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Abstract

Cell-free DNA (cfDNA) analysis has become essential in cancer diagnostics and prenatal testing. We present cfNOMe,
a two-in-one method of measuring cfDNA cytosine methylation and nucleosome occupancy in a single assay using
non-disruptive enzymatic cytosine conversion and a custom bioinformatic pipeline. We show that enzymatic
cytosine conversion better preserves cfDNA fragmentation information than does bisulfite conversion. Whereas
previously separate experiments were required to study either epigenetic marking, cfNOMe delivers reliable results
for both, enabling more comprehensive and inexpensive epigenetic cfDNA profiling. cfNOMe has the potential to
advance biomarker discovery and diagnostic usage in diseases with systemic perturbations of cfDNA composition.
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Background
Cell-free DNA (cfDNA) maintains the epigenetic signa-
tures of its tissues-of-origin [1–3]. Studies of genome-
wide tissue-specific methylation signatures from cfDNA
have so far shown promise in the deconvolution (i.e., the
identification and quantification of contributing fractions)
of its tissues-of-origin. Bisulfite cytosine conversion
(BCC)-based methylation array studies [4], as well as next-
generation sequencing (NGS) [2, 5, 6] and targeted pyro-
sequencing [7] studies, have demonstrated that the com-
position of cfDNA, and hence its epigenetic signature,
varies in states of health and disease. cfDNA is primarily
released by dying cells. A minimally invasive method to
identify and quantify its tissues-of-origin could be used to
take a “snapshot” of ongoing tissue damage throughout

the organism at the moment of sample collection. The
translational applications of such an approach cannot be
overrated if sufficient resolution can be achieved.
Current diagnostic applications of cfDNA, like “liquid

biopsy” [8], non-invasive prenatal testing [9], or detection
of transplant rejection [10], mainly leverage genotypic dif-
ferences and/or copy number variation. Epigenetic studies
of cfDNA, on the other hand, are expected to be inform-
ative in the large majority of patients, as shown in methy-
lation signature-based studies in patients with myocardial
infarction [11] or relapsing-remitting multiple sclerosis
[12]. Urine-derived cfDNA can also be studied directly to
detect infections of the urinary tract [13].
A second layer of indirectly measurable epigenetic infor-

mation in cfDNA is nucleosome occupancy (NO). Nucleo-
somes in the cfDNA’s tissue-of-origin locally protect
against endonuclease cleavage during apoptosis, thereby
leading to a biased cfDNA fragmentation pattern, from
which NO is inferred [1]. This fragmentation pattern is
apparent in aligned NGS data, but not detectable in
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microarray- or pyrosequencing-based approaches. Such
measurements of NO have been successfully used to infer
the gene expression [14] and regulation [3] landscapes of
the cfDNA’s tissue-of-origin. Most recently, a similar
approach was reported to identify cell lineage-specific
transcription factor binding for the prediction of tumor
subtypes in prostate cancer [15].
The combined NGS analysis of Nucleosome Occu-

pancy and Methylation profiles (NOMe-Seq [16]) has
been possible in nuclear (i.e., non-cell-free) DNA for
some years. This method targets open chromatin, how-
ever, and is therefore not applicable to cfDNA. Other
methods of jointly profiling independent epigenetic attri-
butes (methylation and chromatin conformation) in nu-
clear DNA have also recently been described [17].
Bisulfite cytosine conversion has been the gold standard

in DNA methylation analysis for decades [18], but causes
significant degradation [19–21], fragmentation [22], and
GC biases [23, 24]. New, alternative methods of chemical
cytosine conversion seek to address these issues [25]. In
addition, enzymatic cytosine conversion (ECC) was re-
cently reported using APOBEC3A (ACE-Seq [26]) that
enables the precise quantification of 5-hydroxymethylcy
tosine (5hmC), but not 5-methylcytosine (5mC). We
therefore selected a novel method of enzymatic cytosine
conversion (NEBNext® EM-Seq® [27], New England Bio-
labs, Ipswich, MA, USA) that is capable of detecting both
5mC and 5hmC (Additional file 1: Fig. S1) and allows
whole-genome methylation studies with small amounts of
input DNA and a decreased coverage bias against GC-rich
regions (Additional file 1: Fig. S2). In this study, we (1)
compare the performance of ECC and BCC in the context
of cfDNA methylation and nucleosome occupancy
analyses and (2) perform ECC on the cfDNA of healthy
controls and patients with acute kidney injury (AKI), acute
kidney graft dysfunction (AGD), or chronic kidney disease
to identify perturbations of cellular turnover in the af-
fected tissues. Using a custom bioinformatic pipeline, we
are able to simultaneously measure both nucleosome oc-
cupancy and methylation profiles from cfDNA. We term
our assay “cell-free DNA-based Nucleosome Occupancy
and Methylation profiling” (cfNOMe).

Methods
Patient recruitment
Patients admitted to collaborating clinical departments with
kidney disease were contacted and—upon securing written
informed consent for study participation—between one and
three fresh urine and venous blood samples were collected
during routine diagnostic blood drawings to be further
processed as described below. The study was approved by
the Ethics Committee of the Medical Faculty of the Univer-
sity of Cologne, Germany (study registration ID 15-215).

Cell-free DNA isolation from urine and plasma
Urine samples were freshly collected from patients and
healthy controls in falcon tubes and directly—within 30
min—processed by centrifugation at 1600g for 10min at
RT to separate cell debris from supernatant. The super-
natant was centrifuged a second time for 20min at 3200g
at RT to remove the remaining cellular components.
Blood samples were freshly collected in cell-free DNA

BCT CE collection tubes (STRECK, La Vista, NE, USA)
containing K3 EDTA. It was then directly processed by
centrifugation at 1500g for 12 min at 4 °C to separate red
blood cells from plasma. The supernatant was centri-
fuged a second time for 12 min at 1500g, RT to remove
remaining cellular components. We aimed for a minimal
delay between blood drawing and centrifugation of ≤ 2 h,
which was achieved for the majority of samples. Samples
P30 and P31 had the highest processing delay of ~ 48 h.
The manufacturer of DNA BCT CE collection tubes
guarantees cfDNA and gDNA stability between 6 and
37 °C for up to 14 days. Urine supernatant and plasma
were stored at − 80 °C (at least overnight) before being
further processed.
Blood and urine samples from healthy control K17

were collected at 8:00 am, noon, and 9:30 pm on subse-
quent days. This was done to exploratively study the
temporal variability of cfDNA composition in healthy
individuals.
For cfDNA isolation, urine and plasma samples were

thawed on ice for 1 h and processed according to the
QIAamp Circulating Nucleic Acid Kit Handbook (Qia-
gen, Hilden, Germany). The protocol was modified as
follows: The input volume of urine was increased from 4
to 10 ml, and buffer volumes were adjusted accordingly.
Also, the incubation time for elution with AVE buffer
was increased from 3 to 30min.
After sample preparation, cfDNA was quantified via a

Qubit 3.0 fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA) using the high sensitivity assay kit.
Fragment size determination was performed using the
4200 TapeStation (Agilent, Santa Clara, CA, USA)
instrument according to manufacturer standards.

Converted library preparation
Library preparation was performed according to the NEB
EM-Seq protocol (New England Biolabs, Ipswich, MA,
USA) with the following modifications: No fragmentation
was done for cfDNA samples. After library preparation,
cfDNA was quantified via a Qubit 3.0 fluorometer (Fig. 1;
Additional file 1: Tables S1-S3).
In the replication cohort, fully methylated pUC19 con-

trol DNA and unmethylated lambda DNA were fragmen-
ted to 180 nt by sonication using a bioruptor (Diagenode,
Seraing, Belgium). 0.01 ng of pUC19 control DNA and
0.2 ng lambda DNA per 10 ng sample DNA was added to
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each sample. All samples were library prepped using the
above protocol. However, the healthy control samples
K19, K20, and K21 were split up after the adapter ligation.
One replicate of each was then converted using the NEB
EM-Seq kit, the other with the EpiTect Bisulfite Kit (QIA-
GEN, Hilden, Germany) according to the standard proto-
col. For direct comparison, the respective replicates
received exactly the same protocol and amplification; the
type of conversion was the only difference (Additional file
1: Tables S1-S3).

PyroMark PCR
To amplify regions of interest in cfDNA and further
determine its methylation status, PyroMark PCR was
performed (Additional file 1: Tables S4-S6). Six nano-
grams of cfDNA was used for each PCR reaction.
SLC34A1, UMOD, and CTXN3 were studied. The gen-
omic positions analyzed in SLC34A1 were (hg19) chr5:
176812116 (locus 1), chr5:176812123 (locus 2), and
chr5:176812139 (locus 3); in UMOD chr16:20364262
(locus 1) and chr16:20364284 (locus 2); and in CTXN3
chr5:126988758 (locus 1). Loci of interest were identified
within these genes in a manual screen of differentially
methylated regions near genes with highly enriched
kidney expression. In short, we inspected publicly avail-
able tissue-specific whole-genome bisulfite sequencing
(WGBS) data tracks in the genomic vicinity of genes
with a known kidney-specific expression pattern as listed
in the “Tissue enriched” and “Group enriched” categor-
ies on the Human Protein Atlas resource [28]. Non-
cultured, non-fetal tissue hg19 WGBS tracks stored in

the International Human Epigenome Consortium Data
Portal [29] were compared. The abovementioned loci of
interest showed kidney-specific hypomethylation and
were thus selected for our initial enzymatic conversion
and pyrosequencing experiments. As expected, hyperme-
thylation was observed in blood-derived cfDNA for all
loci (between average values of 81.6% ± 3.4% for CTXN3
and 98.5% ± 1.9% for SLC34A1 locus 3), while the
methylation levels in urine-derived cfDNA were notably
lower (between 49.8% ± 6.5% for CTXN3 and 68.7% ±
5.9% for SLC34A1 locus 3). These data were then used
to quantify the correlation between pyrosequencing
methylation measurements and NGS methylation
measurements.

Pyrosequencing
0.36 μl of sequencing primer (10 μM) and 11.64 μl AB buf-
fer (1x) per well were added to a pyrosequencing plate.
Isolation of the single-stranded pyrosequencing tem-

plate was performed by mixing each PCR probe with
70 μl sepharose beads in binding buffer for 5 min at
1000 rpm to allow streptavidin beads to bind the biotin-
labeled strand.
The vacuum prep station was set up with H2O, 70%

ethanol, denaturation buffer, and 1x wash buffer (200ml
each). Mixed cfDNA-bead-samples were then soaked up
by the probes and washed with EtOH70% to dispose
residual salts and unlabeled cfDNA, then with denatur-
ation buffer to denature amplicons and remove the un-
labeled cfDNA strands from the sample, leaving the
ssDNA pyrosequencing template. Next, the probes were

Fig. 1 Workflow for enzymatic cytosine conversion from cfDNA isolation to pyrosequencing. Shown is the workflow, starting with cfDNA isolation
from urine supernatant or plasma via a vacuum pump and spin column-based method. After a subsequent library preparation step, conversion of
cytosines is performed enzymatically, followed by the desired downstream analyses. Purple and green boxes highlight crucial steps in enzymatic
conversion. The asterisk indicates clean-up steps
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washed with 1x wash buffer to allow the pyrosequencing
reaction to proceed at proper conditions. Finally,
vacuum was switched off and probes were lowered into
the priming plate containing the annealing primer-
buffer-mix and agitated vigorously to facilitate beads
dropping from the filters into the buffer-primer-mix.
The pyrosequencing plate was then incubated at 85 °C
for 2 min to eliminate any secondary structures in the
single-stranded template that may interfere with primer
annealing or enzymatic addition of nucleotides. Samples
were then analyzed via the PSQ HS 96 device and soft-
ware (QIAGEN, Hilden, Germany).

Whole-genome sequencing library preparation of donor
gDNA
The libraries were prepared and size selected by using
the Illumina® TruSeq PCRfree® (Illumina, San Diego, CA,
USA) DNA Sample Preparation Kit and Agencourt
AMPure XP beads (Beckman Coulter, Indianapolis, IN,
USA), starting with 1.2 μg input DNA and followed by
one cycle of PCR to complete adapter structure.

Sequencing of WGS and converted libraries
The cfDNA library quality parameters were validated
with the Agilent 2200 TapeStation, and library quantifi-
cation was done with qPCR. Using Illumina NovaSeq
6000 devices, we generated between 64.6 and 96.8 Gb
(per WGS library), between 192.8 and 489.7 Gb (per
cfNOMe library in the discovery cohort), and between
105.3 and 262.3 Gb (per cfNOMe/bisulfite-converted
library in the replication cohort) paired-end 150-bp data
[30]. These yields corresponded to an expected coverage
of ~ 20–30-fold, ~ 50–130-fold, and ~ 30–40-fold
respectively (Additional file 1: Tables S7 and S8).

Bioinformatic processing
After standard demultiplexing and adapter trimming of
raw NGS data, the FASTQ files for each replicate were
aligned against the hg19 human reference genome using
the Bismark (v0.20.0) methylation-sensitive alignment
tool [31] in conjunction with bowtie2 (v2.3.4.1). The
mapping efficiency metrics (Additional file 1: Fig. S3)
were taken from the Bismark alignment report. In the
replication cohort, the larger bisulfite-converted datasets
were downsampled to the size of the corresponding
EMseq dataset prior to alignment.
The aligned BAM files were sorted and indexed using

samtools (v1.7, [32]). An additional merged BAM for each
sample was created from its respective replicate subfiles.

Downsampling
Each downsampled dataset was generated from the
complete, merged alignment file using the BBmap
reformat tool’s (v38.75) samplereadstarget parameter.

Calculation of renal cfDNA fraction from donor SNPs
We first performed whole-genome sequencing (WGS) of
kidney donor DNA and, using the samtools mpileup
function and bcftools (v1.7), identified positions where
the respective donor was either homozygous (donor for
patient P27) or heterozygous (donor for patient P29) for
a single nucleotide A>T or T>A transversion. We then
similarly evaluated each position in the existing blood-
derived cfNOMe datasets of the transplant recipients.
We excluded positions at which a variant call of hetero-
zygous or homozygous was made in the recipient under
the assumption that the transplant cfDNA fraction in
blood would be low enough to not cause erroneous het-
erozygous calls in the recipient cfDNA dataset. The so
chosen positions (n = 1326 for P27 and n = 776 for P29)
were then extracted from the respective blood- and
urine-derived cfNOMe datasets and the percentage
variant alleles at each position calculated. These allele
fractions were averaged to calculate the most probable
graft-derived, i.e., renal cfDNA fraction in patient P27’s
blood and urine. Because of patient P29’s first-degree re-
latedness to their donor, only positions at which the
donor was heterozygous for a variant allele could be
compared. The allele fractions were therefore doubled to
calculate the renal cfDNA fraction in blood- and urine-
derived cfDNA (Additional file 1: Fig. S4).

Nucleosome footprinting analyses
The transcription start site (TSS) coordinates for all
RefSeq-listed genes were accessed using the UCSC Table
Browser. For each TSS, the windowed protection score
with the chosen window size (e.g., 120 bp: WPS120) was
calculated for every nucleotide within 5 kb up- and
downstream using the previously generated alignment
files and batch processing of the input coordinates. The
resulting WPS was normalized to the number of frag-
ments within the analyzed region to control for sequen-
cing depth differences. For aggregate measurements of
multiple TSS coordinates, the datasets for each input
coordinate were merged and averaged into a single nor-
malized output file with one score for each nucleotide
position in the analyzed region (i.e., − 5000 to + 5000 in
the case of a 10-kb region). An additional normalization
step was performed by calculating a running average
within ± 500 bp of each nucleotide position and sub-
tracting this from the respective WPS, thereby normaliz-
ing the data to a running 1-kb mean of zero. From this,
a secondary output file was generated.
WPS peaks were detected for a given genomic region

automatically from unmerged, normalized data by iden-
tifying continuous sequences of positive scores between
50 and 450 bp in length, uninterrupted by more than 4
negative score values in a row. We then checked which
continuous window of scores above the median had the
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largest total WPS sum and called the peak in the middle
of this window (Fig. 2). Interpeak distances (IPDs) were
subsequently extracted and tabulated for distances up to
1 kb.
For the comparison of IPDs between high- and low-

expression genes, we used a Wilcoxon rank-sum test
(Mann-Whitney U test) to check for differences in IPD
distribution.
For the quantification of nucleosome organization in

the immediate vicinity of the transcription start site, the
WPS120 scores for the most abundant medium length
cfDNA fragments (140–200 bp) were normalized and an
average value was calculated for bins containing 1000
genes each in descending order of whole blood expres-
sion levels. We then scored the amplitude of the nucleo-
some positioning signal by subtracting the WPS120 in
the nucleosome-free region from the WPS120 at the pos-
ition of the well-phased + 1 nucleosome (Fig. 3).

Methylation analysis
For methylation analysis, the Bismark alignment output
files were analyzed with the bismark-methylation-
extractor tool, ignoring two 5′ nucleotides of read 1 and
three 5′ nucleotides as well as one 3′ nucleotide of read
2, for which Bismark reported biased methylation calling
patterns (Additional file 1: Fig. S5). Methylation calls
over non-CpG cytosines were summarized and calcu-
lated genome-wide for all samples and the available fully
methylated positive and unmethylated negative controls
(Additional file 1: Fig. S6 and S7). Additionally, context-
specific methylation results for CpG, CHH, and CHG
methylation were extracted for 1000-bp windows
throughout the entire genome (see Additional file 1: Fig.
S8 for a representative plot of chromosome 2). Bismark
output result files were subsequently processed with the
bedmap (v2.4.26) tool, and methylation levels for the

7890 informative methylation loci from Moss et al. [4]
were thus calculated for each sample.
For the deconvolution of component tissues-of-origin,

the sample methylation levels at these 7890 informative
loci were compared to the reference values of 25 tissues
[4] (Additional file 1: Fig. S9). As long as the number of
studied loci is greater than the number of tissues to be
deconvoluted, an overdetermined linear system exists.
We thus performed linear least squares minimization as
implemented in the Python3 scipy.optimize (v1.2.0) li-
brary. In short, through iterative optimization, a coeffi-
cient was calculated for each tissue so that the sum of
the squared deviations between the deconvolution model
and the measured cfDNA methylation levels is mini-
mized. An inequality constraint of 1 was imposed so that
the sum of all contributing tissues cannot be larger than
100%. Mathematically, we optimize coeffTissue in:

ref 1 Kidney ref 1 Monocytes … ref 1 Colon
ref 2 Kidney ref 2 Monocytes … ref 2 Colon

⋮ ⋮ ⋱ ⋮
ref 7890 Kidney ref 7890 Monocytes … ref 7890 Colon

2
664

3
775∙

coeff Kidney
⋮

coeff Colon

2
4

3
5 ¼

measured meth1
measured meth2

⋮
measured meth7890

2
664

3
775

by solving:

min
X

ref 1 Kidney ref 1 Monocytes … ref 1 Colon
ref 2 Kidney ref 2 Monocytes … ref 2 Colon

⋮ ⋮ ⋱ ⋮
ref 7890 Kidney ref 7890 Monocytes … ref 7890 Colon

2
664

3
775∙X−

measured meth1
measured meth2

⋮
measured meth7890

2
664

3
775

��������

��������

2

where X represents a vector containing each tissue
coefficient and the sum of all coefficients is not
greater than 1.

Methylation level comparisons
Pyrosequencing was done with fully methylated positive
control DNA and unmethylated negative control DNA.
Pyrosequencing methylation values were then normal-
ized against their respective positive and negative control
sample values. For NGS data, conversion events at the
previously detailed loci of interest in SLC34A1, UMOD,

Fig. 2 Peak calling accuracy of the described algorithm at a known alpha satellite on chromosome 8. The repetitive genomic structure is
mirrored in a well-phased, periodic nucleosome occupancy signal. Coordinates are hg19: 8:43,546,000–43,548,000
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and CTXN3 were counted in the merged sample align-
ment files and a methylation ratio calculated. Methyla-
tion values from pyrosequencing and NGS were then
jointly plotted and a linear regression fitted (Additional
file 1: Fig. S10). The plot, as well as the regression confi-
dence band, was generated using the Python3 seaborn
(v0.9.0) library’s regplot function.

Gene binning
Expression data was accessed from the GTEx portal on
21 March 2019. Data from cell lines were excluded from
further analysis. The gene bins for expression in whole
blood (Fig. 4) were generated by grouping genes in
groups of 1000 by descending order of expression in the
“Whole blood” GTEx category. If the expression was
identical in whole blood between several genes, the sort-
ing was decided based on global expression as a second-
ary sorting parameter.
Bins for kidney or bladder tissue-enriched genes (Fig. 5)

were generated as follows: GTEx genes with low expres-
sion in whole blood (< 0.5 transcripts per million) were
extracted and grouped together in bins of 1000 by de-
scending expression levels in the tissue-of-interest. The
“high expression” groups for the kidney and bladder
contained genes with expression levels between 4.5 and
928.0 transcripts per million and 7.8 and 731.3 tran-
scripts per million, respectively.

Results
Cohort recruitment
Participants were recruited at two time points. During
the first study phase, we generated cfNOMe libraries

from enzymatically treated blood- and urine-derived
cfDNA of six individuals. Three healthy controls and
three patients with acute kidney injury or acute kidney
graft dysfunction were studied, with a resampling of
blood and urine in one patient after improvement of
kidney function (n = 6 × 2 + 2 = 14 samples). Where pos-
sible, sample collection and experiments were performed
in triplicate (see Additional file 1: Fig. S11 for details on
sample collection and data generation). We thus gener-
ated 34 cfNOMe replicate libraries (Additional file 1:
Table S7), which were processed in parallel and later
recombined into 14 merged datasets. During the second
recruitment phase, blood samples of three additional
healthy control subjects and three patients with chronic
kidney disease were collected. Blood-derived cfDNA of
the three healthy controls in the second recruitment
phase was processed with enzymatic and bisulfite con-
version in parallel.

Enzymatic cytosine conversion reliably measures cfDNA
CpG methylation levels
Slightly higher mapping efficiencies were achieved for
the cfNOMe datasets from blood-derived cfDNA
(81.5% ± 1.1%) compared to datasets generated from
bisulfite-treated cfDNA (77.6% ± 0.1%, p = 1.2E−08).
cfNOMe datasets from urine-derived cfDNA showed
variable mapping efficiencies (72.4% ± 5.6%; Additional
file 1: Fig. S3). Pyrosequencing assays across several gen-
omic loci in SLC34A1, UMOD, and CTXN3 of blood-
and urine-derived cfDNA from individuals K16, K17,
and P25 showed a low to moderate inter-replicate
methylation variability for ECC (average SD in blood-
derived cfDNA of 3.5%, range 1.4–6.9%; average SD in
urine-derived cfDNA of 4.5%, range 1.1–13.0%). Further,
we observed a high correlation between results from py-
rosequencing assays and NGS analyses (R = 0.93, p =
2.6E−15; Additional file 1: Fig. S10). NGS genome-wide
CpG methylation levels were concordant between tech-
nical replicates (average SD of 0.4%, range 0–1.4%) and
between samples drawn from one control individual at
different time points (blood drawing from healthy indi-
vidual K17 at noon and 9:30 pm on subsequent days and
urine collections from K17 at 8:00 am, noon, and 9:30
pm on subsequent days; SD of 0.1% and 1.8% for blood-
and urine-derived cfDNA, respectively; Additional file 1:
Fig. S6), demonstrating high robustness. Pyrosequencing
the same PyroMark PCR product repeatedly also gave
identical results, implicating the PyroMark PCR itself as
the source of the methylation variability in our pyrose-
quencing assays. The cfNOMe libraries of individuals in
the second recruitment cohort showed an average lower
proportion of unconverted (=methylated) CpGs com-
pared to both the first recruitment cohort and the
bisulfite-treated samples of the second cohort. The

Fig. 3 Quantification of nucleosome organization strength. The
summed WPS120 for all points in the green shaded area (∑P10..60) is
subtracted from the summed WPS120 for all points in the red
shaded area (∑P135..185). Different TSS-offsets must be used if a
different WPS window length is chosen. A high value of this metric
represents a more highly organized nucleosome positioning at the
studied transcription start sites
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methylated positive control DNA also showed a lower
percentage of methylation in the enzymatic treatment
vs. the bisulfite treatment (78.3% ± 2.4% vs. 95.5% ±
0.5%). In our experiments, the bisulfite-treated libraries
compared favorably in this regard, with a higher propor-
tion of methylated CpGs called correctly (Additional file
1: Fig. S7). Comparing cfNOMe and bisulfite-treated

libraries, we analyzed the coverage parameters of CpG
positions genome-wide. We performed a downsampling
series in our ECC and BCC datasets, generating align-
ment files with between 1 million and 100 million
aligned reads. Given equal read counts, cfNOMe datasets
consistently covered a larger number of CpGs (48–53%
more CpGs covered in cfNOMe datasets up to 2 × 107

Fig. 4 Fragmentation analyses of enzymatically converted cfDNA. Nucleosome occupancy is inferred by calculating, centered on each genomic
position, the number of reads with endpoints inside a window of n bases and subtracting the number of reads completely spanning this
window [1]. The resulting metric is called the windowed protection score (WPSn). For cfDNA libraries with a fragment length peak at ~ 170 bp, as
here, a 120-bp window has been previously used (WPS120) [1]. a The cfDNA fragmentation shows highly organized nucleosome occupancy in an
alpha satellite on chromosome 8 (hg19: chr8:43,546,000–43,548,000). Black line: WPS120, gray bars: fragment endpoints. b Averaged and
normalized WPS120 around the TSS of 15,368 genes with positive expression in whole blood. A strong positional pattern within 1 kb of the TSS is
visible in blood-derived cfDNA. All fragments are studied. c Averaged and normalized WPS120 around the TSS of the same 15,368 genes in urine-
derived cfDNA. An elongated, “degraded” positional signal within 500 bp of the TSS is visible. All fragments are studied. d Quantified nucleosome
positioning signal strength around the TSS ranked by gene expression in six healthy controls. Blood-derived cfDNA fragments 140–200 bp in
length are studied. The nucleosome positioning signal strength at the TSS is averaged for bins containing 1000 genes in order of descending
whole blood expression levels. Shown are 15,368 autosomal genes with non-zero expression in GTEx. The nucleosome positioning signal strength
was also calculated for 2447 genes with zero whole blood expression and 1000 random genomic loci, for which it equals close to zero (see the
“Methods” section for additional detail). a–c Merged K16 datasets are analyzed. d All merged control datasets are analyzed. Black dashes
represent the average of six healthy controls, error bars represent SEM. NPS nucleosome positioning signal
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reads, 32% more CpGs covered at 5 × 107 reads, 18%
more CpGs covered at 1 × 108 reads; see Additional file
1: Fig. S12 and S13).

cfNOMe libraries maintain cfDNA fragmentation hallmarks
and are suitable for nucleosome footprinting analyses
In order to test whether enzymatic cytosine conversion in-
terferes with nucleosome footprinting analyses, we per-
formed cfDNA fragmentation pattern analysis as previously
described [1, 3], calculating the so-called windowed

protection score (WPSn). As with unconverted cfDNA li-
braries, nucleosome occupancy is easily inferred from enzy-
matically converted cfDNA (Fig. 4a). We studied the
nucleosome occupancy across the transcription start sites
(TSS) of all autosomal genes in our samples, also using
gene expression values from the public GTEx portal for all
available non-cultured tissues. The known high degree of
nucleosome organization around the TSS of transcription-
ally active genes was preserved, with a strong negative ag-
gregate WPS signal around the TSS representing the
nucleosome-free region (NFR) and a strong peak for the

Fig. 5 Nucleosome footprinting in bisulfite-treated cfDNA datasets. In a direct comparison between bisulfite-treated and enzymatically converted
cfDNA libraries of similar size, the nucleosome positioning is clearly apparent from the enzymatically converted cfNOMe dataset, but only barely
recognizable in the bisulfite-treated dataset. This difference can be observed when analyzing all fragment lengths in aggregate (c, d) and is even
more pronounced in the long fragments (a, b). e Number of reads aligning to the transcription start site ±2 kb of 8910 autosomal (+)-stranded
genes. Dataset sizes were equalized to exactly 100 million aligned reads for this comparison. cfNOMe libraries cover these genomic positions
twice as well compared to bisulfite-treated libraries. The merged datasets for each specified individual were used for all calculations
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well-phased + 1 nucleosome immediately downstream of
the NFR (Fig. 4b). The pattern was less apparent in urine-
derived cfDNA. This is likely due to the presence of active
nucleases in the urine, the long retention period of urine in
the urinary tract prior to voiding, and therefore an in-
creased fragment degradation of urinary cfDNA in vivo [5,
33, 34] (Fig. 4c). Genes with no expression in whole blood
generate no such WPS signal in blood-derived cfDNA
(Additional file 1: Fig. S14). We compared the expression
levels of all autosomal genes in whole blood to the nucleo-
some positioning signal in blood-derived enzymatically
converted cfDNA around the studied genes’ TSS. We ob-
served a robust negative correlation between gene expres-
sion rank in whole blood and the degree of nucleosomal
organization. This correlation was equally strong when ana-
lyzing only the more abundant medium length cfDNA frag-
ments of 140 bp up to 200 bp (R =−0.85, p = 1.4E−43; Fig.
4d) or the long cfDNA fragments of 200 bp up to 500 bp
(R = −0.85, p = 3.2E−43; Additional file 1: Fig. S15).
We then performed a downsampling series with the

largest cfNOMe control dataset (healthy control K16)
to investigate the minimum necessary coverage for
robust nucleosome occupancy studies using this assay.
For aggregate analysis of nucleosome occupancy
around the TSS of 1000 genes, a cfNOMe dataset
with 200 million aligned reads still delivered a clear
WPS signal. At 100 million aligned reads or less, sig-
nal noise increases. No discernable signal remains at
or below 20 million aligned reads (Additional file 1:
Fig. S16). It is reasonable to assume that reliable ag-
gregate analyses of fewer positions would require lar-
ger sequencing datasets.
cfNOMe and bisulfite-treated libraries showed indis-

tinguishable fragment size profiles (Additional file 1:
Fig. S17 and S18). However, the correlation between
the measured nucleosome positioning and gene expres-
sion levels seen in cfNOMe datasets was less clear in
similarly sized datasets generated through bisulfite
sequencing (R = −0.27, p = 0.06 for medium length frag-
ments; Fig. 4d). We observed much weaker WPS signals
in bisulfite-treated cfDNA libraries in general as the
most likely explanation for this (Fig. 5a–d). Given the
strong bias of bisulfite sequencing against GC-rich re-
gions, we investigated the sequencing coverage of
bisulfite-treated datasets at transcription start sites
genome-wide. TSS are known to have an above average
GC and CpG content [35], and a higher GC content is
associated with higher rates of transcription [36]. In
datasets of equal size, the TSS-specific coverage was re-
duced by 50% when bisulfite treatment was used (bisul-
fite 58.9 ± 31.6 reads; cfNOMe 117.6 ± 27.3 reads; p <
1.0E−99; Fig. 5e).
Further investigating the correlation between nu-

cleosome positioning and gene expression, we

compared the nucleosomal organization around the
transcription start sites of genes with high expression
in the kidney and bladder between blood- and urine-
derived cfDNA. Concordantly to the above results, we
detected a clear nucleosomal positioning signal in
urinary cfDNA, but not in blood-derived cfDNA
(Fig. 6a–c). This represents an independent way to
qualitatively identify large cfDNA tissue-of-origin
components.
Nucleosome spacing tends to differ between genes de-

pending on their transcriptional activity, with NFR
widths being higher at the TSS of actively transcribed
genes [37]. We observed significant differences of the
interpeak distances (IPD [±SEM]) in the most highly
expressed (311.5 ± 1.6 bp) compared to the least
expressed kidney genes (294.5 ± 1.5 bp; Wilcoxon rank-
sum p = 7.9E−12) in urine-derived cfDNA, but not when
comparing highly and lowly expressed whole blood
genes in blood-derived cfDNA (218.9 ± 0.6 bp vs.
213.3 ± 0.5 bp; Wilcoxon rank-sum p = 0.33; Additional
file 1: Fig. S19).

Deconvolution of cfDNA tissues-of-origin from cfNOMe
data
Similarly to previously published methodology [2, 4],
genome-wide methylation metrics and methylation levels
at loci with a tissue-specific methylation pattern were
extracted (Additional file 1: Fig. S20). We used methyla-
tion signature reference data of 25 tissues [4] (Additional
file 1: Fig. S9) and performed a linear least squares-
based analysis of each dataset against these references to
calculate each cfDNA sample’s respective tissue compos-
ition (Additional file 1: Fig. S21 and S22).
Two patients in this study had previously received a

kidney transplant for which donor DNA could be ob-
tained: one patient (P29) from a first-degree relative and
the other (P27) from an unrelated deceased donor. Pa-
tient P29 was analyzed twice: once during an episode of
acute graft dysfunction, and again after improvement of
graft kidney function (see Additional file 1: Table S7 for
additional clinical data). Using the genotypic differences
of the kidney graft, we estimated the renal cfDNA frac-
tion in these NGS datasets. These values can be seen as
the “ground truth.” Patients P29 and P27 had a kidney
cfDNA fraction (± 95% CI) of 9.7% ± 0.6% and 6.0% ±
0.3% in their blood, respectively, during the acute stages
of disease. After improvement of kidney function in pa-
tient P29, the renal cfDNA as calculated from genotype
differences decreased markedly from 9.7% ± 0.6% to
2.9% ± 0.4%. The renal fraction in urine-derived
cfDNA for patients P29 and P27 during the episode
of graft rejection was calculated as 63.2% ± 1.6% and
67.7% ± 0.5%, respectively, and as 71.8% ± 1.5% in the
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follow-up measurement in patient P29 (Additional file
1: Fig. S4).
The renal cfDNA proportions as inferred from methy-

lation deconvolution were overall closely correlated with
the values calculated based on donor SNPs (R = 0.98,
p = 6.3E−04; Additional file 1: Fig. S23a), although the
deconvolution approach did not show a corresponding
decrease in the renal cfDNA of patient P29 after recov-
ery. Additionally, the deconvolution-inferred values for
blood-derived renal cfDNA were significantly lower in
healthy controls than in patients during acute kidney in-
jury or kidney graft dysfunction (p = 0.002; Additional
file 1: Fig. S23b).
This kidney graft-dependent validation of renal cfDNA

was not possible in patient P25 suffering from acute
kidney injury in the absence of a renal allograft. How-
ever, methylation deconvolution also detected elevated
levels of renal cfDNA in the blood of this individual.
In the replication cohort, we notably detected the

highest proportion of pancreatic and hepatic cfDNA in
the blood of patient P30, who suffered from acute necro-
tizing pancreatitis and had elevated liver enzymes at the
time of sample collection (Additional file 1: Fig. S24).
Patient P31, suffering from polycystic kidney disease,
showed elevated levels of renal cfDNA in the blood

(3.2% vs. 1.0% ± 0.6% in six healthy controls). Patient
P32 with primary hyperoxaluria type 1 (PH1) and more
than 5 years on chronic hemodialysis after kidney graft
loss also displayed (less markedly) increased renal
cfDNA levels in her blood (2.0%); however, we were un-
able to detect any additional perturbations in cfDNA
composition related to her other main clinical problem
of PH1-related bone disease. It should be noted that no
methylation reference for the bone was included in the
used tissue reference set. An increase in bone-associated
cfDNA would therefore not be recognizable to the de-
convolution algorithm.
Our deconvolution results for all 25 studied tissues

were highly correlated between technical replicates, as
well as between the two blood samples and three urine
samples collected from healthy individual K17 at differ-
ent time points (Additional file 1: Fig. S25). To fully as-
sess the variability of cellular turnover in healthy
individuals, however, a larger set of healthy control indi-
viduals would be needed.

Discussion
Using a non-disruptive enzymatic method of cytosine
conversion, we are able to generate high-fidelity methy-
lome datasets from cfDNA. We performed analyses of

Fig. 6 Windowed protection score with a 200-bp window size (WPS200) at the TSS ± 2 kb of genes with high tissue expression in the bladder and
kidney, but low expression (< 0.5 transcripts per million) in whole blood. The “high expression” groups for the kidney and bladder contained
genes with expression levels between 4.5 and 928.0 transcripts per million and 7.8 and 731.3 transcripts per million, respectively. For genes with
the highest bladder expression (a) and kidney expression (b), a clear nucleosome positioning signal in urine-derived cfDNA, but not in blood-
derived cfDNA, is visible. For comparison, genes with the highest expression in whole blood (c) have a WPS200 peak in both urine- and blood-
derived cfDNA, as most of these genes are ubiquitously expressed. High-expression gene groups contain n = 1000 genes; zero expression gene
groups contain n = 1458 genes for the bladder, n = 1429 for the kidney, and n = 2447 for the whole blood. d Overlap between genes with high
kidney- and bladder-expression levels according to GTEx. About 38% of genes are shared between the two groups. e Overlap between genes
with zero expression according to GTEx. About 36% of genes are shared between all groups. Fragments of 200–500 bp are studied in the merged
datasets of the three healthy control individuals K16, K17, and K18. X-axes: offset from TSS in base pairs, Y-axes: normalized aggregate WPS200
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two independent epigenetic modifications, cytosine
methylation and nucleosome occupancy, with the help
of a custom bioinformatic analysis toolkit. Together, we
term this method “cell-free DNA-based Nucleosome Oc-
cupancy and Methylation profiling” (cfNOMe).
Unlike genotype-based studies of cell-free DNA, whose

diagnostic usefulness is currently limited to cancer [8],
transplantation [10], and pregnancy [9], epigenetic
profiling of cfDNA promises almost universal applicabil-
ity if a number of methodological challenges can be
overcome.
In our experiments, bisulfite conversion performed

better in terms of cytosine conversion efficiency. We ob-
served over-conversion in one of our two enzymatically
converted datasets. A new version of the enzymatic con-
version kit has since been released, promising improved
conversion robustness and reliability. Still, in terms of
uniformity of coverage, enzymatic conversion delivered
much improved results compared to bisulfite treatment.
However, we did not perform a detailed or systematic
comparison of the methylation conversion rate between
bisulfite and enzymatic treatment in this study, meaning
that these observations cannot be generalized. Methyla-
tion analyses using enzymatic conversion, including the
methylation-based deconvolution of cfDNA tissues-of-
origin, generated reproducible and reliable results
between replicates. By including two kidney transplant
recipients in our study, we were able to compare the de-
convolution results directly with the established method
of calculating kidney graft cfDNA fractions using geno-
type differences between donor and recipient. While
there was generally good agreement between the two ap-
proaches, small discrepancies remained. An imprecision
of methylation deconvolution on the order of several
percentage points has been observed consistently in
prior studies [2, 4, 5] and remains to be overcome. In
patients with acute renal dysfunction from acute kidney
injury and graft rejection, we observed higher propor-
tions of renal cfDNA in blood using methylation decon-
volution, in line with earlier results from genotype-based
allograft dysfunction studies [10]. Higher fractions of
renal cfDNA were also seen in two out of three patients
with chronic kidney disease, as well as high levels of
pancreatic and hepatic cfDNA in a patient on chronic
peritoneal dialysis for atypical hemolytic uremic
syndrome-associated end-stage renal disease compli-
cated by acute necrotizing pancreatitis and elevated liver
enzymes. Using a diverse bisulfite-converted reference
dataset of 25 tissues [4] in our deconvolution approach,
we observed a high degree of inter-individual variability
in the calculated tissue composition of cfDNA. Particu-
larly, hepatocyte- and adipocyte-derived cfDNA was de-
tected by the deconvolution algorithm in several healthy
controls and patients. While levels of hepatic cfDNA ≥

1% in healthy controls and even ≥ 50% in sepsis and
hepatopathy patients have reliably been observed in
other studies [2, 4], the adipocyte contribution had
either not been measured or been measured to be negli-
gible. As such, it is unclear whether these proof-of-
principle deconvolution results, measuring enzymatically
converted samples against bisulfite-converted references,
are fully accurate. We also calculated significant propor-
tions of prostate-derived cfDNA in the urine of patients
and controls, irrespective of the individual’s sex. As the
cladogram in Additional file 1: Fig. S9 shows, the pros-
tate methylation reference is very similar to the bladder
and kidney references, likely increasing the risk for this
kind of misclassification. A previous study on the com-
position of urinary cfDNA by Cheng et al. [5] did not
contain a prostate or bladder tissue reference, but an
urothelium reference. The authors of this study mea-
sured highly variable levels of urothelium-derived
cfDNA between 0 and 64% in the urine of kidney trans-
plant recipients.
Collectively, these observations highlight important

limitations of this study and the need for future research
to (1) generate enzymatically converted reference data-
sets for use with cfNOMe or other ECC-based cfDNA
deconvolution studies and (2) generate comprehensive
cell type-specific methylation references. This will, in
our estimation, reduce the risk of misclassification be-
tween heterogeneous tissues with overlapping cellular
compositions and further improve the resolution and
sensitivity of future assays required for diagnostic
purposes.
Additionally, the expected accuracy of NGS-based

methylation analyses is a function of the sequence cover-
age at the position of interest. We therefore envision
that targeted enrichment approaches in conjunction with
enzymatic cytosine conversion could enable the inexpen-
sive generation of datasets with high coverage depths for
even more reliable cfDNA methylation studies.
We show that the enzymatic cytosine conversion ap-

proach does not interfere with even highly sensitive frag-
mentation analyses to study nucleosome occupancy, as
the cfDNA fragmentation information is fully preserved.
While nucleosome occupancy studies are also possible
on bisulfite-converted sequence libraries at a lower reso-
lution, we observed significantly weaker nucleosome
footprinting signals at similar sequencing depths in the
same samples. Using the cfNOMe approach, nucleosome
occupancy studies are turned from an expensive add-on
test into an inexpensive in silico analysis step, bringing
them closer to a broader clinical application. Conse-
quently, one major takeaway of this study is whenever
cfDNA methylome data is being generated in this way,
investigators should also take the opportunity to look at
its fragmentation patterns for additional insight, e.g., as

Erger et al. Genome Medicine           (2020) 12:54 Page 11 of 14



was recently demonstrated by Ulz and colleagues in a
cancer context [15].
Our findings also indicate that such nucleosome occu-

pancy studies are more problematic in urine-derived
cfDNA, with the substantial in vivo degradation of cfDNA
fragments [5] obscuring the underlying nucleosome-
associated fragmentation pattern signals. We also did not
observe a clinically meaningful difference in the urinary
renal cfDNA fraction of a patient with acute kidney graft
rejection before and after improvement of renal function,
in good agreement with previous reports of a very large
variability in urinary cfDNA composition in states of both
health and disease [5]. For these reasons, we currently re-
gard blood-derived cfDNA deconvolution and nucleo-
some occupancy studies as overall more promising in
terms of diagnostic usefulness and broad applicability.

Conclusions
In conclusion, the cfNOMe assay for epigenetic analysis of
cfDNA is a novel two-in-one workflow that enables more
comprehensive, efficient, and affordable studies of the
cfDNA-associated epigenetic landscape. Fragmentation
analyses can be done on converted datasets with a low
amount of effort. We present proof-of-principle data for
the utility of methylation, as well as nucleosome occu-
pancy signatures, in identifying and quantifying cfDNA
tissues-of-origin. Future research will need to expand on
the synergies of methylation and nucleosome occupancy
profiling in the clinical context.
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