, as observed in the present study, suggests a potential, 

novel, mode-of-action of SGLT-1/2i in HFpEF. Clinical trials for SGLT-2i in HFpEF 

patients are ongoing and will soon reveal if there is room for  SGLT-2i in this prevalent 

syndrome 15, 16. 

The suggested mechanisms of Canagliflozin and SGLT-1 inhibition trough AMPK 

signalling is intriguing and points to a metabolic regulation of cardiomyocyte biology by 

this drug.  The authors identify fluctuation of cellular energy stores (ADP/ATP ratio) as 

the link between SGLT-1 and AMPK activation indicating a notable and sustained glucose 

influx into human cardiomyocytes via SGLT-1. Despite recent studies in human and 

mouse hearts suggest that the contribution of SGLT-1 as glucose transporter is liminal in 

healthy heart 17, evidence from preclinical studies have shown an increase in myocardial 

glucose uptake through SGLT-1 in T2D 18.  Collectively, this evidence beg for a in depth 

characterization of SGLT-1 expression and function in diseased human hearts. 

In conclusion, Kond et al provided evidence in support of Canagliflozin improving NOS 

coupling and NADPH oxidase activity through SGLT-1/AMPK/Rac1-GTP signaling in the 

heart. The authors should be congratulated for their work which suggests a novel role of 

SGLT-1i in regulating myocardial redox signaling and puts SGLT-1 in the spotlight of 

SGLTs research. 
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Figure legend 

Schematic depicting the potential, still partly unknown, mode of actions of Canagliflozin 

in cardiomyocytes as suggested by this work.  
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