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Single-cell transcriptomics have revolutionized our understanding of the

cell composition of tumors and allowed us to identify new subtypes of

cells. Despite rapid technological advancements, single-cell analysis remains

resource-intense hampering the scalability that is required to profile a suffi-

cient number of samples for clinical associations. Therefore, more scalable

approaches are needed to understand the contribution of individual cell

types to the development and treatment response of solid tumors such as

esophageal adenocarcinoma where comprehensive genomic studies have

only led to a small number of targeted therapies. Due to the limited treat-

ment options and late diagnosis, esophageal adenocarcinoma has a poor

prognosis. Understanding the interaction between and dysfunction of indi-

vidual cell populations provides an opportunity for the development of

new interventions. In an attempt to address the technological and clinical

needs, we developed a protocol for the separation of esophageal carcinoma

tissue into leukocytes (CD45+), epithelial cells (EpCAM+), and fibrob-

lasts (two out of PDGFRa, CD90, anti-fibroblast) by fluorescence-acti-

vated cell sorting and subsequent RNA sequencing. We confirm successful

separation of the three cell populations by mapping their transcriptomic

profiles to reference cell lineage expression data. Gene-level analysis further

supports the isolation of individual cell populations with high expression

of CD3, CD4, CD8, CD19, and CD20 for leukocytes, CDH1 and MUC1

for epithelial cells, and FAP, SMA, COL1A1, and COL3A1 for fibroblasts.
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As a proof of concept, we profiled tumor samples of nine patients and

explored expression differences in the three cell populations between tumor

and normal tissue. Interestingly, we found that angiogenesis-related genes

were upregulated in fibroblasts isolated from tumors compared with nor-

mal tissue. Overall, we suggest our protocol as a complementary and more

scalable approach compared with single-cell RNA sequencing to investigate

associations between clinical parameters and transcriptomic alterations of

specific cell populations in esophageal adenocarcinoma.

1. Introduction

Esophageal cancer is associated with the sixth-highest

mortality rate of cancer-related deaths and presumed

to be one of the most mortal malignancies worldwide

(Coleman et al., 2018). Over the past decades, there

has been a rapid increase particularly in the incidence

of esophageal adenocarcinoma (EAC) in the Western

world, but despite improvements in perioperative treat-

ments, there is no sufficient therapeutic strategy for

the majority of patients so far (Coleman et al., 2018).

Further, prediction of therapy success is poor and

response to neoadjuvant therapies varies dramatically

ranging from no to complete response (Vallb€ohmer

et al., 2010).

Focus in cancer research has shifted from consider-

ing epithelial cancer cells to analyses of their interac-

tions with different components of the tumor

microenvironment. Particularly, the immune cell popu-

lation has revealed an immense effect on tumor pro-

gression. Today, immune checkpoint blockage is first-

line therapy in several solid neoplasia such as malig-

nant melanoma and non-small cell lung cancer

(NSCLC) (Incorvaia et al., 2019; Spagnolo et al.,

2019). For EAC, several biomarkers in the immune

compartment have been detected, and currently, clini-

cal trials are ongoing to evaluate the safety and effi-

cacy of possible immunotherapies (Tanaka et al.,

2017).

There is also rising evidence for an important

impact of cancer-associated fibroblasts (CAFs) on

tumor biology and disease progression (Shiga et al.,

2015). CAFs are a heterogeneous cell population of

unknown origin that form the stromal part of solid

tumors (Shiga et al., 2015). They release cytokines

(e.g., TGF-b), proteases (e.g., matrix metallopro-

teinases), and growth factors (e.g., VEGF, PDGF)

with various autocrine and paracrine functions that

can enhance tumor growth, neovascularization, and

migration of cancer cells (Kakarla et al., 2012). In sev-

eral cancer types, including colorectal, breast, ovarian,

and head and neck cancer, the presence of CAFs cor-

relates with poor prognosis (Lai et al., 2012; Marsh

et al., 2011; Tsujino et al., 2007; Yamashita et al.,

2012). In esophageal cancer, Wang et al. described

pleiotropic functions in carcinogenesis, proliferation,

angiogenesis, and metastasis (Wang et al., 2016).

Although CAFs obviously influence tumor biology,

they are still poorly characterized. Since targeting

either CAFs or their secreted paracrine factors could

improve therapeutic response, characterization of the

roles of fibroblasts in EAC can help developing clini-

cally effective treatments (Kakarla et al., 2012).

Single-cell transcriptome sequencing (scRNA-seq)

has opened new avenues for the understanding of the

biological role of cell populations, their origins, and

interactions (Ren et al., 2018). Single-cell approaches –
in contrast to bulk tissue sequencing – allow to deter-

mine which cell type is responsible for transcriptomic

changes, which is of fundamental importance for the

understanding of tumor biology. Single-cell RNA

sequencing of colorectal cancers, for example, has

shown that epithelial-to-mesenchymal transition

(EMT) signature genes are upregulated in CAFs and

not in epithelial cells (Li et al., 2017), a phenomenon

that might have gotten misinterpreted as EMT by bulk

sequencing. Hence, a systematic analysis of gene

expression profiles in different tumor cell types of

EAC in comparison with normal esophageal mucosa

will help to understand the role of the interaction

between (cancer associated) fibroblasts, immune cells,

and epithelial tumor cells in carcinogenesis and disease

progression. Single-cell sequencing, however, is still

expensive, limiting the number of clinical samples that

are usually profiled per study. More scalable

approaches for the analysis of individual cell popula-

tions of larger series of tumors are warranted to be

able to identify cell type-specific alterations that are

associated with clinical features. It is therefore desir-

able to develop economic methodologies that allow to

analyze cell types separately but not necessarily on a

single-cell level.
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To address this need, we developed a protocol to

isolate different cell types (epithelial cells, immune

cells, fibroblasts) of endoscopically obtained EAC tis-

sue as well as normal esophageal mucosa and to

sequence the transcriptome of each cell type sepa-

rately. By mapping the transcriptomes to reference tis-

sue expression data, we demonstrate the successful

separation of the three cell types. Further, we explored

the utility of this approach by comparing expression

profiles of esophageal normal mucosa with adenocarci-

noma tissues. Our protocol provides a scalable tool for

the systematic and cost-effective investigation of the

individual cell populations of EAC. It will help to

improve our understanding of pathological processes

and possibly identify novel therapeutic targets in EAC.

2. Methods

2.1. Patients and tumor samples

Fresh tissue samples from nine patients with histologi-

cally confirmed adenocarcinoma of the distal esopha-

gus or the gastroesophageal junction were

prospectively collected between June and December

2018. In six of these patients, both corresponding

tumor and normal esophageal mucosa were taken,

while in one patient only tumor tissue and in two

patients normal mucosa had been biopsied. Processing

and consecutive separation of these samples led to 31

cell populations after FACS sorting with sufficient

yield for further analysis via RNA-seq.

All patients underwent primary staging including

esophagogastroduodenoscopy, endoscopic ultrasound,

and spiral contrast-enhanced computer tomography of

thorax and abdomen within the Department of Gen-

eral, Visceral and Cancer Surgery at the University

Hospital of Cologne. Written informed consent was

obtained from all patients before participating in the

analysis, and the study was approved by the local

Institutional Review Board (Ethics No. 18-274). The

study’s methodologies conformed to the standards set

by the Declaration of Helsinki and its later amend-

ments.

Samples were taken either by endoscopic biopsy (six

samples) or obtained from surgical specimens (three

samples). During endoscopy, standardized biopsies

from both tumor and corresponding normal esopha-

geal mucosa at 5-cm distance were taken and immedi-

ately transferred into 1 mL of RPMI 1640 medium

(Thermo Fisher Scientific, Waltham, MA, USA) at

room temperature for further processing.

Standard surgical procedure was laparotomic or

laparoscopic gastrolysis and right transthoracic en bloc

esophagectomy including two-field lymphadenectomy

of mediastinal and abdominal lymph nodes (Ivor

Lewis esophagectomy) as described previously (Plum

et al., 2018). Samples obtained from a surgical speci-

men were also immediately transferred into RPMI

1640 medium at room temperature and further pro-

cessed as described below.

In case of neoadjuvant treatment (five patients),

either neoadjuvant chemoradiation analog CROSS

(four patients) or perioperative chemotherapy analog

FLOT regimen (one patient) was applied (Al-Batran

et al., 2016; van Hagen et al., 2012).

2.2. Single-cell dissection

Immediately after endoscopy, corresponding tumor

and normal mucosa biopsies were processed separately

(Fig. 1). Tissue samples were transferred together with

1 mL of GibcoTM RPMI 1640 Medium (Thermo Fisher

Scientific) and 1 mL of PBS (Thermo Fisher Scientific)

into Petri dishes and dissected mechanically using two

scalpels. After transfer into gentleMACS C Tubes

(Miltenyi Biotec, Bergisch Gladbach, Germany), addi-

tional 1 mL of each of the following enzymes was

added: DNAse I (500 U�mL�1; AppliChem PanReac,

Darmstadt, Germany; in PBS), collagenase IV

(320 U�mL�1; Thermo Fisher Scientific; in PBS), and

dispase II (2 U�mL�1; Sigma-Aldrich, St. Louis, MO,

USA; in PBS). Automated tissue dissociation was per-

formed using the preset human tumor programs 1, 2,

and 3 of the gentleMACSTM Dissociator (Miltenyi Bio-

tec). Mechanical dissociation steps 1 and 2 were fol-

lowed by enzymatic digestion for 20 min while

rotating at 37 °C. Following enzymatic-mechanical tis-

sue dissociation, samples were diluted with PBS and

filtered through a Falcon� 100-µm cell strainer (Corn-

ing, New York, NY, USA) to remove larger debris.

Filtering was repeated if necessary. Dissociated cells

were collected by centrifugation at 405 g for 5 min at

room temperature. Cells were resuspended by vortex-

ing within freezing medium including 60% GibcoTM

RPMI 1640 medium (Thermo Fisher Scientific), 30%

FBS (Capricorn Scientific, Ebsdorfergrund, Germany),

and 10% dimethyl sulfoxide (DMSO) (Sigma-Aldrich).

Afterward, cells were frozen at �80 °C for 24 h and

then transferred to liquid nitrogen for long-term stor-

age until fluorescence-activated cell sorting (FACS).

As one freeze/thaw cycle of the single-cell solutions

resulted in hemolysis, no additional erythrocyte lysis

was performed.
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2.3. Immunofluorescence staining of single-cell

suspension

Frozen single-cell suspensions were thawed, added to

10 mL of GibcoTM RPMI 1640 Medium (Thermo

Fisher Scientific) at 37 °C and vortexed. Before further

processing, 500 µL of each sample was separated and

mixed with 1 mL of medium for the unstained control.

Samples were centrifuged at 450 g for 5 min at room

temperature. After centrifugation, all supernatants

were discarded. The collected cells were resuspended in

500 µL MACS buffer [PBS (pH 7.2) + 2 mM

EDTA + 0.5% BSA] and kept on ice until FACS anal-

ysis. The following incubation steps were performed

on ice in the dark. Samples were stained consecutively

with the following monoclonal anti-human antibodies:

2 µL Alexa Fluor� 647-conjugated anti-PDGF recep-

tor a (PDGFRa; Cell Signaling Technology, Danvers,

MA, USA) and 1 µL eBioscienceTM Fixable Viability

Dye eFluorTM 506 (Thermo Fisher Scientific) for

15 min followed by 5 min of incubation with 1 µL
PE/Cy7-conjugated anti-CD45 (Biolegend, San Diego,

CA, USA). Cells were incubated for 10 min with addi-

tional 2 µL FITC-conjugated anti-EpCAM (Miltenyi

Biotec), 5 µL PE-conjugated anti-fibroblast (Miltenyi

Biotec), and 2 µL VioBlue-conjugated anti-CD90 (Mil-

tenyi Biotec). Additional staining for epithelial cells

utilizing 1 µL APC/FireTM 750-conjugated anti-mouse/

human CD324 (E-Cadherin) (Biolegend) was per-

formed in six samples. This additional staining was

omitted in subsequent samples as E-Cadherin did not

stain additional epithelial cells that were not stained

by EpCAM, including normal esophagus (data not

shown). Cells were spun down at 450 g for 5 min at

4 °C. Supernatants were discarded and collected cells

resuspended in 500 µL cold MACS buffer.

Simultaneously to the cells, compensation beads

were prepared for analysis by flow cytometry utilizing

the ArCTM Amine Reactive Compensation Bead Kit

for life-dead (LD) staining (Thermo Fisher Scientific)

and the AbCTM Total Antibody Compensation Bead

Kit (Thermo Fisher Scientific), respectively, according

to the manufacturer’s instructions. Immunofluorescent

stained cell suspensions and beads were kept on ice

until sorting.

2.4. Flow cytometry analysis and sorting

Sorting of the single-cell suspensions was performed

using a BD FACSAria Fusion (BD Biosciences, San

Jose, CA, USA) using a 100-µm nozzle and 20 psi

pressure, using aerosol containment. Immediately

before analysis, cell suspensions were filtered once

again using a 70-µm CellTrics strainer (Sysmex, Kobe,

Japan). Gating strategy was as follows: After viability

gating, cells were gated according to the surface

expression of CD45 as marker for immune cells

(‘immune cell population’). CD45-negative cells were

analyzed for the expression of PDGFRa, fibroblast

marker, and CD90. Those cells which were positive for

at least two of those markers were defined as fibrob-

lasts (‘fibroblast cell population’). Finally, all other

CD45-negative cells were analyzed for expression of

EpCAM (or E-Cadherin) as marker for tumor cells of

epithelial origin (‘epithelial cell population’). Cell sub-

populations were sorted into 500 µL cold MACS buf-

fer at 4 °C.

2.5. RNA isolation and next-generation

sequencing

After sorting, cells were kept on ice and RNA isolation

was performed using the PicoPureTM RNA Isolation Kit

(Thermo Fisher Scientific) according to manufacturer’s

instructions. Isolated RNA was stored at �80 °C.
Libraries for RNA sequencing were prepared using the

QuantSeq 30 mRNA-Seq Library Prep Kit FWD for

Illumina (Lexogen GmbH, Vienna, Austria) according

to the low-input protocol. Libraries were sequenced on

a HiSeq 4000 (Illumina) by 19 50 bases.

2.6. RNA-seq analysis

Reads were aligned to the human genome (Homo sapi-

ens GRCh38) using STAR software v. 2.6 (Dobin et al.,

2013). Mapped reads were counted with HTSeq, and

differential gene expression analysis was conducted

using BIOCONDUCTOR R package DESEQ2 version 1.22.2.

(Love et al., 2014). An adjusted P-value threshold of

0.05 and a log2 fold change ≥ 1 were set to determine

differential gene expression. The complete lists of

DEGs in a pairwise manner are available in the

Table S1.

2.7. Reference component analysis

Clustering of the independent samples was performed

using the R package reference component analysis

(RCA) v. 1.0. (Li et al., 2017) with the default option

‘Global Panel’, and this panel contains a set of fea-

tured genes from the reference bulk transcriptomes in

the HumanU133A/GNF1H Gene Atlas and the Pri-

mary Cell Atlas. The resulting RCA clusters for the

different samples were plotted as heat maps or princi-

pal component analysis (PCA) as part of the down-

stream analysis pipeline of the RCA package.
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Fig. 1. Schematic representation of the workflow.
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2.8. Pseudo-bulk analysis

Processed RNA-seq gene counts for all the analyzed

cells were obtained from the supplementary datasets in

Owen et al. (2018). Single-cell datasets from four

patients were selected (A, D, E, and F), where A and

D are patients with Barrett’s esophagus and E and F

are normal esophageal mucosae of patients without

Barrett’s esophagus. For each of the four analyzed

patients, a sample of 100 single cells was randomly

selected and the processed counts from each patient

were aggregated by obtaining the mean for each gene

across the 100 sampled cells to emulate a pseudo-bulk

dataset. The resulting averaged counts were used as

input to perform the RCA.

2.9. Gene ontology

After differential gene expression analysis was performed

among the different flow cytometry-sorted cell popula-

tions, genes whose expression was exclusively upregu-

lated in comparison with the remaining cell types were

analyzed with the GO software (http://geneontology.org/;

Ashburner et al., 2000; Carbon et al., 2019) to test for

over-representation of common biological processes

using all genes as background. To investigate tumor/nor-

mal differential expression, all expressed genes of the

respective cell type defined by the sum of normalized

expression tag counts > 1 were used as background.

3. Results

3.1. Patients’ characteristics

Tumor samples from nine patients were collected

including seven male and two female patients. Median

age of all patients participating was 65 years (mini-

mum: 57 years, maximum: 83 years). Initial tumor

grading was G2 in five patients and G3 in two

patients, pT stage was pT1 in one patient, pT2 in three

patients, pT3 in two patients, and pT4 in one patient

(no information available for 2 patients since those

patients did not undergo surgery due to metastasis).

Four patients received neoadjuvant chemoradiation

analog CROSS, and one patient received perioperative

chemotherapy analog FLOT regimen. Full baseline

characteristics are provided in Table 1.

3.2. Workflow

We developed a protocol for isolating the different cell

populations (immune cells, fibroblasts, epithelial cells)

from EAC and corresponding esophageal mucosa to

sequence the transcriptome separately for each cell

type. In brief, the workflow consists of a gentle single-

cell dissection, immunofluorescence staining, consecu-

tive flow cytometry sorting, and RNA analysis of each

cell fraction (Fig. 1).

Single-cell suspension was obtained simultaneously

by enzymatic dissociation using DNAse I, collagenase

IV, and dispase II and simultaneous mechanical disso-

ciation with a gentleMACSTM Dissociator. Antibody

Table 1. Baseline characteristics of patient included.

Variable

Total (n = 9)

Number (n) Percentage

Age

Median (min–max) 65 years (57–

83 years)

Gender

Male 7 77.8

Female 2 22.2

Anatomical localization

Esophagogastric junction 8 88.9

Gastric 1 11.1

Sample origin

Endoscopic biopsy 6 66.7

Surgical specimen 3 33.3

Samples

Tumor 1 11.1

Normal mucosa 2 22.2

Tumor and normal mucosa 6 66.7

Kind of neoadjuvant therapy

None 4 44.4

Neoadjuvant

chemoradiation

4 44.4

Perioperative

chemotherapy

1 11.1

pT category

pT1 1 11.1

pT2 3 33.3

PT3 2 22.2

pT4 1 11.1

No informationa 2 22.2

pN category

pN0 3 33.3

pN1 2 22.2

pN2 0 0

pN3 2 22.2

No informationa 2 22.2

Grading

G1 0 0

G2 5 55.6

G3 2 22.2

No information 2 22.2

a

No further information available since one patient had progression

after primary staging and lost to follow-up in another case.
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staining and subsequent sorting of the single-cell sus-

pension were implemented on literature-based antigen

selection (see below). An example of flow cytometry

sorting strategy is shown in Fig. 2.

For sorting the immune cell population, we selected

membrane antigen CD45, a glycoprotein which is

expressed on nearly all hematopoietic cells except for

mature erythrocytes and platelets (Nakano et al.,

1990). CD45 has been revealed as a potent marker to

differentiate hematopoietic cells from carcinoma cells

in solid and fluid tumor tissue via flow cytometry

(Acosta et al., 2016) and serves as a pan-leukocyte

marker (Ruffell et al., 2012), therefore ideal for detec-

tion of immune cells.

Epithelial cells were sorted for epithelial cell adhe-

sion molecule (EpCAM), which is exclusively displayed

in epithelia and epithelial-derived neoplasms (Patriarca

et al., 2012) and expressed in various carcinomas,

including EAC (Sun et al., 2018). EpCAM antibodies

are commonly used to detect epithelial cells in flow

cytometry, for example, for detecting leptomeningeal

metastasis of solid tumors in liquor (Milojkovic Kerk-

laan et al., 2016) or isolating epithelial cells from nor-

mal and tumor tissue (Bantikassegn et al., 2015; Sinha

and Lowell, 2016).

Fibroblasts represent a heterogeneous cell popula-

tion and display an inconsistent expression of surface

markers (Lynch and Watt, 2018). Here, isolation of

fibroblasts was based on detection of CD90 and

PDGFRa and binding of an anti-fibroblast antibody

(Miltenyi, exact antigen is unknown). A cell was

defined as ‘fibroblastic’ if positive for at least two of

the three surface markers. CD90 has previously been

used as a surface marker to isolate (cancer-associated)

fibroblasts in gastrointestinal mucosa and ovarian can-

cer tissue (Gedye et al., 2014; Kisselbach et al., 2009)

and also serves as a widely expressed mesenchymal

surface marker (Jiang and Rinkevich, 2018). Likewise,

PDGFRa is described as a membrane antigen of mes-

enchymal cells (Houlihan et al., 2012) and supposed to

participate in the recruitment of fibroblasts, pericytes,

and endothelial cells during wound healing (Horikawa

et al., 2015). There is evidence for a successful enrich-

ment of fibroblasts in flow cytometry using PDGFRa
as a surface marker (Pallangyo et al., 2015).

A total of 31 cell populations were successfully sepa-

rated via flow cytometry and passed RNA-seq for fur-

ther analysis. Table 2 illustrates all samples which

underwent the complete algorithm.

We used gene ontology analysis, PCA, and RCA as

well as population-specific expression of marker genes

to demonstrate the successful separation of the three

cell types.

3.3. Principal component analysis

To confirm an obvious separation of the cell popula-

tions, we used dimensionality reduction (PCA) to sum-

marize the data into two dimensions and then visually

identify obvious clusters. Cell types sorted by flow

cytometry that have similar expression profiles were

clustered together. Based on the PCA plot, there were

three clean clusters corresponding to the different

expected cell types and the first two principal compo-

nents explain most of the variability (Fig. 3). The PCA

supports a successful separation in three different cell

populations.

3.4. Gene ontology analysis

Gene ontology (GO) is a widely used method to struc-

ture a large number of genes in certain categories (GO

terms) describing biological processes, molecular func-

tions, or cell components. Based on differential gene

expression (Table S2) between the three cell popula-

tions, we created a list of the top upregulated genes

for each cell type and matched them to specific GO

terms of biological processes in which they were signif-

icantly overrepresented (FDR < 0.05). In the follow-

ing, we list the top five GO terms for each sorted cell

fraction, and for a complete overview, we refer to the

Table S2.

Cells sorted for ‘immune cell population’ showed an

enrichment in the categories immune system process,

immune response, regulation of immune system process,

regulation of immune response, and cell activation,

whereas sorted cells of the ‘fibroblast cell population’

were enriched for extracellular matrix organization,

anatomical structure morphogenesis, extracellular struc-

ture organization, multicellular organism development,

and anatomical structure development. Those cells of

the ‘epithelial cell population’ had highly expressed

genes in GO terms tissue development, epithelium devel-

opment, epidermis development, epithelial cell differen-

tiation, and cornification.

Gene ontology analysis illustrated expected cell

type-specific GO terms of biological processes for the

three sorted cell populations, indicating a successful

enrichment of the respective target cell types.

3.5. Marker gene analysis

To further confirm the separation of the three cell

types, we considered marker genes of our target cell

populations and evaluated their distribution within the

differently expressed gene lists. Within the immune cell

population, there was a significant upregulation of
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surface proteins CD3 (gene name: CD3D), CD4

(CD4), CD8 (CD8A + CD8B), CD19 (CD19), and

CD20 (MS4A1), all established markers for B/T lym-

phocytes. Furthermore, monocyte marker CD14

(CD14) was significantly upregulated as well as granu-

locyte marker CD11b (ITGAM).

In the fibroblast cell population, there was a signifi-

cant increase in fibroblast activation protein (FAP),

commonly described as a marker for (myo)fibroblasts

(Shiga et al., 2015). FAP is a surface peptidase with

mostly unknown substrates which is involved in

numerous physiological processes such as inhibition of
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fibrinolysis (Hamson et al., 2014). In addition, we

observed an upregulation of alpha-smooth muscle

actin/alpha SMA (ACTA2) expression, characteristic

for fibroblastic cells and which has been widely

described in CAFs (Sharon et al., 2013). We further

observed in the fibroblast population a significant

upregulation of expression of collagen genes (e.g.,

COL1A1 and COL3A1), responsible for the formation

of the extracellular matrix (Yue, 2014).

E-Cadherin (CDH1) is a key epithelial marker,

responsible for an epithelial barrier between neighbor-

ing cells via binding to adjacent cadherins and

cytoskeleton (Serrano-Gomez et al., 2016). CDH1 was

significantly upregulated in the sorted epithelial cells.

Similarly, we found a significant increase in expression

of epithelial membrane antigen (EMA, also known as

MUC1) in this population. EMA is expressed in vari-

ous epithelia and responsible for a physical barrier and

anti-adhesive property of the tissue (Nath and

Mukherjee, 2014).

In conclusion, cell type-specific genes showed a sig-

nificant enrichment in their corresponding target cell

populations, supporting the expected cell separation.

3.6. Reference component analysis

Reference component analysis is used to compare gene

expression data sets to reference cell lineages. We com-

pared each of the 31 sorted cell fractions by RCA with

reference data (Fig. 4). RCA indicated consistent

accordance to reference transcriptome data within

equally sorted cells. There were three differential map-

ping (transcriptome correlation) patterns, each

belonged to one of the three sorted cell types

(‘immune cell population’, ‘fibroblast cell population’,

‘epithelial cell population’), confirming the qualitative

sufficiency of the separation process.

Cells sorted as ‘immune cells’ showed a high correla-

tion with reference gene expression of inflammatory

cells, for example, natural killer cells, T cells, B cells,

Table 2. Origin of all cell populations included for further RNA-seq.

Patient No. Sample origin

Successful RNA-seq of following cell populations after FACS sorting

Tumor tissue Sample labeling Normal tissue Sample labeling

1 Endoscopic biopsy • Immune cells
• Epithelia
• Fibroblasts

• Tu1_immune
• Tu1_epithel
• Tu1_fibro

• Immune cells • Mu1_immune

2 Endoscopic biopsy • Immune cells
• Epithelia
• Fibroblasts

• Tu2_immune
• Tu2_epithel
• Tu2_fibro

– –

3 Endoscopic biopsy • Immune cells
• Epithelia
• Fibroblasts

• Tu3_immune
• Tu3_epithel
• Tu3_fibro

• Immune cells • Mu3_immune

4 Endoscopic biopsy • Immune cells
• Epithelia
• Fibroblasts

• Tu4_immune
• Tu4_epithel
• Tu4_fibro

• Immune cells
• Epithelia

• Mu4_immune
• Mu4_epithel

5 Endoscopic biopsy • Immune cells
• Fibroblasts

• Tu5_immune
• Tu5_fibro

– –

6 Surgical specimen a a • Immune cells
• Epithelia

• Mu6_immune
• Mu6_epithel

7 Endoscopic biopsy • Immune cells
• Epithelia
• Fibroblasts

• Tu7_immune
• Tu7_epithel
• Tu7_fibro

a a

8 Surgical specimen a a • Immune cells
• Fibroblasts 1
• Fibroblasts 2

• Mu8_immune
• Mu8_fibro1
• Mu8_fibro2

9 Surgical specimen • Immune cells
• Epithelia
• Fibroblasts

• Tu9_immune
• Tu9_epithel
• Tu9_fibro

• Immune cells
• Fibroblasts

• Mu9_immune
• Mu9_fibro

Total N = 20 N = 11

aNo samples taken.
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monocytes, and macrophages. Cells of the ‘epithelial cell

population’ matched to epithelial cell lines of bladder,

lung, and colon and non-specific cells derived from tis-

sue of pancreas and colon. Further correlations were

found for trachea and intestinal tissue. Cells sorted as

‘fibroblasts’ revealed correlation with fibroblast cell

lines, various mesenchymal stem cell lines, adipocytes,

hematopoietic stem cells, endothelial cells, and smooth

muscles cells (and organs with high proportion of

smooth muscle cells, e.g., uterus). Cancer-associated

fibroblasts (CAFs) have been reported to arise from var-

ious origins, for example, normal fibroblasts, adipo-

cytes, bone marrow-derived cells (including

mesenchymal stem cells), and endothelial cells (CD31+)
(Wang et al., 2016). Correlations with transcriptome

data of these differential cell types might reflect the

heterogeneous origin of the fibroblastic cells.

We explored how similar our cell type bulk sequenc-

ing was compared with scRNA-seq and co-analyzed

esophagus epithelial scRNA-seq data of Owen et al.

(2018) with epithelial cell types of our analyses. We

observed largely congruent correlations with reference

transcriptomes (Figs S1 and S2) indicating that the cell

type bulk sequencing is pure enough for a representa-

tive snapshot of these cells. As expected, smaller cell

populations with individual expression profiles can

only be seen in scRNA-seq. Of note, the cell type-

specific sequencing detected more genes per sample

compared with scRNA-seq per cell (average 12 142 vs.

3260 to 4391 genes with ≥ 1 read).

3.7. Differently expressed genes between EAC

and normal esophageal mucosa

Although the number of tumor–normal pairs does not

allow general interpretations, we exploratively com-

pared differentially expressed genes between EAC tis-

sue and normal esophageal mucosa for each sorted cell

population (Table S3). We first used GO analysis to

categorize generic changes. Only the tumor/normal

comparison of the fibroblast cell population showed

significant enrichment of GO categories. Interestingly,

blood vessel development, angiogenesis, and vascula-

ture development were among the top 10 significantly

enriched categories of biological processes (Table S4).

These categories remained significant when restricting

the analysis to upregulated genes, while downregulated

genes were strongly enriched for the establishment of

protein localization to endoplasmic reticulum, cotrans-

lational protein targeting to membrane, and regulation

of developmental process (Table S4). When focusing

on individual genes with reported functions, the

fibroblastic population showed strong upregulation of

matrix metalloproteinase 11 (MMP11) in tumors (ad-

justed P = 1.6 9 10�15, Fisher’s exact test). MMP11

serves as an endopeptidase-degrading extracellular

matrix (G�omez-Mac�ıas et al., 2018). MMP11 overex-

pression in CAFs and cancer cells has previously been

described to correlate with an aggressive cancer profile

and promotion of metastasis (Gonz�alez de Vega et al.,

2019; Peruzzi et al., 2009). Further, an upregulation of

Fig. 3. Principal component analysis of RNA-seq of flow cytometry-

sorted cell fractions. Thirty-one cell fractions were 30RNA-sequenced
and plotted by their first two principal components. Top: orange,

epithelial cells; yellow, fibroblasts; green, leukocytes. Bottom:

orange, tumor cells; green, normal cells.
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glycoprotein CD38 was detected in the sorted immune

cells from EAC tumors (P = 8.6 9 10�7, Fisher’s exact

test). CD38, usually expressed on plasma cells and

other lymphoid and myeloid cell populations (Morandi

et al., 2018), has been revealed to mediate immunosup-

pression as a tumor escape mechanism, and there is

evidence for an unfavorable CD38 influence on tumor

progression in esophageal cancer (Chen et al., 2018;

Karakasheva et al., 2015).

4. Discussion

In an effort to create a scalable approach for cell type-

specific comparison of tumors, we have developed a

protocol to dissociate fresh biopsies of EACs and corre-

sponding esophageal mucosa, and sort leukocytes

(CD45+), epithelial cells (EpCAM+), and fibroblasts

(positive for at least two out of PDGFRa, CD90, anti-

fibroblast), followed by 30RNA sequencing. This

workflow allows us to investigate the transcriptomic

changes in the three cell populations in EAC when com-

pared to normal esophageal mucosa. Importantly, this

approach is significantly more economic and scalable

for investigating transcriptomes of different cell types

compared with single-cell RNA sequencing (scRNA-

seq) and can therefore serve as a cost-effective alterna-

tive to broaden understanding of tumor biology in

EAC. In our local setting, the costs for the analysis of a

tumor/normal pair with three cell types each by scRNA-

seq (hashing for tumor and normal) would be 3.2 times

higher compared with cell type-specific RNA-seq.

In order to prove the successful workflow of this

approach, we demonstrate a clear separation of our

three target cell populations (fibroblasts, immune cells,

and epithelial cells) and performed 30RNA sequencing

of these sorted cell types. We used different strategies to

verify the identity of the cells. GO analysis elucidated

functionally compatible and expected biological
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processes for the respective cell populations. We provide

further evidence for a successful separation by compar-

ing transcriptomic profiles with reference expression

data using RCA and obtained three different expression

correlation patterns, each specific for the respective tar-

get population: Cells sorted for epithelial cell compart-

ment showed high correlation with epithelial cell

lineages, the immune cell compartment with reference

data of differential lymphocytes, monocytes, and granu-

locytes and fibroblasts with fibroblasts, various mes-

enchymal cell lines, and cell lineages that can be

considered plausible to serve as origins of CAFs. Litera-

ture-based marker gene analysis within differentially

expressed genes further supported a qualitative separa-

tion into the three cell compartments.

We focused on optimizing the protocol for small

amounts of tissue, allowing to obtain the samples

endoscopically at primary staging. Up-scaling of our

protocol will enable us to compare biopsies of treat-

ment-na€ıve EAC tissue with normal esophageal

mucosa of patient cohorts at moderate cost. Such sys-

tematic cell type-specific analysis of treatment-na€ıve,

endoscopically obtained samples and correlation with

clinical features will allow to find new cell type-specific

pathway alterations, responsible, for example, for

treatment response or relapse.

Although we show a potential application of our

protocol for biopsies and surgical specimens in normal

esophageal mucosa and EAC tissue, the protocol can

be further improved. Especially, freezing of dissociated

single-cell suspensions, necessary due to processing

logistics, was responsible for a substantial loss of living

cells. A continuous workflow without freezing will

improve the cell viability and quantity of RNA for

sequencing. Since the different samples have varying

proportions of the three cell populations, we were not

able to obtain sufficient cells for all sorted cell popula-

tions. This may explain the lack of significantly

enriched GO categories for the leukocyte and epithelial

compartments. An increase in the number of viable

cells by a continuous workflow will enhance the

chance to robustly obtain sufficient amounts of RNA

for subsequent 30RNA-seq.

In order to demonstrate the potential utility of our

approach, we finally compared differently expressed

genes between normal esophageal mucosa and EAC

tissue and highlighted cell type-specific alterations. For

instance, CD38 upregulation in immune cells of EAC

could establish a possible target of immunotherapy, as

suggested in combination with anti-PD-L1 therapy

(Chen et al., 2018; Mittal et al., 2018). For MMP11,

which is usually expressed both in epithelial cells and

fibroblasts, we found an upregulation restricted to the

fibroblast cell population as described earlier (Pedersen

et al., 2009). Although sample numbers used here are

limited, it is interesting to note that fibroblasts in the

tumor showed upregulation of angiogenesis genes,

when compared to normal mucosa. Angiogenesis-pro-

moting properties of CAFs have been described earlier

(reviewed in Wang et al., 2019) and are an area of

intense investigation in the search for new angles of

intervention. Future implementation of the protocol in

a large cohort of patients can therefore help to identify

targets for novel therapy concepts and complement

our understanding of tumor biology in EAC.

In conclusion, we present a new approach for a

cost-effective and scalable procedure to determine cell

type-specific transcriptome alterations in treatment-

na€ıve EAC tissue with the potential to obtain treat-

ment-relevant findings in large cohorts of patients with

EAC.
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Additional supporting information may be found

online in the Supporting Information section at the end
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Fig. S1. Joint normal esophageal mucosa RCA of

scRNA-seq and cell type RNA-seq.

Fig. S2. Normal esophageal mucosa RCA of pseudo-

bulk scRNA-seq.

Table S1. Complete lists of DEGs in a pairwise manner.

Table S2. List of the top five Gene Ontology terms for

each sorted cell fraction.

Table S3. Differentially expressed genes between EAC

tissue and normal esophageal mucosa for each sorted

cell population (Gene Ontology Analysis).

Table S4. Top ten significantly enriched categories of

biological processes between EAC tissue and normal

esophageal mucosa for each sorted cell population

(Gene Ontology Analysis).
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