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Abstract

Background: The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over
the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with
acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the
severe cases call for a better characterization and understanding of the changes in the immune system.
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Methods: In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell
transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using
a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used
to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify
known or novel drug candidates based on finding from data-driven findings.

Results: Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a
data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were
prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an
independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients
(44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples
derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly
specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific
drug candidates targeting the dysregulated systemic immune response of the host.

Conclusions: Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not
simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for
COVID-19 since they capture granulocytes which are major drivers of disease severity.

Keywords: COVID-19, Blood transcriptomics, Transcriptome, Co-expression analysis, Stratification, Molecular disease
phenotypes, Granulocytes, Neutrophils, Drug repurposing

Background
Pandemic spread of the recently emerged coronavirus, se-
vere acute respiratory syndrome-coronavirus 2 (SARS-
CoV-2), has resulted in over 84 million confirmed infected
individuals and over 1.8 million deaths worldwide (WHO,
covid19.who.int, as of January 6, 2021) from the resulting
severe respiratory illness, called coronavirus disease 2019
(COVID-19) [1–3]. Based on clinical observations, it has
become clear that there is great variety in disease mani-
festation, ranging from asymptomatic cases, to flu-like
symptoms, to severe cases needing mechanical ventilation,
to those who do not survive [4–8]. Increasing evidence
suggests that the immune system plays a pivotal role in
determining the severity of the disease course and it has
been suggested that different molecular phenotypes might
be responsible for the heterogeneous outcome of COVID-
19 [9–14]. Identifying these molecular phenotypes might
not only be important for a better understanding of the
pathophysiology of the disease, but also to better define
patient subgroups that are more likely to benefit from spe-
cific therapies [15–20]. Indeed, while vaccines are still
under development, finding an effective and patient-
tailored therapeutic management for COVID-19 patients
including targeting derailed immune mechanisms [21–23]
is key to mitigate the clinical burden as well as to prevent
further disease fatalities [18, 19].
The analysis of peripheral blood-derived immune pa-

rameters in inflammatory and infectious diseases either
by classical testing, including flow cytometry and serum
protein measurements, or by omics technologies, includ-
ing transcriptomics, has been proven very valuable in
the past [24–32]. In COVID-19 patients, monitoring

peripheral blood as a proxy for the ongoing changes
within the circulating cells of the immune system has re-
vealed lymphopenia to correlate with disease severity
[33]. Single-cell analysis of blood-derived cells revealed
downregulation of MHC molecules on monocytes and
granulocytes [34], immune cell exhaustion [35], and a
dysregulated myeloid cell compartment [34, 36] includ-
ing dendritic cells [37] in a disease stage-dependent
manner. Serial immune response analyses revealed four
immune signatures represented by growth factors, two
cytokine-defined phenotypes as well as a chemokine-
defined phenotype [14]. While an early elevation in cyto-
kine levels was associated with worse disease outcomes,
patients with moderate COVID-19 displayed a progres-
sive reduction in antiviral and antifungal immune re-
sponses [14]. Moreover, impaired type I interferon
responses were seen in severe COVID-19 cases [38]. In
another study, three distinct patient immunotypes were
related to a poor clinical trajectory when combining flow
cytometry, single-cell proteomics, and clinical observa-
tions [12]. Furthermore, several studies reported in-
creased IL-6 serum levels to be a hallmark of COVID-19
[9, 13, 39–41], but also TNF and IL-8 [41]. A very recent
large multi-omics longitudinal observational study iden-
tified a sharp transition between mild and moderate dis-
ease, indicating that targeting such a shift therapeutically
might be beneficial for these patients [13].
Indeed, while one can envision mild and/or early cases

to benefit from antiviral drug treatments currently under
clinical investigation, more severe cases may benefit
from treatment to mitigate the excessive systemic im-
mune reactions resulting in progressing pneumonia and
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even respiratory failure associated with severe COVID-
19 [4–9]. The detrimental role of the systemic inflamma-
tion in the late phase of the disease has become clear, as
the elevated inflammatory signaling has been associated
with disease morbidity [6, 9, 13, 38–42]. Thus, a better
understanding of the dysregulation of the host response
to the infection leading to immunopathology is urgently
needed to dissect and comprehend the immune parame-
ters accompanying the heterogeneous disease severity
seen upon SARS-CoV-2 infection.
Based on previous experience with other infectious

diseases [24–30], we hypothesized that whole blood
transcriptomes should allow us to (1) determine immune
cellular characteristics and functions in COVID-19 pa-
tients, (2) reveal heterogeneous molecular phenotypes of
patients with similar clinical presentation, (3) define
commonalities and differences of COVID-19 in compari-
son to other inflammatory conditions, and (4) predict
potential drug repurposing that might counteract ob-
served immune dysregulations.
Here, by using blood transcriptomes, we provide evi-

dence for molecular subtypes within the immune re-
sponse of COVID-19 patients beyond distinguishing
mild and severe cases only. In addition, molecular
changes in blood of severely affected patients are strik-
ingly associated with changes in the granulocyte com-
partment. Furthermore, blood transcriptomes of
molecular subtypes of COVID-19 patients seem to be
unique in comparison to more than 2600 samples de-
rived from other infections, inflammatory conditions,
and controls. Finally, reverse drug target prediction
using patients’ blood transcriptomes revealed known as
well as additional new potential targets for further evalu-
ation. Our data might also serve as a starting point for a
large-scale assembly of molecular data collected during
currently ongoing and future therapy trials for COVID-
19 patients based on whole blood transcriptomes.

Methods
Human cohorts
Whole blood samples for RNA-seq analysis
The study was conducted between March 13 and March
30, 2020. A total of 6 ml of blood was sampled from pa-
tients with community-acquired pneumonia (CAP) by
SARS-CoV-2 within the first 24 h of hospital admission.
CAP was defined as the presence of diffuse infiltrates in
chest X-ray or chest computed tomography and positive
molecular testing of respiratory secretions for SARS-
CoV-2. Exclusion criteria were infection by the human
immunodeficiency virus, neutropenia, and any previous
intake of immunosuppressive medication (corticoste-
roids, anti-cytokine biologicals, and biological response
modifiers). The studies were conducted under the 23/
12.08.2019 approval of the Ethics Committee of Sotiria

Athens General Hospital and the 26.02.2019 approval of
the Ethics Committee of ATTIKON University General
Hospital. Written informed consent was provided by pa-
tients or by first-degree relatives in case of patients un-
able to consent. Patients were classified based on the
WHO ordinal scale: mild =WHO1–4 and severe =
WHO5–7. “Immune classification” of the patients is
based on the criteria used in Giamarellos-Bourboulis
et al. [40]: MAS for patients with > 4.420 ng/ml ferritin,
dysregulation for patients with < 4.420 ng/ml ferritin
with < 5000 molecules of HLA-DR+/CD14+ cells, and
intermediate for those patients lying in between MAS
and dysregulation. The following information was re-
corded: white blood cell count and differential, adminis-
tered treatment, and 28-day outcome. Patients were
sampled within 24 h upon admission to the hospital. A
volume of 2.5 ml of the collected blood was transferred
into one PAXgene tube and stored at − 80 °C. The
remaining was used for flow cytometry analysis. A simi-
lar amount of blood was sampled from 10 controls,
matched for age, sex, and Charlson’s comorbidity index.
They were subject to testing of the nasopharyngeal se-
cretion for SARS-CoV-2 and all confirmed to be asymp-
tomatic and seronegative.
For the second cohort, whole blood samples were col-

lected for RNA-seq analysis in PAXgene tubes from 30
patients upon admission to the Intensive Care Unit of
the Radboud University Medical Center in Nijmegen,
the Netherlands. The study was carried out in accord-
ance with the applicable rules concerning the review of
research ethics committees and informed consent. All
patients or legal representatives were informed about the
study details and could decline to participate. COVID-19
was diagnosed by a positive SARS-CoV-2 RT-PCR test
in nasopharyngeal and throat swabs and/or by typical
chest CT-scan findings. Exclusion criteria were
hematological malignancies and/or active chemotherapy,
solid organ transplant, autoimmune diseases, and pre-
existent use of high-dose corticosteroids.

Granulocyte samples for RNA-seq analysis
This study was approved by the Institutional Review
Board of the University Hospital Bonn (073/19 and 134/
20). After providing written informed consent, 16
COVID-19 patients (44 samples) were included in the
study. In-patients who were not able to consent at the
time of study enrollment, consent was obtained after re-
covery. COVID-19 patients who tested positive for
SARS-CoV-2 RNA in nasopharyngeal swabs were re-
cruited at the Medical Clinic I of the University Hospital
Bonn between March 30 and May 17, 2020. Longitudinal
samples were included from day 1 to 20 after onset of
symptoms and grouped into day 1–10 and 11–20 ac-
cording to previous reports [34, 43].
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Granulocytes were isolated from EDTA-treated or
heparinized peripheral blood by density centrifugation
over Pancoll or Ficoll-Paque density centrifugation
(density: 1.077 g/ml). Granulocyte fractions were then
treated with 10ml RBC lysis buffer (Biolegend) for 10
min. After RBC lysis, cells were washed with DPBS and
recovered by centrifugation at 300×g for 10 min. Gran-
ulocyte pellets were then lysed with 500 μl of QIAzol
(Qiagen), shortly vortexed, and incubated 5 min at RT
prior storage at − 80 °C until RNA extraction.

Rhineland Study as control samples within the integrated
dataset for disease comparison
Study population
The Rhineland Study is an ongoing community-based
cohort study in which all inhabitants of two geographic-
ally defined areas in the city of Bonn, Germany, aged
30–100 years are being invited to participate. Persons
living in these areas are predominantly German with
Caucasian ethnicity. Participation in the study is possible
by invitation only. The only exclusion criterion is insuffi-
cient German language skills to give informed consent.

Ethical approval
Approval to undertake the Rhineland Study was ob-
tained from the ethics committee of the University of
Bonn, Medical Faculty. The study is carried out in ac-
cordance with the recommendations of the International
Conference on Harmonization (ICH) Good Clinical
Practice (GCP) standards (ICH-GCP). Written informed
consent was obtained from all participants in accordance
with the Declaration of Helsinki.

Blood withdrawal
Overnight fasting blood was collected from all partici-
pants between 7:00 and 9:30 AM, including a PAXgene
tube for RNA extraction.

Flow cytometry techniques
Whole blood cells were incubated for 15 min in the dark
with anti-CD45 PC5 (emission 667 nm, Beckman
Coulter). Fluorospheres (Beckman Coulter) were used
for the determination of absolute counts. Cells were ana-
lyzed after running through the CYTOMICS FC500 flow
cytometer (Beckman Coulter Co, Miami, FL). Isotypic
IgG controls stained also with anti-CD45 were used for
each patient. Gating to identify neutrophils and lympho-
cytes was done by the characteristic sideward scattering
of CD45-positive cells (Additional file 2: Figure S8).

Whole blood RNA isolation
Total RNA was isolated from whole blood samples
stored and stabilized in PAXgene RNA tubes using the
Qiagen PAXgene Blood miRNA kit according to the

manufacturer’s guidelines. Eluted RNA was dissolved in
RNase-free water. The quality and quantity of RNA were
evaluated by visualization of 28S and 18S band integrity
on a Tapestation 4200 system (Agilent).

RNA-sequencing
Total RNA was converted into double-stranded cDNA
libraries using the TruSeq Stranded Total RNA with
Ribo-Zero Globin kit (Illumina). In brief, ribosomal and
globin mRNA were depleted from 750 ng purified total
RNA using biotinylated, target-specific oligos combined
with Ribo-Zero rRNA removal beads; remaining RNA was
fragmented using divalent cations under elevated
temperature. First-strand was generated using Super-
Script2 RT (Invitrogen) supplemented with actinomycin
D, followed by second-strand synthesis with dUTP re-
placing dTTP. 3′ ends were adenylated and index adapters
were ligated before subsequent PCR amplification to yield
the final library. Remaining overhangs were converted into
blunt ends via exonuclease/polymerase activities, and en-
zymes were removed. Selective enrichment of DNA frag-
ments with ligated adaptor molecules was performed
using Illumina PCR primers in a 15-cycle PCR reaction,
followed by purification cDNA using SPRIBeads (Beck-
man Coulter). Libraries were quantified by Qubit dsDNA
HS Assay (Thermo Fisher Scientific), and fragment size
distribution was determined using the HS D1000 assay on
a Tapestation 4200 system (Agilent). High-throughput se-
quencing was carried out with a NovaSeq™ 6000 Sequen-
cing System S2 (50bp paired-end reads), and data was
converted into fastq files using bcl2fastq2 v2.20.

RNA-sequencing analysis
Sequenced reads were aligned and quantified using
STAR: ultrafast universal RNA-seq aligner (v2.7.3a) [44]
and the human reference genome, GRCh38p13, from
the Genome Reference Consortium. Raw counts were
imported using DESeqDataSetFromHTSeqCount func-
tion from DESeq2 (v1.26.0) [45] and rlog transformed
according to DESeq2 pipeline. DESeq2 was used for the
calculation of normalized counts for each transcript
using default parameters. All normalized transcripts with
a maximum over all row mean lower than 10 were ex-
cluded resulting in 37,526 present transcripts. Differen-
tially expressed genes were calculated for the scenario
status (COVID-19 vs controls), mild/severe (severe
COVID-19 vs controls, mild COVID-19 vs controls, and
severe vs mild COVID-19), and new_cluster (1vs6, 2vs6,
3vs6, 4vs6, and 5vs6) separately using a p value cutoff of
0.05, an adjusted p value (IHW) < 0.05 (independent hy-
pothesis weighting), and a FC of 2. All present tran-
scripts were used as input for principal component
analysis. The top 25% most variable transcripts within
the dataset were selected and visualized in a heat map.

Aschenbrenner et al. Genome Medicine            (2021) 13:7 Page 4 of 25



DEGs were visualized as DE bar plots and were used as
input for volcano plots.

Gene ontology enrichment analysis (GOEA)
To test for functional enrichment within all three sce-
narios, we performed GOEA for up- or downregulated
transcripts in the respective comparison using gene
ontology set of biological processes. Gene set
“c5.bp.v7.0.symbols.gmt” was obtained from the Molecu-
lar Signatures Database (MSigDB) [46]. compareCluster
and enrichGo functions from the R package ClusterPro-
filer (v3.12.0) [47] were used to determine significant en-
richment (q value < 0.05) of biological processes. All
present genes were used as background (universe).

Filtering for transcription factors, epigenome,
surfaceome, and secretome
All present transcripts were filtered and sorted by their
variance in the dataset. The 20 most variable genes of
each category were selected and visualized using a heat
map. Transcription factor lists were extracted from [48],
the epigenome gene list was literature-driven, and sur-
face and secretome markers were extracted from the
Human Protein Atlas [49].

Clustering of patients according to clinical parameters
The contribution of each clinical parameter to the tran-
scriptome in COVID-19 patients was determined using
linear modeling of each parameter separately with PC1.
Clinical parameters with rounded up adjusted r-square
≥ 0.2 were used for agglomerative hierarchical clustering
of the COVID-19 patients. A dissimilarity matrix based
on Gower distance was calculated using the daisy func-
tion from the cluster packages (version 2.1.0). Agglom-
erative hierarchical clustering was performed using the
hclust function, defining the method with a setting for-
ward.D2 method linkage. We evaluated the clustering by
extracting cluster statistics using the function cluster.-
stats from the package fpc (version 2.2-5). The number
of clusters was chosen at the value at which the lowest
distance among patients within clusters (i.e., low value
of within-cluster sum of squares distance) and preserv-
ing a high distance among clusters (i.e., high average sil-
houette width) was achieved, while still maintaining a
comparable number of individuals among the clusters.

Linear support vector regression
Linear support vector regression [50] was employed to
computationally deconvolute the study’s whole blood
samples. Gene expression tables were normalized with
DESeq2 and were utilized as the input mixture file.
LM22-subsetted signatures for B cells, T cells, NK cells,
monocytes, dendritic cells, eosinophils, and neutrophils
were generated as described on https://cibersort.

stanford.edu/tutorial.php. The algorithm was subse-
quently run with 1000 permutations, and the proportions
of cell types were visualized with ggplot2 (v3.2.1) [51].

CoCena2: Construction of Co-expression network
analysis—automated
To define differences and similarities in transcript ex-
pression patterns among the different groups, CoCena2

(Construction of Co-expression network analysis—auto-
mated) was performed based on Pearson’s correlation.
CoCena2 is a network-based approach to identify clus-
ters of genes that are co-expressed in a series of
observed conditions based on data retrieved from RNA-
sequencing. The tool offers a variety of functions that
allow subsequent in-depth analysis of the biological con-
text associated with the found clusters. First, we have
calculated the variance for each gene in the complete
dataset. Nine thousand three hundred seventy-eight of
all present genes show a variance of at least 3rd quantile
of all variances. Therefore, we selected the 10,000 most
variable genes as input for the analysis.
To identify genes whose expression patterns are highly

similar across all tested samples, pairwise Pearson’s cor-
relation coefficients are calculated using the R package
Hmisc (v4.1-1). The underlying assumption of the Pear-
son correlation to the data is that it is normally distrib-
uted, which is a valid assumption to make in the context
of gene expression when looking at expression patterns
within different experimental conditions. The correlation
between each pair of genes is the basis for the subse-
quent network construction. Therefore, the tool focuses
mainly on positively correlated gene pairs, since the rate
of confirmation of an edge representing an association
of genes is higher than that of a non-existing
association.
In order to refine the structure of the upcoming net-

work and to unravel the condition-specific signatures, a
correlation cutoff is proposed to mark the minimal
correlation a pair of genes must exhibit for their co-
expression to be taken into account. The cutoff is deter-
mined based on different criteria:

1) Scale-free topology

Gene expression networks have been argued to have a
scale-free topology [52], meaning that the majority of
vertices has a low number of adjacent edges, also re-
ferred to as the vertex’ degree, whereas only very few
vertices have a high degree. The degree distribution of
scale-free networks asymptotically follows a power law.
To assess the scale-free topology of a network con-
structed by a given correlation cutoff, a log-log plot of
the degree distribution is constructed and the R2 value
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of the resulting linear regression is used to evaluate the
scale-free criterion.

2) Number of graph components

A graph component is a subset of nodes, such that
there is a path from every node within the component
to any other node in that same component but none
connecting the nodes to any outside of that component.
Even though there exist functional collections of genes
that cooperate to fulfill a common task, these collections
are not expected to be operating independently within
the cell. Thus, the cutoff proposal favors graphs with a
small number of components.

3) Number of edges

To avoid a highly connected graph with great lack of
structure—“hairball,” the cutoff is chosen such that the
number of edges is minimized while respecting the
abovementioned criteria.
A Pearson correlation coefficient cutoff of 0.857 (6085

nodes and 252,584 edges) was chosen to construct scale-
free networks.
The undirected co-expression network is constructed

based on the gene pairs which show a higher correlation
in their expression pattern than the set cutoff. A series
of network-based clustering algorithms is available to
then identify clusters of strong co-expression within the
network. An option “auto” is provided, which tests the
different clustering algorithms and picks the one that
achieves the highest modularity score. Unbiased cluster-
ing was performed using the “label propagation” algo-
rithm in igraph (v1.2.1) [the igraph software package for
complex network research] and was repeated 1000
times. Modules with less than 40 genes were discarded.
Genes assigned to more than 5 different clusters during
the iterations received no cluster assignment.
To assess the expression strength of the found gene

clusters in the different studied conditions, the group
fold changes (GFCs) of the conditions are calculated for
each gene by calculating the mean expression of a gene
over all samples and then computing the fold change of
the mean gene expression within each condition from
the overall mean. The GFCs of all genes within one clus-
ter are then added and divided by the total number of
genes per cluster, resulting in condition-specific GFCs
per cluster. By using the GFC, it is possible to illustrate
a directional change for all conditions including the con-
trol samples in respect to the overall GFC. Agglomera-
tive hierarchical clustering was performed by the hclust
function (cluster package, version 2.1.0), using a dissimi-
larity matrix of samples based on the GFC values of each
sample defined with the daisy function for calculating

the Euclidean distances. The number of clusters was set to
achieve a low within-cluster sum of squares distance and a
high average silhouette, while preserving a comparable num-
ber of individuals within each cluster. The clinical parame-
ters and the GFC results are displayed in a heat map where
conditions are clustered by their GFCs revealing similar and
opposing patterns (Cluster/Condition heat map). The ex-
pression pattern of the modules can be further used for add-
itional analysis, e.g., stratification in another cohort.
Utilizing the R package clusterProfiler, CoCena2 auto-

matically analyzes the gene clusters with respect to dif-
ferent kinds of gene set enrichments: the genes within
each cluster are scanned for enrichment in KEGG [53],
Hallmark [54], Gene Ontology terms [55], and Reactome
[56]. Using the R package pcaGoPromoter [57], the genes
are also analyzed for enrichment of transcription factor
binding sides, and if the predicted transcription factors
are present in the data, their expression profile is visual-
ized to facilitate evaluation of their possible role.
To investigate the interactions between protein-

coding and long non-coding RNAs, we utilized the
enricher function from the clusterProfiler package.
We performed an enrichment analysis for lncRNA
species, using the protein-coding genes that belong to
the lightgreen cluster as the input gene list and all
the network protein-coding genes as background. The
annotation table defining lncRNA to protein-coding
RNA was downloaded from the RNA interactome
database RNAInter [58], filtered to only include inter-
actions of lncRNA detected by the RNA-sequencing,
had an experimental validation score of at least 0.5,
and was involved in regulating the function of granu-
locytes [59]. Next, to obtain a comprehensive under-
standing of the lncRNA that may be relevant for this
specific network module, the lncRNA found by the
enrichment analysis with p value < 0.1 were sorted ac-
cording to the highest number of genes. Thereafter,
Spearman’s correlation among the gene expression of
each lncRNA and its corresponding protein-coding
RNAs was performed, and significant protein-coding
RNA genes were plotted in a heat map. The CoCena2

network was visualized by using the ggplot function
from the ggplot2 package. Annotations were gener-
ated by filtering the edges of the network for the 5
top connected transcription factors, epigenetic regula-
tors, and surface and secretome markers in each clus-
ter. GO enrichment analysis was performed on each
cluster by utilizing the enrichGO function from the
clusterProfiler package to assess the overall function-
ality of the cluster using the genes of each cluster as
the input and all the in the network as background.
The top GO term and top connected genes of each
cluster were compiled representing their general
characteristic.
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Granulocyte dataset analysis
Granulocyte raw data was aligned and quantified using
STAR (v2.7.3a) and the human reference genome,
GRCh38p13, from the Genome Reference Consortium.
Raw counts were imported using DESeqDataSet-
FromHTSeqCount function and rlog transformed.
DESeq2 was used for the calculation of normalized
counts for each transcript using default parameters. All
normalized transcripts with a maximum over all row
mean lower than 10 were excluded resulting in 27,781
present transcripts. Differentially expressed genes were
calculated for the severe vs mild for day 1–10 and 11–20
(post 1st symptoms groups) separately using a p value
cutoff of 0.05, an adjusted p value (IHW) < 0.05 (inde-
pendent hypothesis weighting), and a FC of 2. All
present transcripts were used as input for principal com-
ponent analysis. DEGs were visualized as DE bar plots.
To visualize the module expression over the time be-

tween mild and severe case, the granulocyte data was
grouped by the modules identified in Fig. 2 and the
function geom_smooth with default parameters was
used to calculate the estimated curve for the module
gene expression over the time and a confidence band
representing the uncertainty in the estimate.

Data integration for disease comparison
To describe the differences and similarities between
COVID-19 and other diseases, we searched in databases
for genomics data such as Gene Expression Omnibus
(GEO) [60] and ArrayExpress [61] for studies that fulfill
certain criteria: (I) having at least 20 samples, (II) the
disease of study was of relevance (other infections, such
as bacterial and viral, plus diseases that mainly involve
immune dysregulation, such as autoimmune disease),
and (III) library preparation and sequencing technology
differ as little as possible from our COVID-19 protocol,
except for the influenza dataset which comes from a
microarray experiment (GSE111368). The fastq files of
18 additional studies (PRJNA588242, GSE101705,
GSE107104, GSE112087, GSE127792, GSE128078,
GSE129882, GSE133378, GSE143507, GSE57253,
GSE63042, GSE66573, GSE79362, GSE84076,
GSE89403, GSE90081, GSE97590, GSE99992, and the
Rhineland study) were downloaded and aligned with
STAR. The counts were imported into R (v3.6.2) and
were modeled for each gene using DESeq2. Merged raw
counts from the RNA-seq studies were combined with
the microarray study and were filtered for the genes
present in the COVID-19 co-expression network, and
ribosomal protein-coding genes and mitochondrial genes
were removed, yielding a total of 5770 genes and 3176
samples. To account for differences in sequencing depth
across studies as well as between RNA-seq and micro-
array data, a quantile normalization was performed on

the filtered data. Group fold changes were calculated,
where the grouping variable was set to be the disease
status.
To explore COVID-19 associated expression of genes

within the integrated dataset, the data was intersected
with the gene modules previously retrieved from the
COVID-19 CoCena2 network, and the mean group fold
changes were determined per cluster and condition and
visualized in a heat map.
The modules were analyzed for enriched immune cell

markers as provided by CIBERSORT and BD Rhapsody,
and those that showed neutrophil enrichment were
screened for genes representative of different neutrophil
subtypes as recently described [34].

Enrichment of signature from scRNA data of granulocytes
The signatures of different neutrophil states in COVID-
19 as previously described [34] were enriched for the dif-
ferent clusters from CoCena2.
To get a more fine-grained differentiation of the specific

neutrophil states for Fig. 3, the authors kindly provided
additional signatures from the scRNA dataset using a Wil-
coxon rank sum test for differential gene expression im-
plemented in Seurat. Genes had to be expressed in > 10%
of the cells of a cluster, to exceed a logarithmic threshold
> 0.1, and to have > 5% difference in the minimum detec-
tion between two clusters. The following additional com-
parisons were performed: 8 and 9 (pre- and immature
neutrophils combined) vs the rest, and 1, 3, 4, and 6 (neu-
trophil states from control patients) vs the rest. To get
unique signature genes for clusters 0, 2, and 5 (COVID-
19-specific clusters), we took the following approach for
each cluster: (1) calculate DEG for cluster 0 vs all other
clusters, (2) calculate DEG for cluster 0 vs 2 and 5, (3) take
intersection of these two calculations, and (4) remove
genes that occur in more than one of these intersections
of cluster 0, 2, or 5.

Gene set enrichment analysis (GSVA)
The GSVA R package (v1.34.0) [62] was used to test the
enrichment of neutrophil signatures [34] in the normal-
ized gene expression table. The gsva method was used
for the run and data were visualized in a heat map with
the pheatmap (v1.0.12) package.

Overview of drugs
An overview of currently used, recommended, or investi-
gated drugs for treatment of COVID-19 patients was
compiled from drug lists and lists of drugs in clinical tri-
als downloaded from https://www.drugbank.ca/covid-19,
https://www.pharmgkb.org/page/COVID, and https://
clinicaltrials.gov/ct2/results?cond=COVID-19 (last up-
date: 5 June 2020). Classification of the drugs was per-
formed based on the ATC code, as well as additional
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research on the drugs action. Drug target genes were
identified using the DrugBank database [63] (Add-
itional file 7: Table S6). The number of drugs currently
recommended or investigated, and the number of clin-
ical trials within the respective drug classes were visual-
ized using the ggplot2 package [64, 65]. The target genes
of the drugs currently recommended or investigated
with a minimum frequency of 4 were visualized in a
word cloud using the wordcloud package (version 2.6).

Drug prediction
To identify drugs, which reverse the gene expression sig-
nature observed in the comparisons of the COVID-19-
specific clusters compared to the control cluster, the
drug prediction databases iLINCS (http://www.ilincs.
org/ilincs/) and CLUE (https://clue.io/) were accessed.
As input for the drug prediction, the top 1000 (iLINCS)
or the top 100 (CLUE) DEGs were used. Drugs reversing
the COVID-19 gene expression signature (defined by a
negative score) were pooled together with drugs under
investigation in current literature, resulting in a list of
940 unique drugs. Using the iLINCS API (https://github.
com/uc-bd2k/ilincsAPI/blob/master/usingIlincsApis.
Rmd), every gene expression signature from each drug
listed in the signature libraries iLINCS chemical pertur-
bagens (LINCSCP), iLINCS targeted proteomics signa-
tures (LINCSTP), Disease-related signatures (GDS),
Connectivity Map signatures (CMAP), DrugMatrix sig-
natures (DM), Transcriptional signatures from EBI Ex-
pression Atlas (EBI), Cancer therapeutics response
signatures (CTRS), and Pharmacogenomics transcrip-
tional signatures (PG) was downloaded. Labeling was
performed in the following principle: “drug name”_
“database”_“database ID”. Signatures were ordered by
fold change, and only the top 300 genes were used. This
resulted in a total of 62,897 unique drug signatures each
with an up- and downregulated set. Subsequently, GSEA
[66] was performed on the sequencing data for every up-
and downregulated set for each drug and each cluster
comparison. The resulting normalized enrichment
scores (NES) were used to calculate the delta NES for
each drug, defined as ΔNES =NES (down) −NES (up),
ergo the difference of the NES from the downregulated
set and the NES from the upregulated set of each re-
spective drug. These ΔNES values were then k-mean
clustered (k = 40). The clusters showing the highest
ΔNES values for all comparisons and the cluster show-
ing only high ΔNES in the comparison G1 vs G6 (most
severe) were chosen and selected ones of the uniquely
present drugs shown. The leading edge genes of the
downregulation signatures of these drugs for the G1 vs
G6 comparison were examined, and the frequency was
counted. Recurring target genes were plotted on the
CoCena2 network.

Patterns of differential gene expression of genes tar-
geted by drugs which are currently approved or under
investigation for the treatment of COVID-19 patients
were visualized using ggplot2. To this end, target genes
of each drug and their first-degree neighbors were ex-
tracted from several databases and the gene co-
expression networks, respectively. Regulation patterns of
expression of these genes in different COVID-19 patient
groups, as compared to the control group, were classi-
fied as up-/downregulated or not significant (n.s.) when
pairwise comparisons of gene expression of COVID-19
patients and controls were not statistically significant.
The same methodology was applied to genes not in-
cluded in the drug-target list to identify genes which are
not targeted by current drugs but could be potentially
targeted by newly identified drugs.

Results
Whole blood transcriptomes reveal diversity of COVID-19
patients not explained by disease severity
To investigate the host immune response of COVID-19
patients in a systematic approach, whole blood transcrip-
tomes were analyzed from 39 patients and 10 control
donors recruited at the same hospital by RNA-
sequencing (RNA-seq, Fig. 1a, Additional file 1: Table
S1). Two-dimensional data representation using princi-
pal component analysis (PCA) showed separation of
COVID-19 and control samples (Additional file 2: Figure
S1A). Differential expression analysis identified 2289 up-
regulated and 912 downregulated genes comparing
COVID-19 and control samples (FC > |2|, padj < 0.05;
Fig. 1b). Upregulated genes showed greater fold changes
than the downregulated genes (Fig. 1c). Of note, CD177,
markedly expressed in neutrophils [67, 68], was the most
prominently upregulated gene with the lowest p value.
Heightened expression was further found for several
granulocyte- and monocyte-associated molecules, such
as Eosinophil-derived neurotoxin (RNASE2), Haptoglo-
bin (HP), Neutrophil elastase (ELANE), Olfactomedin 4
(OLFM4), Myeloperoxidase (MPO), Resistin (RETN),
matrix metalloproteinases (MMP8, MMP9), and alar-
mins (S100A8, S100A9, S100A12), as well as for cell
cycle progression-associated genes (G0S2, CDC6,
CDC25A), type I interferon (IFN)-induced genes (IFI27,
IFITM3, SIGLEC1 (CD169)), but also genes with im-
munosuppressive functions (IL10, SOCS3, ARG1 (Argi-
nase)). Downregulated genes included many
lymphocyte-associated factors, such as NELL2, RORC,
KLRB1, TCF7 (TCF1), RCAN3 (Calcipressin-3), BACH2,
or LEF1 (Fig. 1c, Additional file 3: Table S2). Functional
analysis of the differentially expressed genes (DEGs) by
gene ontology enrichment analysis (GOEA) revealed
granulocyte and complement activation-associated terms
enriched in the upregulated DEGs and lymphocyte
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Fig. 1 Whole blood transcriptomes reveal diversity of COVID-19 patients not explained by disease severity. a Schematic workflow for analysis of
whole blood transcriptome data. b Number of significantly upregulated (red) and downregulated (blue) genes (FC > |2|, FDR-adj. p value < 0.05)
comparing COVID-19 and control samples. c Volcano plot depicting fold changes (FC) and FDR-adjusted p values comparing COVID-19 and
control samples. Differentially expressed up- (red) and downregulated genes (blue) are shown and selected genes are highlighted. d Plot of top
10 most enriched GO terms for significantly up- and downregulated genes, showing ratio of significantly regulated genes within enriched GO
terms (GeneRatio). e PCA plot depicting relationship of all samples based on dynamic gene expression of all genes comparing mild and severe
COVID-19 as well as control samples. f Number of significantly upregulated (red) and downregulated (blue) genes (FC > |2|, FDR-adj. p value <
0.05) comparing mild and severe COVID-19 as well as control samples. g Volcano plot depicting fold changes and FDR-adjusted p values
comparing mild and severe COVID-19 as well as control samples. Differentially expressed up- (red) and downregulated genes (blue) are shown
and selected genes are highlighted. h Hierarchical clustering map of 25% most variable genes between control patients and COVID-19 mild or
severe patients, with additional annotation of disease outcome, hierarchical agglomerative clustering of clinical parameters COVID-19, the groups
defined by agglomerative clustering, WHO ordinal score, and age bins
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differentiation and T cell activation for the downregu-
lated DEGs (Fig. 1d). Interestingly, the T cell activation-
associated genes accounting for the enrichment of this
term for the upregulated DEGs included IL10 and
CD274 (PD-L1) pointing at suppressive T cell function-
ality (Additional file 3: Table S2).
Given the heterogeneous nature of clinical manifest-

ation of COVID-19, we sought to stratify the transcrip-
tomic profiles by disease severity based on WHO ordinal
scale. Classification scores of 1–4 was considered as
“mild” and 5–7 as “severe.” Indeed, samples from pa-
tients with mild disease clustered more closely to the
control samples, while those of severe cases scattered
away in the PCA (Fig. 1e). Consequently, there was a
greater number of DEGs in blood samples from severe
COVID-19 patients than in mild patients when com-
pared to controls (Fig. 1f). Many of the DEGs found in
the COVID-19 vs control comparison (Fig. 1c) were also
found when separating the COVID-19 samples by sever-
ity (Additional file 2: Figure S1B,C). Both, severe and
mild COVID-19 in comparison to controls shared
neutrophil-specific CD177 and HP expression among
the most upregulated DEGs, as well as lymphocyte-
associated genes such as ABLIM1, NELL2, RCAN3,
RORC, BACH2, and KLRB1, among the downregulated
genes (Additional file 2: Figure S1B,C). GOEA reflected
these findings (Additional file 2: Figure S1D). Although
all samples from COVID-19 patients showed functional
enrichment for granulocyte/neutrophil activation-
associated terms in general, direct comparison of severe
and mild COVID-19 patients revealed this to be a
heightened characteristic of the immunoprofiles in se-
vere COVID-19 (Additional file 2: Figure S1D). Upregu-
lated DEGs in the severe vs mild sample comparison
included CD177, Neutrophil elastase (ELANE), Olfacto-
medin 4 (OLFM4), Myeloperoxidase (MPO), Resistin
(RETN), and matrix metalloproteinases MMP8 and
MMP9. Whereas the type I IFN-response genes, such as
IFI27 or IFITM3, were not differentially regulated in se-
vere vs mild samples, expression of immunosuppression-
associated factor Arginase (ARG1) was more pro-
nounced in severe COVID-19 patients (Fig. 1g, Add-
itional file 3: Table S2). Moreover, blood transcriptomes
from severe cases showed decreased expression of
lymphocyte-associated genes, such as the T cell receptor
chains (TRAC, TRBC1), CD3 zeta chain (CD247), CD4,
CD2, TBX21 (TBET), and IL7R, as well as monocyte-
associated genes, such as the fractalkine receptor
(CX3CR1) or the macrophage scavenger receptor
(MSR1) (Fig. 1g, Additional file 3: Table S2). Differences
in gene expression were not restricted to granulocyte
and T cell functions only: assessing the changes in de-
fined gene groups, e.g., transcription factors, epigenetic
regulators, and surface or secreted molecules, we

observed many significant changes in genes that are not
restricted to granulocytes or T cells, clearly indicating
that other cell types are also transcriptionally altered in
COVID-19 patients (Additional file 2: Figure S1E).
Distribution of the COVID-19 samples in the PCA re-

vealed heterogeneity in the transcriptomic profiles
(Fig. 1e), which might be due to clinical heterogeneity
(Additional file 1: Table S1). In order to investigate this
further, the top 25% of the most variable expressed
genes were visualized in a heat map and samples sorted
by unbiased hierarchical clustering based on their tran-
scriptomic profiles, which resulted in more than three
clusters suggesting higher transcriptional heterogeneity
as explained by mild and severe COVID-19 cases vs con-
trol (Fig. 1h). Strikingly, neither disease, disease severity,
nor the inclusion of outcome or immune classification
[40] sufficiently explained the structure in the data. In
order to get a better clinical understanding of the tran-
scriptional data, we included further clinical parameters
and grouped the COVID-19 patients accordingly
(Fig. 1h). We therefore performed agglomerative hier-
archical clustering using the clinical parameters that
contributed most to the transcriptional differences ob-
served across the first principal component of the data-
set (r-adjusted square ≥ 0.1, Additional file 2: Figure
S1F). The COVID-19 patients were clustered into five
clinical groups, which was the optimal number of clus-
ters at which the intra-group variance was low and the
“clusters distance” remained high (Additional file 2: Fig-
ure S1G,H). Interestingly, neither COVID-19 disease sta-
tus, immune classification, nor our clinical parameter-
based grouping of the COVID-19 patients aligned with
overall transcriptional variability in the data (Fig. 1h), in-
dicating that hidden information in the blood transcrip-
tome may guide further patient stratification.

Co-expression analysis discloses COVID-19 subgroups
with distinct molecular signatures
Classical approaches to analyze the transcriptome data
by using differential gene expression analysis based on
sample groups defined by a selection of clinical parame-
ters precluded dissection of the heterogeneity of the host
immune response towards SARS-CoV-2 infection, which
is evident in the high-parameter space of the transcrip-
tome (Fig. 1). Co-expression analysis on the other hand
identifies similarly regulated genes across samples and
groups these genes into modules, which can then be ex-
plored for each patient sample individually or for entire
patient groups. Applying such an approach using our
established CoCena2 pipeline [https://github.com/Ulas-
lab/CoCena2] (Fig. 2a) for all 49 samples (39 COVID-19,
10 control) independent of their clinical annotation dis-
closed 10 co-expression modules, designated by color
indianred to darkgrey, across a total of 6085 genes
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included in the analysis (Additional file 2: Figure S2A).
Hierarchical clustering of the samples based on their
group fold changes (GFCs) for each module revealed a
data-driven patient stratification assorting the samples
into six groups (Additional file 2: Figure S2B), which
were subsequently used in all following analyses: five dif-
ferent COVID-19 sample-containing groups, which only

partially grouped by disease severity and illustrated het-
erogeneity of the immune response in COVID-19 pa-
tients, plus one group containing all control as well as
four COVID-19 samples (Fig. 2b + Additional file 2: Fig-
ure S2C). Overlaying this information onto the original
PCA reflected structured sample stratification as the
newly defined groups clustered together (Additional file

Fig. 2 Co-expression analysis discloses COVID-19 subgroups with distinct molecular signatures. a Schematic overview of the analysis performed
on the whole blood samples. b Alluvium plot visualizing the distribution of the samples according to different grouping; disease status, severity,
and data-driven sample groups. c Group fold change heat map and hierarchical clustering for the six data-driven sample groups and the gene
modules identified byCoCena2 analysis. d Functional enrichment of CoCena2-derived modules using the Hallmark gene set database. Selected
top terms were visualized. e Functional enrichment of CoCena2 module lightgreen using GO gene set database. Top 5 terms were visualized. f
Heat map presenting the normalized expression values of the lncRNA CYTOR, and protein-coding RNAs PIK3CB and VIM from the lightgreen
CoCena2 module. g Neutrophil-lymphocyte ratio plot after cell type deconvolution at lineage level. h Neutrophil-lymphocyte ratio across the six
data-driven sample groups. Box plots show median with variance, with lower and upper hinges representing the 25th and 75th
percentile, respectively
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2: Figure S2D). GFC analysis of the newly generated
groups revealed group-specific enrichment of co-expressed
gene modules (Fig. 2c). GOEA on each of the modules
identified associated gene signatures displaying distinct
functional characteristics, which distinguish the different
sample groups G1–G6 (Fig. 2d + Additional file 2: Figure
S3, Additional file 4: Table S3). For example, “inflammatory
response” was enriched in modules maroon, lightgreen,
pink, and darkgrey, all characteristic for sample groups G1
and G2 to different extents, indicating these to possibly
undergoing a more vigorous inflammatory immune reac-
tion (Fig. 2c, d). Of note, G1 and G2 harbor a great fraction
of samples from patients with severe COVID-19 (Fig. 2b).
Only a slight increase in the inflammation-associated mod-
ule maroon, an increase in expression in the genes of dar-
korange (enriched in oxidative phosphorylation, mTORC1
signaling, and cell cycle-associated genes), and a loss of ex-
pression in the gold module (connected to estrogen re-
sponse genes and IL2 signaling) were indicative of the G4
sample group. G6, encompassing all control samples, was
not associated with any modules connected to inflamma-
tory processes, but showed higher expression of indianred,
steelblue, and gold, all functionally enriched basic cellular
and metabolic processes. Extended analysis of the light-
green module, containing 987 genes, revealed a prominent
enrichment of granulocyte/neutrophil activation-related
signatures (Fig. 2e, Additional file 4: Table S3). To further
explore this neutrophil activation signature association, we
investigated possible co-expression patterns of long non-
coding RNAs (lncRNA) that were reported as regulators of
granulocyte function [59]. CYTOR (also known as Morrbid)
is a lncRNA that mediates survival of neutrophils, eosino-
phils, and classical monocytes in response to pro-survival
cytokines [59], and interacts with the protein-coding RNAs
for the catalytic PI3K isoform phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit beta (PIK3CB) and
the filament Vimentin (VIM) [69]. Interestingly, expression
of CYTOR was significantly increased in severe COVID-19
patient group G1 (p < 0.001) and correlated with both
PIK3CB (r = 0.53, p < 0.001) and VIM (r = 0.55, p < 0.001)
(Fig. 2f).
Next, we asked whether the enrichment for neutrophil

activation-associated signatures in G1 and G2 is attrib-
uted to an increased relative number of granulocytes
within the whole blood sample. Deconvolution of the ex-
pression values using linear support vector regression
[50] showed increased relative percentages of neutro-
phils especially in G1 and G2 (Additional file 2: Figure
S2E). G5, on the other hand, clearly displayed an in-
creased percentage of monocytes. At the same time,
lymphocyte enrichment was found to be reduced in the
COVID-19 sample groups, most prominently in G1 and
G2 (Additional file 2: Figure S2E). The linear deconvolu-
tion results were then validated by flow cytometry. Blood

composition of COVID-19 donors confirmed an increased
number of neutrophils and a decreased number of lym-
phocytes especially in G1 and G2 (Additional file 2: Figure
S2F). As a result, the neutrophil-lymphocyte ratio (NLR),
a clinical marker proposed for disease severity as it has
been associated with an increased systemic inflammation
[70, 71], was markedly elevated in G1 and G2 compared
to the control sample-containing G6, both in the compu-
tationally deconvoluted results (Fig. 2g) as well as mea-
sured by flow cytometry (Fig. 2h). Interestingly, in context
of the observation that men more often progress to severe
COVID-19 than women [72], G1 encompasses samples
from solely male patients (Additional file 2: Figure S2C).
Analysis of the top 20 differentially expressed transcrip-
tion factors, epigenetic regulators, and surface or secreted
proteins for the six sample groups confirmed an increased
inflammatory state, again most remarkably for G1 and G2,
evident from the transcription factors of the STAT family,
STAT1, STAT3, STAT5B, and STAT6; the surface marker
CSF3R (G-CSF) or FCGR3B (CD16b); the secreted factors
GRN or IL1B; or the epigenetic regulator PADI4 (PAD4)
(Additional file 2: Figure S2H).
We confirmed our findings of distinct molecular phe-

notypes in the blood of COVID-19 patients in a second
independent cohort. Thirty patients, severely affected by
SARS-CoV-2 infection, were sampled upon admission to
the ICU. We stratified the obtained blood transcrip-
tomes based on the module signatures from the co-
expression analysis (Fig. 2c). The samples of the second
cohort were filtered for the genes present in the
COVID-19 co-expression network, group fold changes
were calculated across all patients individually, and sam-
ple groups G1–G6 assigned according to their combina-
torial module expression (Additional file 2: Figure S4A).
Controls from the first cohort were included for com-
parison. Interestingly, in these ICU patients, we noted
the transcriptome profiles from the second cohort to
show greatest similarity to G1 and G2, which is in line
with their severe phenotypes and our findings from the
first cohort. Hierarchical clustering of the samples based
on their group fold changes for each module stratified
the samples of the second cohort into four groups (Add-
itional file 2: Figure S4B). The control samples from the
first cohort built one separate group, which we desig-
nated again as G6. To allow for group-specific compari-
son to the stratification within the first cohort (Fig. 2c),
we calculated the mean GFCs of the four groups identi-
fied in the second cohort (Additional file 2: Figure S4C).
Second cohort samples of the first group showed enrich-
ment in modules lightgreen, pink, and darkgrey and
were thus assigned most similar to G1; the third group
of the new samples showed enrichment in modules ma-
roon and darkorange, most similar to G2; and the
remaining samples were stratified into an intermediate
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group exhibiting stronger expression of genes from the
darkorange as well as pink module indicating character-
istics of both G1 and G2 (Additional file 2: Figure S4C).
Collectively, co-expression analysis (CoCena2) in

whole blood transcriptomes reveals at least five molecu-
lar phenotypes of the host’s immune response in
COVID-19 patients with at least two different groups in
clinically described severe COVID-19 patients. The two
molecularly defined groups G1 and G2 are transcription-
ally characterized by a pronounced neutrophilic signa-
ture, at the same time distinct in other cellular
characteristics. Such molecular classification might serve
as a basis for identifying clinical surrogates for patient
stratification. Since whole blood transcriptomics cap-
tures functional changes in the host’s peripheral immune
response across all cell types, we next sought a more de-
tailed investigation of the granulocyte compartment
within the framework of the newly identified subgroups.

Granulocytes from severe COVID-19 patients show a
simultaneous increase in inflammatory and suppressive
signatures
To investigate whether the activation signatures seen in
whole blood of COVID-19 patients are not only due to
disease-associated increase of the neutrophil population,
granulocytes were sequenced and transcriptomes were
analyzed from 16 longitudinally sampled patients (8
mild, 9 severe), resulting in 17 mild and 27 severe
COVID-19 samples (Fig. 3a). Evaluation of the relative
cell type composition within each sample using linear
deconvolution predicted the samples to mainly consist
of neutrophils, with comparable fractions of 79% on
average (Additional file 2: Figure S5A). Exploratory ana-
lysis by PCA showed a separation between mild and se-
vere COVID-19 patients’ granulocyte samples, especially
for the day 1–10 groups (Fig. 3b). Differential expression
analysis identified 314 upregulated and 703 downregu-
lated genes comparing severe and mild samples from
day 1 to 10 after first symptoms, while comparison at a
late disease stage showed less differences on gene level
(445 up- and 1924 downregulated genes; FC > |2|, padj <
0.05; Fig. 3c, Additional file 5: Table S4). Whole blood
transcriptome analysis showed enrichment of neutrophil
activation-associated signatures (Fig. 2). Excluding the
bias of alterations in neutrophil population size across
conditions, gene set enrichment analysis on granulocyte
samples now uncovered that differentially expressed
genes between severe and mild COVID-19 patients are
indeed characterized by an increase in granulocyte
activation-associated factors (Additional file 2: Figure
S5B). CD177 is part of the granulocyte activation gene
set and was indeed markedly increased in severe (day 1–
10) compared to mild (day 1–10) COVID-19 samples
(Fig. 3d). Also, the alarmin S100A12 exhibited

heightened expression in granulocytes from severe
COVID-19 patients (Fig. 3d).
Next, we used the CoCena2 modules from the whole

blood analysis (Fig. 2c) to identify modules that are actu-
ally driven by alterations in neutrophil activation instead
of a mere increase in the neutrophil population. To in-
vestigate the expression patterns in a longitudinal fash-
ion, mean expression over time and a confidence
interval were calculated for each module in the mild and
severe cases, respectively. Modules being mainly
expressed in the severe groups G1 and G2 (darkgreen,
darkgrey, lightgreen, maroon, and pink) showed a shift
towards upregulation of genes in the severe group com-
pared to the mild group, except for module darkgrey
(Fig. 3e). The other modules, darkorange, gold,
indianred, orchid, and steelblue, presented mostly the
opposite trend, being expressed at higher levels in the
mild compared to the severe COVID-19 cases (Add-
itional file 2: Figure S5C).
Recently, heterogeneity of neutrophils with distinct

subsets associated with disease severity and phase was
revealed by single-cell RNA-seq analysis in blood of
COVID-19 patients [34]. Enrichment of the three signa-
tures that related to severe COVID-19 in our granulo-
cyte samples demonstrated that the findings obtained in
the single-cell study were also discernible in bulk data,
and the results in accordance with the reported pheno-
types: premature/immature, severe inflammatory, and
severe suppressive subset marker genes were markedly
enriched in granulocytes from severe COVID-19 patients
in the present study (Additional file 2: Figure S5D). Fur-
ther analysis of this observation on the gene level dis-
played the heightened expression of pre-/immature
neutrophil-associated markers in severe COVID-19 pa-
tients’ granulocytes, such as FUT4 (CD15), metallopro-
teinase MMP8, alarmins (S100A8/9), NET formation-
involved PADI4, or NLRC4, for which activating muta-
tions have been reported to overtly trigger the inflamma-
some and thereby increase the risk to develop
autoinflammatory syndrome [73, 74] (Fig. 3f). Marker
genes attributed to the “mild mature activated” neutro-
phil subset [34], such as ITGA4 or SLC38A1, were in-
deed elevated as well in the mild COVID-19 patients’
granulocytes of this study. In line with the single-cell
study, signs of an interferon response were observed ir-
respective of disease severity (IFIT1, IFIT3), while only
severe COVID-19 patients’ granulocytes featured expres-
sion of genes with suppressive functionality, such as
ARG1 or CD274 (PD-L1) (Fig. 3f).
We next assessed the granulocyte samples based on

the module signatures from the whole blood analysis.
The granulocyte samples were filtered for the genes
present in the COVID-19 co-expression network (Fig. 2c)
and the group fold changes were calculated across all
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patients individually; sample groups G1–G5 were
assigned according to their combinatorial module ex-
pression (Figs. 2c + 3g). For example, samples attributed
to G1 showed high enrichment scores in modules

lightgreen, darkgreen, and pink, whereas those assigned
as G2 additionally expressed the maroon module. Sam-
ples with the indianred/darkorange combination were
designated as G4. Re-analysis of CD177, NLRC4, ARG1,

Fig. 3 Granulocytes from severe COVID-19 patients show a simultaneous increase in inflammatory and suppressive signatures. a Schema of
sample processing and analysis. b PCA of all genes within the dataset mapped by COVID-19 severity status. c Bar plot of DEGs between severe
and mild COVID-19 patients at day 1–10 (left) and day 11–20 (right) (FC > |2|, FDR-adj. p value < 0.05). d Boxplot of CD177 (left) and S100A12
(right) in mild and severe COVID-19 patients at day 1–10 and 11–20. e Mean of group fold changes (GFCs) of the modules darkgreen, darkgrey,
lightgreen, maroon, and pink in the granulocyte samples of mild (light purple) and severe (purple) COVID-19 cases over time. f Heat map of
mean expression of 24 markers in mild (top) and severe (bottom) patients ordered by days after disease onset bins (day 1–10 and 11–20). g Heat
map of mean GFCs of the CoCena2 whole blood modules in the granulocyte samples from each individual patient. Patients are clusters by the
mean GFC module expression. Severity patterns found in the whole blood CoCena2 network were identified and patient groups were assigned
accordingly (G1–G5). h Box plot of CD177 expression in granulocytes grouped by G1–G5. i Box plot of CD177 expression in whole blood
grouped by G1–G6
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and CD274 (PD-L1) as a function of the assigned sample
groups (Fig. 3g) showed increased expression in G1 and
G2 in relation to the other groups (Fig. 3h + Additional
file 2: Figure S5E). Interestingly, the stratified patient
groups in the whole blood data also depicted increased
expression in G1 and G2 in comparison to the control-
containing G6 (Fig. 3i + Additional file 2: Figure S5F).
Analysis of granulocyte samples from COVID-19 pa-

tients proved that, in addition to the relative increase in
neutrophils in severe COVID-19 cases, there are indeed
alterations in the transcriptional program of these cells
themselves. We found enrichment of signatures typical
of pre-/immature neutrophils and evidence of simultan-
eous inflammatory and suppressive features, arguing for
a dysregulation in the peripheral granulocyte compart-
ment. Importantly, transferring these findings back to
the whole blood analysis showed that the granulocyte
phenotypes were still observable within the whole blood
transcriptomes.

Integration with signatures from other diseases reveals
COVID-19-specific characteristics
Putting COVID-19 into context of other known diseases,
we compiled whole blood transcriptomes from 12 fur-
ther diseases, including several viral and bacterial infec-
tions as well as immune-related disorders into one large
dataset encompassing a total of 3176 samples including
the 39 COVID-19 samples from this study (Fig. 4a, Add-
itional file 2: Figure S6A, Additional file 6: Table S5). All
in all, the dataset contains four other viral infection
studies (chikungunya [30], HIV [27], influenza [75], and
Zika [76], n = 695), seven bacterial infection studies (tu-
berculosis [24–27, 77], bacterial sepsis and systemic in-
flammatory response syndrome (SIRS, n = 1578) [28]),
six inflammatory/autoimmune studies (systemic lupus
erythematosus [78], Crohn’s disease, rheumatoid arth-
ritis [79], Ebola vaccination [29], neonatal-onset multi-
system inflammatory disease (NOMID), and macrophage
activation syndrome (NLRC4-MAS) [74], n = 326), and
control samples from nine different studies (n = 538). To
investigate how the COVID-19-specific co-expression
modules can be linked to other diseases, the combined
dataset was filtered for the genes present in the COVID-
19 co-expression network (Fig. 2c) and the group fold
changes were calculated across all samples (Fig. 4b).
Additionally, cell type-specific signatures [50] and single
cell-derived neutrophil subset signatures [34] (Additional
file 7: Table S6) were intersected with all CoCena2 mod-
ules. This analysis revealed that the lightgreen module
shows a high (61%) neutrophil enrichment followed by
module pink (38%) and maroon (32%), which is in line
with a high functional enrichment for neutrophil activa-
tion in lightgreen (Fig. 2e, Additional file 4: Table S3).
Genes within module lightgreen were most prominently

upregulated in the severe COVID-19 group (G1) as well
as in sepsis, in patients with influenza A and with tuber-
culosis and HIV infection, but less so in individually oc-
curring HIV and tuberculosis (Fig. 4b). Enrichment of
the neutrophil subset signatures revealed increased ex-
pression of genes found in pre-/immature neutrophils
and those of inflammatory neutrophils associated with
severe COVID-19. Many genes within module lightgreen
are known to be related to induction of neutrophil extra-
cellular traps (NET) (e.g., PKC [80], PADI4 [81], LTB4
[82]). Moreover, a link between excessive NET forma-
tion and tissue damage has been reported in sepsis [83].
Module darkgrey shares a similar expression pattern
across the disease spectrum with lightgreen though be-
ing upregulated in infection with any of the four in-
cluded influenza strains and contains genes involved in
platelet activation. The NET-platelet-thrombin axis has
been reported to be involved in the promotion of intra-
vascular coagulation in sepsis [84]. The pink module
shows the second highest neutrophil enrichment, which
is dominated by the enrichment of pre-/immature neu-
trophil subtype signatures. It is strongly increased in
sepsis, tuberculosis, and after Ebola vaccination as well
as in autoinflammatory diseases such as rheumatoid
arthritis, NLRC4-MAS, and NOMID, and shows slight
overlap with the severe COVID-19 patients in group G1.
It contains many epigenetic modifiers, such as HDAC5,
SETD1B, or KMT2D, as well as KLF2, shown to regulate
NF-κB-mediated immune functions, such as inflamma-
tion, erythropoiesis, and lung development [85]. Maroon
is the third module with predicted neutrophil enrich-
ment, which features genes from the “severe suppres-
sive” subset alongside the “severe inflammatory” and
pre-/immature subset signatures. It is associated with
COVID-19 groups G2–4 and shares this characteristic
with blood transcriptomes from the response to infec-
tion with chikungunya and Zika virus or from HIV pa-
tients suffering from tuberculosis.
A combination of single sample gene set variation ana-

lysis (ssGSVA), a non-parametric, unsupervised ap-
proach to estimate variation of gene set enrichment
within each single sample, and Hallmark enrichment for
each disease or inflammatory condition in the compiled
dataset accentuated the findings on COVID-19 blood
transcriptomes in context of the other diseases (Fig. 4c).
“Interferon alpha and gamma responses” were enriched
in acute viral infections with chikungunya and Zika virus
as well as in HIV with or without concomitant tubercu-
losis or after Ebola vaccination, and this enrichment was
shared with COVID-19 G2. “Inflammatory response,”
“IL6 and TNFA signaling” is an attribute of both G1 and
G2, to a lesser degree of G5, also tuberculosis/HIV, and
to some extent of sepsis and influenza A. More promin-
ently enriched in sepsis were “complement,”
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“coagulation,” “heme metabolism,” and “glycolysis” —
shared by COVID-19 G1+G3, whereas “oxidative phos-
phorylation” and “mTORC1 signaling” were seen for all
four influenza strains, chikungunya, and Zika virus infec-
tions — shared to some extent with COVID-19 G3+G4.
Although we observed overlaps of gene modules

enriched in COVID-19 with several other infectious and

immune-related diseases, each of our molecularly de-
fined COVID-19 patient groups was characterized by a
specific combination of these modules, clearly indicating
the unique biology of this SARS-CoV-2 infection-
mediated immune response, which needs to be consid-
ered when developing patient-stratified therapy
regimens.

Fig. 4 Integration with signatures from other diseases reveals COVID-19-specific characteristics. a Schema of analysis of the integrated dataset.
The integrated dataset was analyzed with regard to expression patterns of the clusters previously identified in the whole blood COVID-19-specific
co-expression network. b Heat map of mean group fold changes of CoCena2 module comparison between COVID-19 and other diseases. From
left to right, the diseases are ordered by category (COVID-19, viral infections, bacterial infections, and others). On the right side of the heat map,
the first box plot shows the enriched immune cell markers in each module. The second box plot shows the enrichment of genes upregulated in
specific neutrophil subtypes based on cross-referencing with single-cell data [34]. Both box plots show enriched cell types in percent of total hits;
absolute hits with respect to cluster size are stated aside. c Gene set variation analysis was conducted for every single patient based on Hallmark
gene sets as shown in Fig. 2d. The result was standardized to retrieve the z-scores; a disease mean was calculated and displayed as a dot plot
with size and color correlating to the z-score. The labels on the x-axis are the same as in b
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COVID-19 patient subgroup-specific signatures can be
used to predict potential drug repurposing
Despite the immunologically driven nature of COVID-
19, most drugs that are currently investigated in clinical
trials to combat or ameliorate COVID-19 are targeting
the virus and its direct interaction partners (Additional
file 2: Figure S7A+B, Additional file 8: Table S7). Com-
pounds as well as the number of clinical trials performed
with anti-inflammatory, immunosuppressive, and immu-
nomodulatory properties are immensely outnumbered
by other approaches. Examining the listed target genes
of currently investigated drugs in our stratified patient
groups, we found 162 included in our co-expression net-
work analysis, most of which being differentially
expressed in the severe patient group G1 in comparison
to G6 (Figs. 2c + 5a). In addition, many of the regulated
genes in our patient signatures are clearly not affected
by the drugs that are currently investigated against
COVID-19. The immunopathologies seen in COVID-19
patients, especially past their second week of symptoms,
demand a host-directed, immune system-focused
therapy.
To identify potentially beneficial drugs, we designed

an in silico signature-based drug repurposing approach
(Fig. 5b). To generate input signatures of interest, we
characterized our stratified sample groups by identifying
differentially expressed genes between groups G1–G5
and the control group G6 (Additional file 2: Figure S7C).
Most transcriptional differences were observed for G1
(up: 4032, down: 4729) and G2 (up: 2336, down: 2767),
whereas group G3 (up: 1193, down: 1921), G5 (up: 1089,
down: 1216), and especially G4 (up: 727, down: 547)
were less different to G6. Only a minor fraction of 137
DEGs was shared by all 5 comparisons. The most over-
lap of DEGs was observed between G1 and G2, the two
groups comprising mostly severe COVID-19 patients.
Nevertheless, G2 was still characterized by a large num-
ber of specific DEGs (Additional file 2: Figure S7C).
GOEA of the upregulated DEGs of each comparison re-
vealed enrichment of genes in the context of “neutrophil
activation” and “coagulation” in all comparisons (Add-
itional file 2: Figure S7D). Humoral and B cell-mediated
immunity terms on the other hand were enriched the
strongest in G4-specific upregulated DEGs (Additional
file 2: Figure S7D). Differential expression analysis for
the stratified sample groups once more emphasized that
neutrophils play a central role in the host’s immune re-
sponse against SARS-CoV-2 infection. Neutrophils, as
the most abundant circulating leukocytes, have become
a therapeutic target of interest in multiple disease set-
tings in recent years [86]. Two interesting target genes
discussed in this context and already addressed in clin-
ical trials are CXCR2 and C5AR1. Consistent with the
increased NLR in G1 and G2, we observed significant

upregulation of CXCR2 and C5AR1 in both groups
(Additional file 2: Figure S7E).
Using patient cluster-specific DEGs as input (Add-

itional file 2: Figure S7C, Additional file 9: Table S8), we
searched for compounds that evoke a reverse signature
in human cells via the NIH Library of Integrated
Network-Based Cellular Signatures (iLINCS) [87] and
the Broad Institute’s Repurposing Hub [88]. The best
counteracting signatures for each comparison were com-
bined with signatures for all currently investigated drugs
and downloaded for further analysis, resulting in about
63,000 signatures from 940 compounds/drugs. We per-
formed gene set enrichment analysis for all signatures
against our COVID-19 patient comparisons and calcu-
lated the difference of the up- and downregulated nor-
malized enrichment score (ΔNES). A positive ΔNES
indicates drug signatures that reverse our COVID-19
signatures, whereas drugs with a negative ΔNES induce
signatures similar to the ones observed in COVID-19.
Signatures were then grouped by k-means clustering re-
vealing groups of drug signatures that reverse specific
patient subgroup signatures (e.g., cluster 5) or those that
have the highest impact on all patient subgroups (e.g.,
cluster 13, Fig. 5c). Among the top signatures in cluster
13 are methylprednisolone (ΔNESG1 = 7.13), immuno-
globulins (ΔNESG1 = 6.62), methotrexate (ΔNESG1 =
4.21), and pevonedistat (ΔNESG1 = 4.81) which are all
under investigation (clinicaltrials.gov), thereby proving
that our in silico signature-based drug repurposing ap-
proach can indeed predict drugs that have already been
deemed potentially beneficial in this disease (Additional
file 2: Figure S7F). Extracting the leading edge of the
most frequently targeted genes by the drugs included in
cluster 13 revealed alarmins, such as S100A8 or S100A6,
and SERPINB1, critical for neutrophil survival by pro-
tecting the cell from proteases released into the cyto-
plasm during stress [89–91]. Visualizing these genes in
the co-expression network deducted from the blood
transcriptomes of our COVID-19 patient cohort identi-
fied most of them as part of cluster lightgreen and ma-
roon (Additional file 2: Figure S7G). Sample group G1-
specific drug signature cluster 5 also encompasses a con-
siderable number of drugs currently being tested in clin-
ical trials to fight COVID-19 (Fig. 5d + Additional file 2:
Figure S7A, Additional file 10: Table S9). Interestingly, a
lot of drug signatures in cluster 5 were related to female
hormones, such as alpha-estradiol (ΔNESG1 = 2.83),
estradiol-cypionate (ΔNESG1 = 2.78), estriol (ΔNESG1 =
2.78), or chlormadinone acetate used in birth control
pills (ΔNESG1 = 2.74), but also for example dexametha-
sone (ΔNESG1 = 2.65) that was recently reported to re-
duce mortality in severe COVID-19 cases requiring
intubation, while showing no benefit for patients with
milder disease courses [92]. The most frequently
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Fig. 5 Patient subgroup-specific signatures can be used to predict potential drug targets. a Schematic workflow of the drug prediction analysis.
Drug signatures were collected using the platforms iLINCS and CLUE. Signatures were selected by highest counteracting ΔNES score and
combined with signatures of drugs under investigation from the literature. b Visualization of genes targeted by drugs approved or undergoing
trial for the treatment of COVID-19 patients included in the whole blood co-expression network. Numbers of such genes from each module are
designated on the right of the panel. Genes are represented as hexagons and colored by the expression fold change between COVID-19 patient
severity group (G1–G5) and the control group (G6) (upregulated: red, downregulated: blue, not regulated: grey). c Drug predictions based on
ΔNES score of drug signatures in regard to diseased patient group-specific gene expression patterns (G1–5 vs G6). Signatures were clustered by
k-means clustering. A high ΔNES score accounts for drug signatures which counteract the gene expression of the patient group they are
compared to. Drug signatures with a negative ΔNES score induce a gene expression pattern similar to the input. The number of signatures
within a cluster determines its size. d Display of selected drug signatures from k-means cluster 5 from c showing the highest ΔNES score in the
most severe COVID-19 patient group G1 and the least effect in patient group G4. e Visualization of recurring target genes in the G1 vs G6
comparison of cluster 5 signatures and their frequency mapped onto the CoCena2 network
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targeted genes within the signatures of cluster 5 included
protein tyrosine kinase 2 beta (PTK2B), playing an im-
portant role for integrin-mediated neutrophil degranula-
tion [93, 94]; lysosomal protease cathepsin D (CTSD)
expressed in neutrophils and monocytes; and the inflam-
matory mediator interleukin-1β (IL1B) (Fig. 5e). The ma-
jority of these target genes cluster in the G1-specific
lightgreen and pink, as well as in the maroon CoCena2

modules. Drugs predicted to be effective for each module
are presented as a resource as supplementary information
for further inspection (Additional file 10: Table S9).
We used stratified blood transcriptomes from COVID-

19 patients in an in silico signature-based approach to
identify potential drugs for therapeutic repurposing.
Many of our identified hits are indeed already being
tested in clinical trials. Further, it became evident that,
apart from common therapeutic avenues to address the
immune dysregulation in COVID-19 patients, there are
patient groups that may benefit from treatments target-
ing more precisely their immune phenotype and this
phenotyping could be used for enrichment of patient
groups in clinical trials.

Discussion
The global spread of SARS-CoV-2 resulting in hundreds
of thousands of COVID-19 cases urgently demands a
more thorough molecular understanding of the patho-
physiology of the disease [15, 20, 95, 96]. While vaccines
are still under development [97–102], therapeutic man-
agement of the COVID-19 patients is key to mitigate the
clinical burden as well as to prevent deaths. It has be-
come clear that there is great variety in the occurrence
of disease manifestation, and dysregulation of local and
systemic immune responses have been implicated in dis-
ease heterogeneity [12–14, 22, 37, 38, 42, 95, 103, 104].
Here, by applying classical bioinformatics approaches
and data-driven co-expression network analysis
(CoCena2) on blood transcriptomes of COVID-19 pa-
tients, we provide evidence for the existence of distinct
molecular phenotypes that are not solely explained by
current clinical and immunological parameters. Particu-
larly in severe COVID-19, we detected dramatic tran-
scriptional changes in the blood compartment with loss
of T cell activation and concurrent gain of a rather
unique combination of neutrophil activation signals,
which was not simply due to changes in cell numbers
since isolated neutrophils showed the same transcrip-
tional changes. CoCena2 allowed us to group function-
ally related genes into 10 major transcriptional modules
with distinct expression patterns across five, on this
basis newly defined COVID-19 patient groups, of which
two (G1, G2) were related to severe disease courses.
While pronounced neutrophil-related alterations were
observed in both subgroups of severe COVID-19

patients (G1, G2), genes associated with coagulation and
platelet function were mainly elevated in patients with
the most highly elevated number of neutrophils as mea-
sured by flow cytometry, an information that was also
deduced by linear support vector regression from tran-
scriptome data. Assessment of non-coding RNA species
from whole blood transcriptomes also allowed the iden-
tification for additional regulatory circuits. For example,
we identify CYTOR, a lncRNA associated with granulo-
cyte survival [59] strongly upregulated in COVID-19 pa-
tient group G1, which was accompanied by strong
induction of CYTOR interactors such as VIM and
PIK3CB [69]. These findings strongly support the notion
that whole blood transcriptomics might not only be suit-
able for better understanding the systemic immune re-
sponse in COVID-19 patients, but can also be used to
predict novel therapeutic targets involving distinct
pathophysiological mechanisms observed in COVID-19.
In a “reverse transcriptome approach,” we used the spe-
cific changes observed in the COVID-19-related tran-
scriptional modules as the bait and searched for inverse
correlation in thousands of drug-based transcriptome
signatures to predict potential drug candidates. Most
interestingly, we identified drug candidates that might
be beneficial for all COVID-19 patients, but also candi-
dates that might only be suitable for a subgroup of pa-
tients. Lastly, by comparing the transcriptional modules
identified in whole blood of COVID-19 patients, we
identified unique differences to other viral and bacterial
infections, for which similar data were available, suggest-
ing that blood transcriptomes might also be used diag-
nostically or for outcome prediction in larger clinical
cohorts, treatment, or vaccine trials in the near future.
Classical bioinformatic assessment of blood transcrip-

tome data comparing defined groups, in this study repre-
sented by control individuals and samples derived from
either mild or severe COVID-19 patients, already revealed
important biology of the systemic immune response. For
example, the most significantly elevated transcript was
CD177, a cell surface molecule on neutrophils, which was
enhanced in both mild and severe cases (Fig. 1, Additional
file 2: Figure S1), was recently identified by proteomics in
bronchoalveolar lavage of COVID-19 patients [105], and
has also been introduced as a hallmark for Kawasaki syn-
drome [106], a syndrome that has been observed in several
studies being increased in children and adolescents during
the SARS-CoV-2 pandemic [107–112]. In acute Kawasaki
syndrome, elevated expression of CD177 was associated
with resistance to treatment with intravenous immuno-
globulin (IVIG), a therapy in COVID-19 patients that is
currently investigated in clinical trials around the world
(18 trials, clinicaltrials.gov). Integrating the assessment of
CD177 into these trials might help to stratify patients and
better predict individual therapy outcome.
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Hierarchical clustering of the most variable genes in
the dataset already hinted towards further heterogeneity
among patients beyond the current clinical differenti-
ation into mild and severe patients (Fig. 1). Indeed, co-
expression network analysis in a data-driven fashion
allowed us to define five patient subgroups (G1–5) de-
fined by 10 distinct transcriptional modules, which was
corroborated in a second independent cohort (Fig. 2 +
Additional file 2: Figure S4). Gene transcription observed
in severe COVID-19 patients in G1 clearly differed from
severe G2 COVID-19 patients particularly in modules
darkgrey, pink, orchid, and maroon (Fig. 2c). For ex-
ample, biological mechanisms related to the darkgrey
module included blood coagulation, platelet activation,
aggregation, and degranulation, as well as cell-cell adhe-
sion and integrin-mediated signaling. These are all
mechanisms that are integral to several of the complica-
tions observed in a subset of severe COVID-19 patients
including increased disseminated intravascular coagula-
tion [113–115], venous thromboembolism [113, 116],
stroke [117, 118], or acute cor pulmonale [119]; neutro-
phil extracellular traps have been reported to contribute
to immunothrombosis seen in pulmonary autopsies
[120, 121]. All in all, these findings support the need for
advanced molecular subtyping of COVID-19 patients, as
proposed here based on blood transcriptomes. This is
only one prominent example of the rich information
within the new structure of molecular COVID-19 phe-
notypes that we provide here. For further inspection of
the data, we refer the reader to the online tool that al-
lows to extract module and group specific gene expres-
sion information (https://www.fastgenomics.org/).
In addition to many other infectious and non-

infectious diseases [24–32], whole blood transcriptomics
revealed important insights into the patient structure in
COVID-19 and comparative analysis provides first evi-
dence for the unique changes elicited by this disease
within the host in comparison to other infections (Fig. 4).
While cases in G2–4 shared changes with other viral in-
fections such as influenza, chikungunya, or Zika, mainly
including interferon signature genes (IFI16, IFI35, IFIT1,
maroon module), partial overlap to bacterial sepsis was
observed for G1–G3, albeit the major sepsis module
(pink) was not prominently enriched in COVID-19 pa-
tients indicating that there are distinct differences in
pathology of these two diseases. Although we could es-
tablish an integrative model using historical and publicly
available blood transcriptome data, we also realized that
limited standardization of the experimental procedures
(sample processing, library production, sequencing) be-
tween different whole blood transcriptomics studies led
to the exclusion of several additional important studies.
In this context, it will be of great interest whether blood
transcriptomics, as it was shown for tuberculosis [24,

25], can be utilized in large enough cohorts and clinical
trials for disease risk or outcome prediction in COVID-
19. We propose to collect whole blood transcriptomics
data in a central registry for direct inspection by the re-
search community and provide a prototype model for
such a registry on FASTGenomics. Transcriptome data
have been successfully used to predict a role for specific
gene networks in the drug response to certain cancer
types [122–126]. Considering the strong influence of the
systemic immune response on severity and outcome of
COVID-19, we wanted to establish whether the global
assessment of molecular subgroups of COVID-19 pa-
tients could be utilized to predict novel drug targets for
this disease addressing the dysregulated peripheral im-
mune response of the host (Fig. 5). Using two major da-
tabases providing transcriptome signatures to many
known drugs, CLUE [126] and iLINCS [125], we de-
signed an in silico signature-based drug repurposing ap-
proach, allowing us to identify candidate drugs [127]
that might reverse immune pathophysiology as observed
in blood transcriptomes. Some of the candidate drugs
identified are currently already in clinical trials, for ex-
ample imatinib (NCT04394416, NCT04357613,
NCT04346147, NCT04422678), ruxolitinib (20 trials
listed), or nintedanib (NCT04338802, NCT04541680),
for which prediction was particularly high in G1 pa-
tients. These trials might benefit from assessing molecu-
lar phenotypes of immune cells thereby determining
whether patients with G1 type transcriptomes benefit
most from such treatment. First study reports have re-
cently declared strong benefit for dexamethasone treat-
ment in severe COVID-19 cases requiring intubation,
while no effect on mortality was seen for those patients
who did not require respiratory support [23, 92]. Of
note, drugs predicted to potentially reverse the tran-
scriptome signatures of the severely affected G1 group
may have adverse effects in milder COVID-19 cases
from G4 as observed in the contrasting regulation pat-
terns in many of the clusters (Fig. 5c). Interestingly and
in line with the reports on sexual dimorphism in
COVID-19 severity and mortality [128], G1 included
only male patients and many of the drugs predicted to
reverse the G1-specific signatures were related to female
hormones (Fig. 5d). However, we also predicted drugs
for all COVID-19 patients already in clinical trials such
as immunoglobulins (> 150 trials, clinicaltrials.gov), or
methylprednisolone (19 trials), findings further support-
ing the value of our prediction approach. Despite these
promising results, strongly suggesting that reverse tran-
scriptomics is not only of value in cancer [122–124] but
might also be used to identify drugs targeting the im-
mune pathophysiology in COVID-19, we would also like
to point out current limitations of our findings that need
to be addressed in future studies. Predictions, as well as
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also the molecular phenotypes for patient stratification,
will further benefit from and focused by validation stud-
ies in independent COVID-19 patient cohorts, which is
to be fostered by a central database for COVID-19 pa-
tients’ blood transcriptome data. These additional stud-
ies will also be able to further address disease severity in
combination with different patient demographics and
additional clinical parameters. Nevertheless, we used
samples from different countries, illustrating the
generalizability. Furthermore, the molecularly derived
and prioritized drug candidates presented here might be
tested in very recently introduced pre-clinical models
[129] prior to starting clinical trials. Irrespective of the
current shortcomings, we favor such drug candidate
identification, since it is based on interrogation of mo-
lecular data directly derived from patients’ immune cells
involved in the ongoing processes in the disease and
therefore may increase the likelihood of a beneficial ef-
fect in patients.

Conclusions
Collectively, we provide first evidence for whole blood
transcriptomics to potentially become a valuable tool for
distinguishing the peripheral immune response seen in
COVID-19 from that in other infections in cases for
which pathogen detection might be difficult, for moni-
toring and potentially predicting outcome of the disease,
to further dissect molecular phenotypes of COVID-19,
particularly of the host’s immune system, also along the
disease course over time, and to support drug target pre-
diction for subgroups of patients. Clearly, in contrast to
more sophisticated higher resolution methods, whole
blood transcriptomes can be easily obtained in large
clinical cohort studies and large clinical treatment trials
yet providing an enormous information content about
the molecular reactions of the host’s immune system.
We therefore propose a blood transcriptome registry fol-
lowing the model we introduce here on the FASTGen-
omics platform that would allow the scientific
community to utilize the information for new clinical
studies and to address further large-scale studies into
pathophysiological mechanisms of the disease and en-
hance the chances of trials to demonstrate a clinical
benefit in patients.
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