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SUMMARY

Single-cell genomics provides unprecedented potential for research on plant development and environmen-

tal responses. Here, we introduce a generic procedure for plant nucleus isolation combined with nanowell-

based library preparation. Our method enables the transcriptome analysis of thousands of individual plant

nuclei. It serves as an alternative to the use of protoplast isolation, which is currently a standard methodol-

ogy for plant single-cell genomics, although it can be challenging for some plant tissues. We show the appli-

cability of our nucleus isolation method by using different plant materials from different species. The

potential of our single-nucleus RNA sequencing method is shown through the characterization of transcrip-

tomes of seedlings and developing flowers from Arabidopsis thaliana. We evaluated the transcriptome

dynamics during the early stages of anther development, identified stage-specific activities of transcription

factors regulating this process, and predicted potential target genes of these transcription factors. Our

nucleus isolation procedure can be applied in different plant species and tissues, thus expanding the toolkit

for plant single-cell genomics experiments.

Keywords: single-nucleus isolation, snRNA-seq, Arabidopsis thaliana seedlings, flower development, anther,

technical advance.

INTRODUCTION

The fundamental units of life, cells, can vary tremendously

within an organism. The analysis of specialized cells and

their interactions is essential to develop a comprehensive

understanding of the functions of tissues and biological

systems in general. Major biological processes such as

growth, development, and physiology ultimately gain plas-

ticity from heterogeneity in cellular gene expression (Fis-

cher et al., 2019).

Without precise transcriptional maps of different cell

populations, we cannot accurately describe all their func-

tions and the underlying molecular networks that drive

their activities. Recent advances in single-cell RNA

sequencing (scRNA-seq) and in particular single-nucleus

RNA sequencing (snRNA-seq) have put the establishment

of comprehensive, high-resolution reference transcriptome

maps of mammalian cells and tissues on the agenda of

international consortia such as the Human Cell Atlas

(Regev et al., 2017).

Similar efforts are made by the Plant Cell Atlas consor-

tium (Rhee et al., 2019). Plant tissues and cells pose speci-

fic challenges compared to mammalian systems (Efroni

and Birnbaum, 2016). Plant cells are immobilized in a rigid

cell wall matrix, which must be removed to isolate single

cells. Additional technical demands include size variability

of plant cells and the presence of plastids and vacuoles.

Consequently, these characteristics require considerably

different operational procedures compared with mam-

malian tissues. Recently, plant scRNA-seq studies using

protoplast isolation (PI) have been published (e.g., Denyer

et al., 2019; Efroni et al., 2015, 2016; Jean-Baptiste et al.,
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2019; Nelms and Walbot, 2018; Ryu et al., 2019; Shulse

et al., 2019; Zhang et al., 2019). This procedure enables the

identification and classification of plant cell types. How-

ever, it is known that enzymatic digestion of plant cell

walls can introduce artifacts at the transcriptome level, lim-

iting the applicability of this approach (Jean-Baptiste et al.,

2019; Shulse et al., 2019). Approaches based on nucleus

isolation offer an alternative approach (Thibivilliers et al.,

2020).

Several methodologies are available for the generation

of RNA-seq libraries from isolated cells or nuclei. Two of

the most popular are droplet-based (e.g., 10x Chromium)

and nanowell-based (e.g., Takara ICELL8) systems. Droplet-

based methods are popular because of their scalability.

They enable rapid processing of thousands of cells simul-

taneously. Particularly in the Chromium system, gel beads

are supplied with a unique barcoded oligonucleotide. Cells

or nuclei are encapsulated together with these beads and

lysed, and the gel bead releases the barcoded oligonu-

cleotide for reverse transcription (RT). RT is performed

inside droplets and the product is transferred to a tube

where amplification of cDNA occurs. One disadvantage is

that, in some events, more than one cell or nucleus enters

the same capsule, producing a mixed cDNA population

(Lareau et al., 2020). Nanowell-based systems trap the iso-

lated cells or nuclei in wells where the cDNA is produced.

In particular, the ICELL8 system consists of a chip with

more than 5000 nanowells containing barcoded oligonu-

cleotides attached to their surface. Each cell or nucleus is

deposited in a nanowell and its quality and number are

checked by microscopy, which reduces the probability of

obtaining transcriptomes from more than one cell/nucleus.

One of the main disadvantages of nanowell systems is

their more limited scalability, as each chip has a fixed

number of nanowells. However, it is crucial to continue

enriching and improving the repertoire of single-cell omics

methodologies available for the plant research community.

Here, we introduce a single-nucleus sequencing protocol

using the nanowell-based ICELL8 system by studying the

dynamics of Arabidopsis transcriptomes during flower

development. Working with nuclei has the advantage of

eliminating organelles and vacuoles, as well as secondary

metabolites localized in the cytoplasm that can interact

with RNA and negatively affect next-generation sequenc-

ing (NGS) library preparation.

RESULTS AND DISCUSSION

Nucleus isolation and snRNA-seq library preparation

While PI-based methods have been shown to readily iden-

tify plant cell types, it is also known that they can lead to

changes in gene expression and different cell types may

be affected in different degrees (Jean-Baptiste et al., 2019;

Shulse et al., 2019; Thibivilliers et al., 2020). To address

this issue, PI-responsive genes can be identified through

an independent bulk RNA-seq experiment and subse-

quently eliminating them from the scRNA-seq analysis

(Denyer et al., 2019). However, we show that the impact of

PI cannot be completely eliminated in this way (Figure S1).

Here, we propose an snRNA-seq strategy for the tran-

scriptome sequencing of individual plant nuclei (Fig-

ure 1a); full protocol in Experimental Procedures). The key

step of our plant nucleus sequencing procedure consists of

gentle but efficient isolation of plant nuclei. Snap-frozen

Arabidopsis tissue is gently physically dissociated by pes-

tle and transferred to Honda buffer for cell lysis (Moreno-

Romero et al., 2017). Cell walls and cell membranes are

mechanically disrupted using a gentleMACS Dissociator,

keeping the nuclei largely intact, as observed by DAPI

staining (Figure S2a). Released intact Arabidopsis nuclei

are collected using fluorescence-activated cell sorting

(FACS; Figure S2b). A clear separation between nuclei and

debris was obtained (Figure S2c). To show the applicability

of this method to different plant species/tissues, we per-

formed nucleus isolation in Arabidopsis thaliana (seedlings

and flowers), Petunia hybrida (flowers), Antirrhinum majus

(flowers), and Solanum lycopersicum (flowers and leaves)

(Figure S2a,b). The RNA that was isolated from these

nuclei was of high quality, as observed by electrophoresis

for Arabidopsis (Figure S2d).

The next step consists of generating high-quality cDNA

libraries from the isolated nuclei. There are a number of

different library preparation protocols and sequencing pro-

cedures that can be combined (Cao et al., 2017; Denyer

et al., 2019). We opted for the Takara ICELL8 system, a sen-

sitive nanowell-based approach that includes standardized

lysis of nuclei by detergents and a freeze-thaw cycle

(Goldstein et al., 2017). One of the main advantages of this

system is that it allows for manual selection of single-

nucleus-containing wells, as well as the visual inspection

and selection of intact nuclei, thereby introducing addi-

tional quality control. Using SMARTer ICELL8 30 chemistry,

we prepared DNA libraries for short paired-end sequencing

using fresh, snap-frozen Arabidopsis seedlings.

snRNA-seq performance in Arabidopsis seedlings

To establish the method, we used 10-day-old A. thaliana

seedlings. Seedlings feature diverse plant structures,

including the primary root, hypocotyl, and cotyledons. This

allowed us to evaluate the ability of the method to recover

the transcriptomes of diverse tissue types and to know if

we could apply this method to each of these tissue types

in one single experiment. A total of 3348 nuclei were

obtained from three biological replicates, with an average

of 2802 expressed genes per nucleus and more than 90%

of their reads mapped to the reference genome. More than

92% of the nuclei were found with less than 5% mitochon-

drial reads (Figure S3), indicating a very low level of

© 2021 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2021), 108, 859–869

860 Daniele Y. Sunaga-Franze et al.



damaged nuclei. See Data S1 for more detailed statistics of

the read mapping step. A Pearson correlation coefficient of

0.9 was observed among the biological replicates,

indicating high reproducibility of the method (Figure S4a,b).

A good reproducibility was also observed between

snRNA-seq and bulk RNA-seq (Pearson correlation of 0.74,
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Figure 1. Single-nucleus RNA sequencing. (a) Schematic overview of snRNA-seq experimental strategy. (b) UMAP plot and clustering analysis of Arabidopsis

seedling samples (three biological replicates, 12 clusters, 2871 nuclei in total). (c) Barplot showing a similar proportion of nuclei per cluster across the three

replicates (the color code used to identify clusters is the same in panels (b) and (c)). (d) Correlation (R = 0.74) between snRNA-seq and bulk RNA-seq (both with

three biological replicates), indicating that snRNA-seq is able to recover similar transcriptomes as bulk RNA-seq
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Figure 1d), even though snRNA-seq data comprise the

nuclear transcriptome while bulk RNA-seq data comprise

the nuclear and cytoplasmic transcriptome. This indicates

that the method is able to recover the general transcript

abundance present in the bulk RNA-seq data. To further

characterize any bias introduced by our method, we per-

formed gene ontology enrichment analysis on the genes

differentially expressed between snRNA-seq and bulk

RNA-seq data (Figure S5). No stress-related terms were

found enriched; however, we detected the enrichment of

terms related with plastid-localized proteins. Because a

large fraction of genes encoding plastid-localized proteins

are intron-less, we speculate that this difference in expres-

sion may be produced by the difference in splicing effi-

ciency: genes with no or few introns are transported to the

cytoplasm and depleted from the nucleus faster than genes

with more introns (Boeri et al., 2011). Indeed, we observed

a strong link between the number of introns and differen-

tial abundance in nuclei versus bulk RNA-seq data (Fig-

ure S5b,c). The integrated analysis of the three seedling

datasets by Seurat revealed 12 major clusters (Figure 1b).

A similar proportion of nuclei from each annotated cluster

was observed across the three replicates, again indicating

the good reproducibility of the method (Figure 1c). To

annotate the major tissue types enriched in each cluster,

we first obtained the top 20 marker genes of each cluster

(Table S2). Then, the expression of these marker genes

was characterized using a set of plant organ-specific bulk

RNA-seq datasets (Figure S6) and by plotting the expres-

sion of the identified marker genes (see Figure S7 for some

examples). For example, cluster 11 shows the highest sig-

nal in Transcriptome Variation Analysis Database (Tra-

VaDB) root samples, and was therefore labeled as ‘roots’.

Since seedlings comprise a large diversity of cell and tis-

sue types, for many of which no cell-type-specific tran-

scriptome data are available, we did not pursue a

comprehensive annotation of this dataset. Instead, consid-

ering that the majority of published plant scRNA-seq

experiments are focused on roots, we investigated the

ability of our method to recover the main root cell types

from the seedling dataset. A subset of 980 nuclei identi-

fied as ‘root’ in our seedling dataset (Figure 1b) were

further analyzed. Fourteen clusters were identified (Fig-

ure S8a). A clear overlap was found between the top 20

marker genes of each cluster (Table S2) and the top 500

markers identified in a previous scRNA-seq study of root

(Denyer et al., 2019, Figure S8b). For example, 55% of

the markers from cluster 8 overlapped with the markers

of cluster ‘10-Trichoblast’ from Denyer’s study. No over-

lap bigger than 10% was found with any other cluster,

leading us to infer cluster 8 is a cluster of trichoblasts.

This result shows that, despite the small number of

nuclei (980) compared to 4727 cells from the compre-

hensive root atlas (Denyer et al., 2019), we were able to

recover the main root cell types and this approach can

be used to investigate subsets of cells within complex

samples like seedlings.

Similarity between snRNA-seq data generated from fixed

and unfixed plant material

To allow for more technical flexibility in our method, i.e.,

the possibility to simplify the storage of plant samples and

maintain in situ expression states (Alles et al., 2017), we

fixed seedlings using methanol directly after harvesting

and performed snRNA-seq as described before (see Data

S1 and Figure S3 for the read statistics). After quality con-

trol filtering, we obtained a similar number of nuclei (850)

and an average number of expressed genes (2292) when

using methanol fixation compared to no fixation (1116

nuclei and 2802 genes). A similar nucleus distribution was

also observed between fixed and non-fixed samples (Fig-

ure S9a). Additionally, an expression correlation of 0.88

and a P-value of <2.2e�16 was observed among both

groups of samples (Figure S9b,c), indicating that fixation

of the material does not introduce major differences in the

number of nuclei and obtained cell types. A good repro-

ducibility was also observed between snRNA-seq of fixed

samples and bulk RNA-seq (Pearson correlation of 0.80,

Figure S9d).

snRNA-seq performance in Arabidopsis inflorescences

To evaluate the performance of snRNA-seq to study cell dif-

ferentiation, we applied snRNA-seq to A. thaliana inflores-

cences, which cover all stages of flower development prior

to anthesis. After quality control filtering, we obtained tran-

scriptomes of 856 nuclei with an average of 2967 expressed

genes per nucleus (Figure S10a). The analysis identified 16

clusters corresponding to distinct organs and developmen-

tal stages (Figure 2a; Figure S10c). To annotate these clus-

ters with particular cell, tissue, and organ types, we first

identified specific marker genes of each cluster (Table S2)

and then plotted their expression profiles in the different

floral organs and developmental stages obtained from Tra-

VaDB (Figure 2b) as well as in tissue-specific shoot apical

meristem RNA-seq data (Yadav et al., 2014, Figure S11).

Last, we correlated the gene expression of each cluster with

each TraVaDB sample and indicated these values in the

UMAP plot (Figure S10c). A major proportion of clusters

(37% of the nuclei) were annotated as differentiating

anthers at different developmental stages (clusters 0, 3, 4, 6,

7, 10, 15). This can be explained by the fact that anthers

comprise a large fraction of tissues (G�omez et al., 2015;

Smyth et al., 1990) in developing flowers. Furthermore,

anther/pollen has very specific gene expression profiles

(G�omez et al., 2015; Smyth et al., 1990), which may facili-

tate the computational identification of the clusters. Our

data captured gene expression dynamics during anther/pol-

len development from undifferentiated stem cells (cluster 0;
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Figure 2a) to late anther stages close to organ maturity,

prior to anthesis (cluster 3; Figure 2a). This led us to use

Monocle 3 to estimate the pseudotime of each anther cell

(Figure S13c). When we plotted the average pseudotime of

the cells of each anther cluster against the developmental

time of each cluster obtained with TraVaDB annotation (Fig-

ure S13d), we observed a strong concordance with anther

developmental stages. This concordance indicates that the

estimated pseudotime of each cell can be used as a proxy

of its developmental stage and consequently to study tran-

scriptional dynamics of anther differentiation.

Gene regulatory trajectories of anther development

We used GENIE3 (Huynh-Thu et al., 2010) to show the uti-

lization of the snRNA-seq data to infer the dynamics of gene

regulatory networks (GRNs) during plant development. We

reconstructed the GRNs for all clusters that were identified

as anthers and estimated the strength of interactions

between known transcription factors (TFs) versus all

expressed genes. For example, Figure 2d shows the GRN

for cluster 15, representing an early anther stage. In our

analysis, one of the main master TF genes (with most inter-

actions) was ABORTED MICROSPORES (AMS), which

encodes a known regulator of anther development. When

the regulatory dynamics of this TF was investigated in more

depth using our data, we found that predicted targets of

AMS and the related TF genes bHLH089, bHLH091, and

bHLH010 (Xu et al., 2010; Zhu et al., 2015) were expressed

in a highly dynamic manner (Figure 2c,d). AMS target genes

at early stages were functionally enriched in chromatin remod-

eling (e.g., BRAHMA and SET DOMAIN PROTEIN 16) and pol-

len development (DIHYDROFLAVONOL 4-REDUCTASE-LIKE1

and ATP-BINDING CASSETTE G26) (Figure 2e). Late targets

included metabolic enzymes as well as genes associated with

RNA regulatory processes. Newly identified marker genes

covered the full anther developmental trajectory and are can-

didates for further mechanistic analyses.

Validation of cell type marker genes

To validate the clustering analysis and dynamic anther

transcriptome trajectory, we assessed the expression pat-

terns of genes using promoter::NLS-GFP reporter lines

(NLS stands for ‘nuclear localization signal’). We selected

10 previously uncharacterized genes predicted to be specif-

ically or preferentially expressed in one of the clusters:

AT1G63100, AT3G51740, AT1G54500, AT4G11290, AT5G08250,

AT5G20030, AT2G16750, AT1G23520, AT3G05570, and

AT2G38995. Eight out of the 10 selected genes showed a

specific expression in line with the predictions (Figure 3,

Figure S14). Specific expression in the floral meristem and

young organ primordia was observed for the genes

AT1G63100 and AT3G51740 from cluster 11 (Figure 3b,c,

Figure S15e,h). The gene AT4G11290, from cluster 14,

showed highly specific expression in the stigma (Figure 3e,

Figure S15g), while AT2G38995 from cluster 8 showed

epidermis-specific expression and was preferentially

expressed in sepals rather than other organs in young

flowers (such as flower 15 and flower 16, TraVaDB nomen-

clature) (Figure 3c, Figure S15f). Additionally, its expres-

sion spreads to epidermis of petals, stamens, and carpels

in old flowers (such as flower 4 and flower 5) (Figure S15f).

The genes AT5G20030, AT5G08250, AT1G23520 and

AT2G16750 were found expressed in anthers and showed

stage-specific expression as predicted by our analysis

shown in Figure 2 (Figure 3f–i, Figure S15a–d). Gene

AT5G08250 from cluster 7, the first cluster of anther lin-

eage, showed very strong expression in young anthers

from flower 16 to flower 18 (TraVaDB nomenclature; Fig-

ure 3f, Figure S15a); AT5G20030 from cluster 15, which is

an ‘intermediate anther’ cluster, showed a peak in expres-

sion in flower 12 (Figure 3g, Figure S15b). AT2G16750,

from cluster 6, was found strongly expressed in older

anthers in flower 10 and flower 11 (Figure 3h, Figure S15c).

Finally, AT1G23520 from cluster 3, the last cluster of anther

lineage, was found expressed in old anthers in flower 6 to

flower 8 (Figure 3i, Figure S15d). On the other hand,

AT1G54500 was expressed in sepal primordia and develop-

ing sepals (Figure 3d), indicating that it is not specific to

meristems as predicted for cluster 5. AT3G05570, from

cluster 6, was not found expressed in any specific tissue.

Conclusions

Although the PI procedure may affect the plant transcrip-

tome (Figure S1), it has been the main choice for plant

single-cell sequencing and has been mostly applied to root

samples (Denyer et al., 2019; Jean-Baptiste et al., 2019; Ryu

et al., 2019; Shulse et al., 2019; Zhang et al., 2019). Here, we

introduced a procedure for plant nuclei isolation that is

applicable to different plant tissues and organs such as

flowers and leaves, and thus provides a versatile tool for

plant single-cell omics. Working with nuclei has the overall

advantages of (i) eliminating the dissociation-induced tran-

scriptional responses, (ii) the compatibility with frozen sam-

ples, and (iii) the possibility to carry out RNA-seq from

individual cells to study cell types, like neurons, in which it

is very difficult to recover intact cells (Bakken et al., 2018;

Grindberg et al., 2013; Wu et al., 2019). More specifically,

for plants, the advantages of using nuclei include (i) the elimi-

nation of the need to lyse the cell wall and (ii) the elimination

of organelles and vacuoles. As disadvantage, working with

nuclei decreases the amount of RNA per individual cell and

consequently reduces the sensitivity of transcript detection.

Additionally, snRNA-seq cannot be used to study transcrip-

tomes of cells without nucleus (i.e., dividing cells without

nuclear membrane or some specific vascular tissue types),

nor the translocation of transcripts from one cell to another.

Reporter gene analysis based on promoter fusion to a

reporter gene (e.g., GFP) measures promoter activity
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without considering post-transcriptional regulatory pro-

cesses such as nuclear export, splicing, transcript degrada-

tion, or translational efficiency. Besides, it can be

challenging to select a genomic region that contains all

regulatory elements for correct spatiotemporal expression

of a gene. RNA fluorescence in situ hybridization experi-

ments could be performed to further validate the results.

Nanowell-based library preparation offers the possibility

of visual quality control of individual nuclei, to achieve

high numbers (several thousand) of genes per cell and

more than a thousand nuclei per run to sensitively detect

plant cell (sub-)types. The number of nuclei can potentially

be upscaled by using denser and/or larger nanowell

formats to further increase the number of nuclei for

sequence analysis. The nanowell-based approach resulting

in deep cellular transcriptome data is of particular advan-

tage to identify co-regulated genes and decipher gene net-

works underlying biological processes of interest. Along

with the ever-growing range of nucleic acid sequencing

technologies and plant genomics reference databases,

single-nucleus genomics procedures are expected to

become valuable tools to build maps of all plant cells of

developing and adult tissues and to measure cell-type-

specific differences in environmental responses to gain

novel mechanistic insights into plant growth and physiol-

ogy (Rhee et al., 2019).
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Figure 3. Validation of cluster-specific marker genes with nucleus-targeted GFP reporter lines. (a) Summary of expression specificity validation of selected mar-

ker genes. Green dots indicate positive and gray dots indicate negative GFP signals at particular developmental stages or flower organs. Flower numbers (F6–
F18) are based on TraVaDB nomenclature; flower developmental stages (S8–S11) are based on Smyth et al., 1990. (b) AT1G63100, Meristem. (c) AT2G38995,

Sepal. (d) AT1G54500, Sepal. (e) AT4G11290, Stigma. (f) AT5G08250, anther from flower 16. (g) AT5G20030, anther from flower 12. (h) AT2G16750, anther from

flower 11. (i) AT1G23520, anther from flower 7. More confocal images are shown in Figure S15. White arrowheads indicate exemplary GFP signals. Scale bars,

50 lm.

© 2021 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2021), 108, 859–869

snRNA-seq in plants 865



EXPERIMENTAL PROCEDURES

Preparation of plant tissues

Plants were grown under long-day conditions (16 h light, 8 h dark)
at 22°C in a growth chamber. One gram of 10-day-old A. thaliana
(Col-0) seedlings growing on ½ MS medium with 1% sucrose or
10 inflorescences from A. thaliana growing on soil were collected
and snap-frozen in liquid nitrogen at day time. The same proce-
dure was applied for the following samples to test the nucleus iso-
lation pipeline: 10 unopened buds of P. hybrida (W115), eight
unopened buds of A. majus, and 20 fully developed flowers and
1.3 g of leaves of S. lycopersicum.

The biological replicates of A. thaliana seedlings for snRNA-seq
were grown and collected independently on different dates. The
three biological replicates of A. thaliana seedlings for bulk RNA-seq
were grown on different plates and harvested in parallel at once.

Preparation of nuclei

Frozen tissue was carefully crushed to small pieces in liquid nitro-
gen using a mortar and pestle and transferred to a gentleMACS M
tube (Miltenyi Biotec, https://www.miltenyibiotec.com) that was
filled with 5 ml of Honda buffer (2.5% Ficoll 400, 5% Dextran T40,
0.4 M sucrose, 10 mM MgCl2, 1 µM DTT, 0.5% Triton X-100, 1 tablet/
50 ml cOmplete Protease Inhibitor Cocktail (Roche, https://www.
roche.com), 0.4 U µl�1 RiboLock (Thermo Fisher Scientific, https://
www.thermofisher.com/), 25 mM Tris-HCl, pH 7.4). This buffer com-
position enables efficient lysis of cell membranes while keeping
the nuclear membranes intact (Moreno-Romero et al., 2017). The
M tubes were placed onto a gentleMACS Dissociator (Miltenyi Bio-
tec, https://www.miltenyibiotec.com) and a specific program
(Table S1) was run at 4°C to disrupt the tissue and to release nuclei.
The resulting suspension was filtered through a 70-µm strainer and
centrifuged at 1000 g for 6 min at 4°C. The pellet was resuspended
carefully in 500 µl Honda buffer, filtered through a 35-µm strainer,
and stained with 39 staining buffer (12 µM DAPI, 0.4 U µl�1 Ambion
RNase Inhibitor (Thermo Fisher Scientific, https://www.thermof
isher.com), 0.2 U µl�1 SUPERaseIn RNase Inhibitor (Thermo Fisher
Scientific, https://www.thermofisher.com) in PBS). Nuclei were
sorted by gating on the DAPI peaks using a BD FACS Aria III (BD
Biosciences, https://www.bdbiosciences.com) (200 000–400 000
events) into a small volume of landing buffer (4% BSA in PBS, 2 U
µl�1 Ambion RNase Inhibitor, 1 U µl�1 SUPERaseIn RNase Inhibi-
tor). Sorted nuclei were additionally stained with NucBlue from the
Invitrogen Ready Probes Cell Viability Imaging Kit (Thermo Fisher
Scientific, https://www.thermofisher.com, Blue/Red) and then
counted and checked for integrity in Neubauer counting chambers.
Quality of RNA derived from sorted nuclei was analyzed by an Agi-
lent TapeStation using RNA ScreenTape (Agilent, https://www.a
gilent.com) or alternatively by Agilent’s Bioanalyzer 2100 system
(Agilent, https://www.agilent.com). The seedling nuclei for the
three biological replicates for snRNA-seq were isolated and FACS-
sorted independently at different dates.

The procedures took approximately 6 min for gentleMACS dis-
sociation, 6 min for centrifugation, approximately 10 min for
FACS sorting, and approximately 10 min for nucleus counting, so
together with other operations, the whole procedure of nucleus
isolation should be completed within 40 min.

Preparation of single-nucleus libraries using SMARTer

ICELL8 single-cell system

The suspension of NucBlue and DAPI co-stained single nuclei
(60 nuclei µl�1) was distributed to eight wells of a 384-well source

plate (Takara, https://www.takarabio.com) and then dispensed into
a barcoded SMARTer ICELL8 30 DE Chip (Takara, https://www.taka
rabio.com) by an ICELL8 MultiSample NanoDispenser (MSND,
Takara, https://www.takarabio.com). Chips were sealed and cen-
trifuged at 500 g for 5 min at 4°C. Nanowells were imaged using
an ICELL8 Imaging Station (Takara, https://www.takarabio.com).
After imaging, the chip was placed in a pre-cooled freezing cham-
ber which was stored at �80°C for at least 2 h. CellSelect software
was used to support the identification of nanowells that contained
a single nucleus. One chip yielded on average between 800 and
1200 nanowells with single nuclei. These nanowells were selected
for subsequent targeted deposition of 50 nl RT-PCR reaction mix
from the SMARTer ICELL8 30 DE Reagent Kit (Takara, https://www.
takarabio.com) per nanowell using the MSND. After RT and ampli-
fication in a Chip Cycler, barcoded cDNA products from nanowells
were pooled by means of the SMARTer ICELL8 Collection Kit
(Takara, https://www.takarabio.com). cDNA was concentrated
using the Zymo DNA Clean & Concentrator kit (Zymo Research,
https://www.zymoresearch.com) and purified with AMPure XP
beads (Beckman Coulter, https://www.beckman.de). Afterwards,
cDNA was used to construct Nextera XT (Illumina, https://www.illu
mina.com) DNA libraries followed by AMPure XP bead purifica-
tion. A Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific,
https://www.thermofisher.com), a KAPA Library Quantification Kit
(Kapa Biosystems, Roche, https://www.roche.com) for Illumina
Platforms, and the Agilent High Sensitivity D1000 ScreenTape
Assay (Agilent, https://www.agilent.com) were used for library
quantification and quality assessment. Strand-specific RNA
libraries for sequencing were prepared with TruSeq Cluster Kit v3
(Illumina, https://www.illumina.com) and sequenced on an Illu-
mina HiSeq 4000 instrument (Illumina, https://www.illumina.com,
PE100 run).

Preparation of bulk RNA-seq libraries

Five 10-day-old A. thaliana seedlings were collected into 1.5-ml
screw-cap tubes with five glass beads, pre-cooled in liquid nitro-
gen. Samples were homogenized by adding one half of the TRI-
Reagent (Sigma-Aldrich, https://www.sigmaaldrich.com, 1 ml per
100 mg) to each sample following sample disruption using a Pre-
cellys 24 Tissue Homogenizer (Bertin, https://www.bertin-instrume
nts.com) instrument for 30 sec at 4000 rpm. After homogeniza-
tion, total RNA was extracted by adding the second half of the
TRI-Reagent and the manufacturer’s protocol was followed. To
remove any co-precipitated DNA, DNase-I digestion was per-
formed using 1 U DNase-I (NEB, https://international.neb.com) in
a total volume of 100 µl. Total RNA was cleaned up by LiCl precip-
itation using 10 µl 8 M LiCl and 3 volumes 100% ethanol and over-
night incubation at �20°C, followed by centrifugation at 4°C and
17 900 g for 30 min and two washing steps with 70% ethanol. The
RNA pellet was dried on ice for 1 h, resuspended in 40 µl DEPC
water, and incubated at 56°C for 5 min. Quality of total RNA was
analyzed by an Agilent TapeStation using RNA ScreenTape (Agi-
lent, https://www.agilent.com). Concentration was measured by a
Qubit RNA BR Assay Kit (Thermo Fisher Scientific, https://www.
thermofisher.com). One microgram of total RNA was used for
RNA library preparation with the TruSeq� Stranded mRNA Library
Prep kit (Illumina, https://www.illumina.com), following the manu-
facturer’s protocol. Quality and fragment peak size were checked
by a TapeStation using D1000 ScreenTape (Agilent, https://www.a
gilent.com). Concentration was measured by the Qubit dsDNA BR
Assay Kit (Thermo Fisher Scientific, https://www.thermofisher.c
om). Three replicates, composed of five seedlings each, were used
separately throughout the whole procedure. Strand-specific RNA
libraries were prepared using the TruSeq Stranded mRNA library
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preparation procedure and the three replicates were sequenced
on an Illumina NextSeq 500 instrument (Illumina, https://www.illu
mina.com, PE75 run). The three biological replicates of bulk RNA-
seq libraries were generated independently in parallel at once.

Data pre-processing

Raw sequencing files (bcl) were demultiplexed and fastq files were
generated using Illumina bcl2fastq software (v2.20.0). The
command-line version of the ICELL8 mappa analysis pipeline (de-
muxer and analyzer v0.92 with STAR v2.7.2a) was used for data
pre-processing and read mapping. Mappa_demuxer assigned the
reads to the cell barcodes present in a pre-defined list of barcode
sequences. Read trimming, genome alignment (A. thaliana
reference genome: TAIR10), counting, and summarization were
performed by mappa_analyzer with default parameters. mappa_-
analyzer generates a gene matrix containing the gene counts for
each barcode, with the genes in the rows and barcodes/cells in
the columns. Each entry in the matrix is an expression value rep-
resenting the expression of a gene (i) for a barcode/cell (j). An
html report containing the read statistics for each snRNA-seq
library, including the number of reads per cell, reads mapped to
the reference genome, and numbers of exons, introns, and inter-
genic, ribosomal, and mitochondrial reads, was created using
hanta software from the ICELL8 mappa analysis pipeline
(Data S1).

Quality control and data analysis

The analysis started by removing reads with barcodes represent-
ing the negative and positive controls included in all Takara Bio
NGS kits. For the seedling samples, only genes encoded in the
nucleus were used. Seurat v3 (Butler et al., 2018; Stuart et al.,
2019) was used to filter viable nuclei by removing (i) genes
detected in less than three nuclei and (ii) nuclei with less than 200
genes. The Seurat SCTransform normalization method was per-
formed for each one of the seedling replicates separately. Data
from three seedling replicates were integrated using PrepSCTInte-
gration, FindIntegrationAnchors, and IntegrateData functions.
After running RunPCA (default parameters), we performed UMAP
embedding using runUMAP with the following parameters:
dim=1:12, n.neighbors=10, min.dist=.1, metric="correlation". Clus-
tering was done with the FindNeighbors (default parameters) and
FindClusters functions using the smart local moving (SLM) algo-
rithm, resolution=0.1, and n.iter=100. Differentially expressed
genes were found using the FindAllMarkers function and the ‘wil-
cox’ test with logfc.threshold=0.25 and min.pct=0.25. The sub-
clustering analysis of roots was performed using the subset func-
tion and the seedling clusters containing root cells (clusters 3, 5,
6, 8, 10, and 11; Figure 1b). SCTransform, RunUMAP, FindNeigh-
bors, and FindClusters with dims=1:10 and resolution=1 (other
parameters as previously indicated) were re-run after sub-setting
the data and FindAllMarkers was applied to the RNA assay (nor-
malized counts) to find the differentially expressed genes across
the sub-clusters with the ‘wilcox’ test, with logfc.threshold=0.25.
For the analysis of fixed seedling samples, we used the same Seu-
rat parameters used for the unfixed samples.

For the analysis of flower snRNA-seq samples (900 nuclei), only
nuclear genes were used. Nuclei with (i) less than 10 000 reads,
(ii) less than 500 genes containing 10 reads, or (iii) at least one
gene covering more than 10% of the reads of a particular nucleus
were filtered out. In addition, genes with less than 10 reads in at
least 15 nuclei were also removed. The filtering step resulted in a
dataset containing 856 nuclei and 14 690 genes. Seurat SCTrans-
form normalization was applied to the filtered data using all genes

as variable.features with method=‘nb’ and min_cells=5. We used
the JackStraw function in Seurat to estimate the optimal number
of PCAs to be used in the analysis (Figure S10b). After calculating
the first 12 PCAs with RunPCA, we performed UMAP embedding
using runUMAP with parameters n.neighbors=10, min.dist=.1,
metric=“correlation”, and umap.method=“umap-learn”. Clustering
was done with FindNeighbors (default parameters) and FindClus-
ters function using the SLM algorithm, resolution=1.15, and
n.iter=100. Markers genes were found with the function
FindAllMArkers using the ‘wilcox’ test and min.pct=0.25.

Annotation

Annotation of the seedling and flower clusters was performed by
visualizing the expression of the top 20 marker genes of each clus-
ter on tissue- and stage-specific transcriptomes of TraVaDB (http://
travadb.org, Klepikova et al., 2016). For the annotation of the
flower clusters, the floral-meristem-specific expression datasets
from (Tian et al., 2019) and from (Yadav et al., 2014) were also
used.

Reproducibility and correlation

To assess the reproducibility of our method, we compared the
pooled number of reads overlapping each gene of each seedling
replicate against one another in log2 space. The same was done to
verify the similarity between unfixed and fixed seedling datasets.

The correlation between bulk and snRNA-seq datasets (with
three biological replicates in each dataset) was investigated by
comparing the average number of reads overlapping each gene in
the snRNA-seq against bulk RNA-seq datasets. Expression of bulk
RNA-seq data was quantified with RNA-seq with RSEM tool (Li
and Dewey, 2014).

Network analysis

GENIE3 (Huynh-Thu et al., 2010) was used to infer gene networks
starting from the normalized expression data obtained from Seu-
rat for each cluster independently with parameter nTrees=1000
and using the list of DNA-binding proteins obtained from TAIR
(www.arabidopsis.org) as regulators. Genes expressed in less
than 33% of the nuclei in a particular cluster were removed. Only
the top 10 000 interactions were kept. DNA-binding proteins with
less than 10 predicted targets were also removed. Dynamics of
the gene network through anther development were obtained by
the following approach. First, all nuclei were ordered by their esti-
mated developmental pseudotime using Monocle 3 (Trapnell
et al., 2014) and using cluster 0 (meristem/early anther) as root
cluster. Second, gene networks were estimated with GENIE, as
described previously, using groups of non-overlapping sets of 50
nuclei that were previously ordered by their developmental pseu-
dotime.

Generation and confocal imaging of reporter lines

To validate expression specificity of the marker genes from our
snRNA-seq approach, promoter::NLS-GFP reporter lines were gen-
erated. The marker genes for validation were chosen from the
pool of cluster-specific marker genes (P < 0.05) that were not pre-
viously characterized in the literature (unknown marker genes).
The genomic promoter region upstream of the ATG and until the
closest neighboring gene was amplified by PCR and introduced
into the entry vector pCR8:GW:TOPO by TA cloning (primers used
for PCR are listed in Table S3). The LR reactions were performed
with the binary vector pGREEN:GW:NLS-GFP (Smaczniak et al.,
2017) to generate GFP transcriptional fusions to an NLS peptide.
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All reporter constructs were transformed into the A. thaliana Col-0
background, and multiple independent lines per construct were
analyzed under a Zeiss LSM800 laser-scanning confocal micro-
scope. Different floral organs were dissected and screened for the
GFP signal by confocal microscopy under 209 and 639 magnifica-
tion objectives. Auto-fluorescence from chlorophyll was observed
to give an outline of the flower organs. A 488-nm laser was used
to excite GFP and chlorophyll and emissions were captured using
photomultiplier tubes set at 410–530 and 650–700 nm. Z-stack
screens were performed for the floral meristem and stigma tissues
to give a 3D structure visualization.
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