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Abstract

Background: Multiple sclerosis (MS) is a major health problem, leading to a significant disability and patient
suffering. Although chronic activation of the immune system is a hallmark of the disease, its pathogenesis is poorly
understood, while current treatments only ameliorate the disease and may produce severe side effects.

Methods: Here, we applied a network-based modeling approach based on phosphoproteomic data to uncover the
differential activation in signaling wiring between healthy donors, untreated patients, and those under different
treatments. Based in the patient-specific networks, we aimed to create a new approach to identify drug
combinations that revert signaling to a healthy-like state. We performed ex vivo multiplexed phosphoproteomic
assays upon perturbations with multiple drugs and ligands in primary immune cells from 169 subjects (MS patients,
n=129 and matched healthy controls, n=40). Patients were either untreated or treated with fingolimod,
natalizumab, interferon-β, glatiramer acetate, or the experimental therapy epigallocatechin gallate (EGCG). We
generated for each donor a dynamic logic model by fitting a bespoke literature-derived network of MS-related
pathways to the perturbation data. Last, we developed an approach based on network topology to identify
deregulated interactions whose activity could be reverted to a “healthy-like” status by combination therapy. The
experimental autoimmune encephalomyelitis (EAE) mouse model of MS was used to validate the prediction of
combination therapies.
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Results: Analysis of the models uncovered features of healthy-, disease-, and drug-specific signaling networks. We
predicted several combinations with approved MS drugs that could revert signaling to a healthy-like state.
Specifically, TGF-β activated kinase 1 (TAK1) kinase, involved in Transforming growth factor β-1 proprotein (TGF-β),
Toll-like receptor, B cell receptor, and response to inflammation pathways, was found to be highly deregulated and
co-druggable with all MS drugs studied. One of these predicted combinations, fingolimod with a TAK1 inhibitor,
was validated in an animal model of MS.

Conclusions: Our approach based on donor-specific signaling networks enables prediction of targets for
combination therapy for MS and other complex diseases.

Keywords: Signaling networks, Pathways, Network modeling, Logic modeling, Kinases, Treatment, Personalized
medicine, Combination therapy, Multiple sclerosis, Immunotherapy, Phosphoproteomics, xMAP assay

Background
The signal transduction machinery is frequently affected by
perturbations induced by complex diseases. Hence, treat-
ment of diseases such as cancer, cardiovascular, immuno-
logical, or brain diseases is nowadays largely attempted by
modulating different molecular cascades involved in the
disease to stop its progression. As such, kinases involved in
signaling processes have evolved as primary targets for
many diseases [1]. Further, there has been modest progress
with treatments based on single drugs. Combining several
drugs targeting different pathways promises more effective
modulation of the pathogenic process [2, 3]. However, de-
velopment of combination therapies is hampered by the
often incomplete understanding on how their effect propa-
gates through complex signaling networks, with crosstalk
between the pathways influenced by each therapy [4, 5]. As
an additional level of complication, disease heterogeneity
hinders predicting how a specific combination therapy
could be translated into the clinic. Last, the combinatorial
nature of such studies in terms of number of targets, drugs,
doses, and therapeutic regimens implies a large number of
experiments and associated costs, preventing a complete
analysis for all alternatives. As a result, the full potential of
combination therapies has not been fully developed yet.
Systems biology, and more specifically modeling of sig-

naling pathways applied to drug discovery, may provide a
new path to approach this question [2, 6, 7]. Mechanistic
understanding at the network level offers integrated in-
sights about the cellular responses to environmental
changes and drug effects, yielding a significant under-
standing of the signaling cascades derived from decades of
research in this field [8–10]. Mathematical modeling of
signaling networks has been used to unravel signaling
mechanisms and discover drug targets and disease media-
tors such as cell surface receptors or intracellular mole-
cules by training those models to experimental in vitro
measurements of key pathway components using inhibi-
tors and activators [4, 11, 12]. Modeling-based studies
may be the key to characterize the effect of drug

combinations at the molecular level and allow us to pre-
dict both efficacy and reduction of off-target effects [5, 11,
13].
Multiple sclerosis (MS) is an autoimmune disease, in

which the immune system is chronically activated and
damages the central nervous system (CNS) [14]. The in-
volvement of immune system deregulation in MS is
shown by altered phenotype and activity of blood lym-
phocytes and monocytes [14], as well as by association
with genetic polymorphisms of immune genes [15]. At
present, there are fifteen Food and Drug Administration
(FDA)-approved immunomodulatory drugs, and many
others are in late-stage clinical development. Most of
these control the inflammatory activity in patients with
MS to a certain degree, though with known unwanted
effects at the signaling level. Furthermore, many unmet
medical needs remain in the attempt of achieving con-
trol of the disease including more effective therapies, a
good safety profile, and neuroprotective or regenerative
treatments. Drug combinations are considered as a
promising strategy to overcome some of these limita-
tions, and in cancer combination therapies, they are well
established [16]. However, predicting which patients
would benefit the most from a certain combination ther-
apy remains as an unresolved challenge [17–20].
In this study, we present a systems medicine approach

aimed to (i) characterize the signaling pathways in pri-
mary immune cells obtained from the blood of MS pa-
tients and healthy controls and (ii) predict new
combination therapies based on the differences in signal-
ing networks between treated MS patients and controls
(Fig. 1). To this end, we assembled a literature- and
database-based prior knowledge signaling network
(PKN) [21], which includes the pathways involved in im-
mune and MS signaling, as well as their crosstalk and
known therapeutic targets. Based on their ability to
model large networks with a low number of parameters,
logic models have been used to unravel the network top-
ology driving disease and response to therapy [22–25].
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Here, we established a Boolean logic model from the sig-
naling network and trained it with measurements of kin-
ase de/phosphorylation as a proxy of signal propagation
upon perturbation with ligands and drugs in the periph-
eral blood mononuclear cells (PBMCs) from MS patients
and healthy controls. We determined disease- and
therapy-specific logic models that characterize the sig-
naling networks for approved treatments (interferon-
beta (IFNβ), glatiramer acetate (GA), natalizumab
(NTZ), fingolimod (FTY), and the experimental drug
epigallocatechin gallate (EGCG)). We hypothesized that
the signaling interactions that the drugs failed to revert
in the ex vivo assays to a healthy-like activity level may
be candidates to be targeted by a second drug and hence

lead to a personalized combination therapy. To identify
those interactions, we developed a score of co-
druggability of signaling interactions according to quan-
titative differences in network topology among healthy
controls and untreated and treated MS patients (Fig. 1
and Table 1).
Using this network-based approach, we predicted sev-

eral combination therapies, in particular of TAK1 with
all five studied MS drugs. We validated a highly scoring
combination therapy in the animal model of MS experi-
mental autoimmune encephalomyelitis (EAE). The mod-
eling approach shown here can be used for designing
combination therapies for other complex diseases as well
as for developing personalized therapies.

Fig. 1 Topological modeling approach of signaling pathways for prediction of combination therapy. a Identification of subgroup networks. A
model characterizing signaling activity (upstream kinase (circle) that regulates a response, e.g., innate immunity, survival (diamond)) in response to
a stimulus (oval) was calculated for each donor based on the experimentally acquired dataset. Next, the donor-specific models are merged for all
donors belonging to the same subgroup (left panel blue: healthy controls; middle panel orange: untreated MS; right panel green: treated MS). b
Scoring subgroup interactions to find co-druggable network interactions. The score is calculated to identify interactions that differ from healthy-
like signaling activity in spite of drug treatment (see the “Methods” section). c Topological prediction of drug combination. A topology-based
graph search allows identifying secondary treatments that could target and revert signaling of co-druggable interactions to a healthy-like
activity state
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Methods
Subjects and clinical cohorts
We recruited 255 subjects including 195 patients with
MS and 60 healthy controls in a multi-centric study in
four MS centers (Hospital Clinic Barcelona – IDIBAPS
(n=69), Karolinska Institute (n=64), University of Zurich
(n=40), and Charité University (n=82)). Healthy donors,
untreated patients and patients treated with IFNB, GA,
NTZ, and FTY were described before in an accompany-
ing study [26], whereas the participants in a trial testing
epigallocatechin-gallate (EGCG) at Charité University
were described in [27]. Characteristics of the clinical co-
horts: mean age: 43.1+11.3 years; disease duration: 8.7+
7.7 years; median Expanded Disability Status Scale
(EDSS): 2.0 (0–6.0); disease subtype: 24 clinically isolated
syndrome (CIS), 129 relapsing-remitting MS (RRMS), 6
secondary-progressive MS (SPMS), and 36 primary-
progressive MS (PPMS); untreated: 93 and 60 healthy
controls (Table 2). In order to account for sex and age,
healthy controls were matched to the RRMS subgroup,
i.e., the most prevalent subpopulation which is also the
MS subtype most frequently treated, a requirement to
enable our goal to characterize signaling deregulation
upon treatment. After quality control of the phospho-
proteomic dataset, the number of subjects was reduced
to 169 (129 MS patients and 40 healthy controls), see
Additional file 1: Supplementary methods.

Samples and processing
A unified standard operating procedure for PBMC isola-
tion, stimulation, and lysis, as well as sample storing and

Table 1 Overview of the identification of co-druggable interactions: co-druggability score examples and their interpretation

Healthy MS Treated Score Treatment Affecting? Healthy-like signaling
after treatment

Interpretation

0 0 0 0 NO YES Healthy-like signaling:
No combination therapy needed

0 0 1 -1 YES NO Un-healthy signaling. Single treatment is affecting:
Co-druggable

0 1 0 1 YES YES Healthy-like signaling. Effective single treatment:
No combination therapy needed

0 1 1 0 NO NO Un-healthy signaling. Single treatment not affecting:
Co-druggable

1 0 0 0 NO NO Un-healthy signaling. Single treatment not affecting:
Co-druggable

1 0 1 1 YES YES Healthy-like signaling. Effective single treatment:
No combination therapy needed

1 1 0 -1 YES NO Un-healthy like signaling. Single treatment is affecting:
Co-druggable

1 1 1 0 NO YES Healthy-like signaling.
No combination therapy needed

Co-druggable: interactions where treatment with the drug alone yielded signaling activity different to that of the healthy-like state. Columns 1–3: Signaling
activity of a given interaction as assessed by modeling in healthy, untreated MS and treated MS. Column 4: Co-druggability score calculated based on differences
between columns 1-3. Column 5: Difference present between treated and MS signaling. Column 6: Absence of a difference in interaction between healthy and
treated signaling. Column 7: Combination of columns 4, 5 and 6 to identify interactions deregulated (i) by the disease and not reverted to healthy state by
treatment or (ii) by an off-target signaling effect by the primary drug (see “Methods”)

Table 2 Demographic and clinical variables of MS patients and
healthy controls (HC)

MS
n=195

HC
n=60

Sex (M/F) 66/129 21/39

Age 43.1±11.3 39.9±8.5

Disease duration (months) 104.9+93.2 --

Age at onset 34.5+10.3 --

EDSS 2 (0-6.0) --

Disease subtype

CIS 24 --

RRMS 129 --

SPMS 6 --

PPMS 36 --

Treatments

DMD

FNb 36 --

GA 18 --

NTZ 22 --

FTY 20 --

Experimental drug

EGCG 6 --

Untreated

Untreated 93 --

M male, F female, EDSS Expanded Disability Status Scale, CIS clinically isolated
syndrome, RRMS relapsing-remitting MS, SPMS secondary-progressive MS,
PPMS primary-progressive MS, DMD disease-modifying drug, IFNb interferon
beta, GA glatiramer acetate, NTZ natalizumab, FTY fingolimod,
EGCG epigallocatechin-gallate
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shipping was developed along with a kit (plates) with
reagents and buffers that were produced in a single
facility (ProtAtOnce) and shipped to all participating
centers (see Additional file 1: Supplementary methods for
details). The reagents were prepared from a single batch,
and plates were prepared from a single batch for each
stimulus. Quality controls were carried out to ensure that
the reagents remain stable for 3 months.

xMAP assays
XMAP assays were developed by ProtAtOnce (Athens,
Greece) and were standardized to minimize error. We
optimized assays from a list of 70 candidates (see Add-
itional file 1: Supplementary methods) and obtained a
final list of 17 phosphoproteins which display a good
signal to noise ratio to be measured in the in vitro
assays: AKT1, CREB1, FAK1, GSK3A, HSPB1, IKBA,
JUN, MK03, MK12, MP2K1, PTN11, STAT1, STAT3,
STAT5A, STAT6, TF65, and WNK1 (Additional file 2:
Tables S1 and S2). We used a set of 20 stimuli,
which included pro-inflammatory or pro-oxidant sti-
muli (Anti-CD3, concanavaline A (conA), IFNG, IL1A,
IL6, LPS, NaCl, PolyIC, TNFα), immunomodulatory
stimuli (S1P, vitD3) neuroprotectants or anti-oxidants
(BDNF, EGCG, INS, and BN201), disease-modifying
drugs from MS (DMF, FTY, Teriflunomide, IFNβ1a
(Rebif®)), CNS-damaging oxidative stress H2O2, and a
culture media as control (Additional file 2: Table S3).
Samples were collected at baseline (time 0) and after 5
and 25 min.

Data normalization
After signal reading, data was normalized. To allow logic
modeling, data was normalized between 0 and 1, extend-
ing via stringent statistics the normalization strategy pre-
sented in [21] (see Additional file 1: Supplementary
methods). The maximum between 5 and 25 measure-
ments was selected to allow capturing signal transduc-
tion including late effects of network motifs such as
negative feedback loops.

Model generation
A model describing core immune signaling was estab-
lished based on Saez-Rodriguez et al [28]. Next, the
model was extended to further immune and MS-related
pathways such as interferon response, B and T cell re-
ceptor signaling, cellular survival and apoptosis, inflam-
mation, lipid signaling, innate immunity, and multi-drug
response (MDR) genes from the state-of-the-art data-
bases such as KEGG [29], ScienceSignaling [30], and
Wikipathways [31]. To allow the inclusion of MS drugs,
the drug targets were included from ChEMBL [32] and
Uniprot [33] in pathways as explained above via the ref-
erences detailed in Additional file 2: Tables S4 and S5.

Manual curation to prioritize interactions that were
found in immune or human cells was used whenever
possible. The global network featured (167 nodes and
294 interactions). The identifiable components, i.e.,
those that led to unique solutions using the optimization
algorithm, were assessed as described in [21], yielding a
so-called preprocessed network of 71 nodes and 168 in-
teractions. To reduce model complexity to a degree that
could be solved by model optimization, AND gates were
added based on publicly available knowledge on protein
complexes at EBI’s complex portal [34] (https://www.ebi.
ac.uk/intact/complex) (see Additional file 1: Supplemen-
tary methods). Next, a personalized model for each donor
was generated using individual datasets as described in the
“Model optimization” section.

Model optimization
For each patient, 10 completed optimization runs were
performed with a genetic algorithm and assessed as
shown in Additional file 3: Figure S1 (see Additional
file 1: Supplementary methods).

Network topology-based prediction of combination therapy
We calculated the co-druggability score as described in
Fig. 1 with S indicating the signaling activity status of
each interaction:

j SHealthy−SMS j − j SHealthy−STreatment j

were healthy refers to the healthy subgroup model,
MS relates to the untreated MS subgroup model, and
treatment denotes one of the five approved drug-treated
MS subgroup models. Therefore, interactions with a
negative co-druggability score indicated a treatment ef-
fect that produced signaling activity more different from
that found in healthy donors than without treatment
and were selected as co-druggable. A co-druggability
score of 0 indicated that there was no effect due to drug
treatment. From those cases, the interactions in which
signaling activity was different between healthy donors
and treated patients were also selected as co-druggable,
i.e., those where the drug alone failed to revert signaling
to a healthy state.

j SHealthy−SMS j − j SHealthy−STreatment j ≤0

Thus, we used the algorithm described in Fig. 1 to
define the co-druggability of all interactions within each
treatment group after filtering for active signaling. To
ensure that interactions with positive scores close to
zero were also captured by our method (interactions
with a similar signaling activity between drug treatment
and MS untreated), we defined a lower quartile thresh-
old around zero and collapsed almost zero scores into
zero. Further, we required co-druggable interactions to
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be significantly (p<0.05) different between healthy and
drug signaling by using the upper quartile as the differ-
ence threshold. Applying both filters together allowed us
to identify co-druggable interactions that were deregu-
lated by the disease as well as the unwanted signaling
effect by the primary drug (Additional file 3: Figure S2).

Experimental autoimmune encephalomyelitis
Female C57BL/6 mice from Harlan (8–12 weeks old)
were immunized subcutaneously in both hind pads with
300 μg of a myelin oligodendrocyte glycoprotein
(MOG35-55, Spikem, Florence, Italy) emulsified with 50
μg of Mycobacterium tuberculosis (H37Ra strain; Difco,
Detroit, MI, US) in incomplete Freund’s adjuvant as de-
scribed previously [35]. Mice were injected intraperito-
neally with Pertussis toxin (500 ng; Sigma, US) at the
time of immunization and 2 days later. Animals were
weighed and inspected for clinical signs of disease on a
daily basis by an observer blind to the treatments. The
severity of EAE was assessed on the following scale: 0=
normal; 0.5= mild limp tail; 1= limp tail; 2= mild para-
paresis of the hind limbs, unsteady gait; 3= moderate
paraparesis, voluntary movements still possible; 4= para-
plegia or tetraparesis; 5= moribund state; 6= death.
Animals (10 mice per arm) were randomized to their
treatment once they have reached a clinical score > 1
point. Clinical assessment was performed by a blinded
evaluator to the treatment group. Comparison between
groups was performed using the Mann-Whitney test
with p value cut-off at 0.05.

Statistical confirmation of patient subgroup models
To test whether the signaling models found for each
patient subgroup were reflected in the experimental
phospho-levels, we followed a three-stage strategy. First,
we identified stimulus-responding readouts in our experi-
mental dataset by assessing for each stimulus-readout
combination if the fold changes (before non-linear
normalization) of a given readout deviated significantly
from 0 for all donors within a single patient subgroup
using a one-sample Wilcoxon test. Multiple testing cor-
rection was performed using the Benjamini-Hochberg
strategy, yielding a p value for each stimulus-readout com-
bination within a group. Secondly, we determined which
stimulus-readout pairs were either in accordance with the
model of signaling or not, by confirming if a phospho-
readout could be reached from the respective stimulus in
the signaling model for the different subgroups
(Additional file 3: Figure S3A-E). Finally, using Fisher’s
exact test, we calculated whether the stimulus-readout
pairs found to be significant (using p<0.05 as cutoff) in the
first stage were enriched for those supported by the model
(determined in the second stage) compared to those not
supported (Additional file 3: Figure S3F).

Results
Multiplexed phosphoproteomic analyses in PBMCs from
MS patients and controls
To characterize the signaling networks involved in MS, we
created a Prior Knowledge Network (PKN) of biochemical
interactions (kinase phosphorylation) reported to be in-
volved in immune signaling associated with MS based on
omics and functional studies, as well as those pathway in-
teractions targeted by MS drugs [17]. Our network in-
cludes pathways such as interferon response, B and T cell
receptor signaling, cellular survival and apoptosis, inflam-
mation, lipid signaling, innate immunity, and multi-drug
response (MDR) genes (Additional file 3: Figure S4). To
achieve this, we searched in the state-of-the-art databases
for interactions that were reported in highly specific assays
and prioritized experiments with human and PBMC cells
(see the “Methods” section). Further, targets of MS drugs
were included in the network via their crosstalk with im-
mune pathways. The PKN featured 167 signaling compo-
nents (Additional file 2: Tables S5) and 294 interactions
(Additional file 2: table S4).
Subsequently, we developed a multiplex xMAP

phosphoprotein panel as a proxy of protein activation.
The phosphosites in the panel were selected to
maximize the coverage of the MS-specific network. The
stimuli were selected according to their regulation of the
pathways included in the PKN as detailed above and ref-
erenced in Additional file 2: Tables S4 and S5. The
panel, which combined previously and newly developed
assays, was then optimized to maximize accuracy, repro-
ducibility, and network coverage (see Additional file 2:
Table S1 and Additional file 1: Supplementary methods)
[36]. After optimization, we selected a set of 17 phos-
phoproteins with adequate signal to noise ratio that were
used for the in vitro assays: AKT1, CREB1, FAK1,
GSK3A, HSPB1, IKBA, JUN, MK12, MK03, MP2K1,
PTN11, STAT1, STAT3, STAT5, STAT6, TF65, and
WNK1 (Additional file 2: Table S2). PBMCs were cul-
tured in the presence of different sets of stimuli such as
lectins, endotoxins, immunostimulants, cytokines, and
drugs (Additional file 2: Table S3).
To estimate the representativeness of our selected

phospho-signals, we calculated closeness centrality, a
metric which measures the efficiency of a node in
spreading information through a graph, for all nodes in
the immune- and MS-specific signaling network pre-
sented here. No signal was found to be central to the
whole network, and the nodes we selected and measured
as signals were found to be the most central nodes in
the B cell, T cell, inflammation, IFNb, cellular survival,
apoptosis, and innate immunity pathways (Additional
file 3: Figure S5), thereby supporting that they were
indeed representative of the pathways we sought to
study.
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We extracted PBMCs from 195 MS patients (mean
age: 43.1+11.3 years; disease duration: 8.7+7.7 years; me-
dian Expanded Disability Status Scale (EDSS): 2.0 (0–
6.0); subtype: 24 CIS, 129 RRMS, 6 Secondary-
Progressive MS (SPMS), and 36 PPMS; untreated: 93)
and 60 healthy controls (Table 2). From those 255 do-
nors, 180 were selected and PBMCs were analyzed be-
fore stimulation and at 5 and 25 min after stimulation.
This yielded a dataset consisting of three measurements
for 17 phosphoproteins upon 20 stimuli, to a total of
183,600 experimental measurements. For subsequent
modeling, the two-time points after baseline (5 and 25
min) were collapsed into a single activation signature to
define whether a given phosphoprotein was activated or
inhibited (see details in the “Methods” section). Finally,
we applied stringent quality control analyses of the data-
set consisting of positive and negative controls, reproduci-
bility tests, and tests for artifacts in the distribution of the

samples (see Additional file 1: Supplementary methods),
which led to the removal of 2028 data points and 11 pa-
tients to generate the final dataset for a total of 169 sub-
jects. To reduce the complexity of the model to those
pathways that can be determined based on the experimen-
tal coverage, identifiability analysis was performed as de-
scribed in [21]. After identifiability analysis, the PKN
(shown in Additional file 3: Figure S4) was reduced to 71
proteins and immune modulators and 168 interactions.

Logic modeling enables characterization of signaling
networks in healthy donors and MS patients
Next, we sought to train the generic PKN to these phos-
phoproteomic measurements in a donor-specific manner
to identify each donor’s active pathways. To train the
same Boolean logic model to the data of each of the 169
subjects, the phosphoproteomic datasets were trans-
formed (Fig. 2a). To enable comparison of the data to

Fig. 2 Phosphoproteomic measurement and normalization pipeline. a xMAP mean fluorescence intensity (MFI) log values of the 17 analyzed
phosphoproteins, b fold change distribution, c non-linearly normalized values (see the “Methods” section). Orange measurements a–c: values of
the same patient to allow visualization of the changes across data transformation. d Percentage of patients, for which each phosphoprotein was
classified as phosphorylated, dephosphorylated, or non-significant after statistical testing
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the binary output of the Boolean model, we established a
stringent normalization pipeline combining (i) a non-
linear transformation to normalize the measurements to
continuous values between 0 and 1 while penalizing the
outliers [21] with (ii) a statistical filter that removed
data-points belonging to proteins which, upon perturb-
ation, were not found to be significantly phosphorylated
or dephosphorylated. Following this strategy to identify
two significant states from continuous phosphorylation
measurements featuring a three-state scenario of phos-
phorylation, dephosphorylation, or unchanged levels,
this procedure enables us to train a Boolean (binary)
model (Additional file 1: Supplementary methods, “Data
normalization for logic modeling” and Additional file 3:
Figure S6). Figure 2b shows the log fold change of each
phospho-profile with respect to the control, Fig. 2c the
dataset after the non-linear normalization, and Fig. 2d
displays the proteins found to be significantly dephos-
phorylated or phosphorylated. Using this normalized
dataset, we aimed to identify the active specific signaling
network for each donor.
To this end, we fitted a general logic model derived

from the PKN [21] to each donor dataset, which resulted
in a compendium of 169 models. Model optimization
was performed with CellNOpt, a tool that selects the
logic model that best matches the data while penalizing
model size [37]. To increase the robustness of each
model, optimization was performed 10 times, and for
each donor, we selected the best solution as well as all
models with a data-to-simulation mismatch within a
given relative tolerance reflecting that, due to lack of
identifiability and technical noise, different models are
feasible [21] (see the “Methods” for details). We then
built a final model for each patient, defined by the me-
dian value of each interaction across all solutions within
the relative tolerance (or borders of tolerance) of the
best solution (Fig. 3a). To assess the validity and robust-
ness of our modeling approach, we confirmed the ab-
sence of bias due to treatment, center, disease subtype,
medical condition, and technical aspects such as model
size and merging strategy (Additional file 3: Figure S1).
To study the effect of MS and MS treatment on signal

transduction, we first merged the individual donor
models within each group by calculating the mean activ-
ity over each reaction, which yielded a single network
per group. Next, we calculated the distance between
each patient model and the corresponding group mean
network using the Jaccard distance, a metric used to as-
sess the number of interactions that are dissimilar in
two networks [38]. Finally, as a comparison, we calcu-
lated for each group the distances between the mean
group network and the networks of all untreated MS pa-
tients (Fig. 3b). We found that healthy donors were
slightly more similar (median Jaccard distance = 0.628)

than MS untreated patients (median Jaccard distance =
0.644) to the mean healthy signaling network. We then
calculated pairwise distances among all donors, and used
them as a background similarity for comparison. We
found the dissimilarity among healthy donors to be sig-
nificantly lower than that of the background (Wilcoxon
test’s p value = 0.0215). The dissimilarity in untreated
patients was also lower than the background’s (p value =
0.0318). In addition, drug treatment exhibited a strong
effect on signaling, which seemed to be homogenized
within each group with dissimilarities lower than that of
healthy and untreated donors (median Jaccard distance
to each group’s mean network: EGCG = 0.512, untreated
MS = 0.641; FTY = 0.595, untreated MS = 0.646; GA =
0.632, untreated MS = 0.665; NTZ = 0.615, untreated
MS = 0.641; IFN = 0.599, untreated MS = 0.615). The
differences were found to be significant in three of the
treatments (Wicoxon’s test p value EGCG = 0.00676,
FTY = 0.000418, IFNb = 0.0462), further supporting the
strong effect of drug treatment on signaling. Altogether,
these results supported that merging models by sub-
groups of donors yields biologically meaningful signaling
networks for each group.
Next, we sought to characterize the specific network ar-

chitectures of MS, as well as those of MS treatments. The
differentially activated interactions between healthy donors
and untreated MS patients uncovered signaling pathways
deregulated in MS (Additional file 1: Supplementary
methods and Fig. 3c). Our analysis revealed the activation
of several pathways in PBMCs after stimulation both in pa-
tients and controls, ranging from cell survival and prolifera-
tion to TCR, innate immunity, and pro-inflammatory
response pathways (e.g., TCR - CSK - LCK, JAK1 - STAT1,
TLR4/IL1R1 - MYD88 - IRAK4 - TRAF6 - TAK1, TNFα -
TRADD - TRAF2 - MAP3K1, SGK - MK03, or RS6 - SGK,
RAF1 - MP2K1). Further, increased activity was found in
pathways such as INSR - PI3K - PIP3 - AKT1 and JAK1 -
STAT3 in MS patients, while BDNF - NTRK1 - GRB2 was
found to be activated in healthy donors.
These findings indicated that our method was able to

identify previously described pathways in the setting of
ex vivo analysis of human PBMCs [17], as examined in
detail for the individual pathways in the discussion. Un-
treated MS patients, when compared to healthy controls,
showed an increase in the activation of the NFkβ path-
way (TAK1-IKKB), the activation of the cell prosurvival
PI3K pathway (SLP76-AKT1), or the activation of inter-
feron/cytokines pathways (JAK1-STAT3). Moreover, pa-
tients showed a decrease, compared to healthy controls,
in the activation of TCR/IL-2 pathway (LCK-STAT1) as
well as in the effect of trophic factors signaling on ubi-
quitination system (EGFR-CBL). These results
characterize, at the mechanistic and quantitative level,
the differential activation of the immune pathways in
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Fig. 3 Logic modeling identifies donor-specific signaling networks and reveals MS-specific signaling pathways. a Signaling network found by
modeling for each donor, visualized as a heatmap. Rows: Single donor network. Columns: Signaling activity determined for each interaction by
calibrating the PKN shown in Additional file 3: Figure S4 after removing the unidentifiable interactions using the phosphoproteomics dataset of
each donor. b After networks were merged by subgroup, the Jaccard distance was used to assess similarity from all donors within each group
(selected donors in group legend) to their mean subgroup network (network in X axis) and compare it to the similarity from MS patients to the
same group network. Healthy donors (blue) were more similar to the mean healthy network than untreated MS patients (orange). In turn, the
distance from both groups of donors to that of the combined signaling activity in all donors (grey) was statistically significant. Distance from
treated donors (green) to their mean subgroup network was largely reduced when compared to distance from untreated donors to the
treatment’s network, suggesting a strong effect of treatment homogenizing within group signaling. c Differentially activated pathways (see
Additional file 1: Supplementary methods) between healthy controls (HC) and untreated MS patients (MS). The models previously calculated for
each donor were merged to reveal the common active pathways for controls (blue), untreated MS patients (orange), and both (brown). Gray:
Inactive interactions from the MS, immune- and treatment-related network (Additional file 3: Figure S4)
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MS and were supported by the statistical analysis of the
phosphorylation of individual kinases in an accompany-
ing study [26]). In particular, the accompanying study
found MP2K1, STAT1, STAT3, TF65, and HSPB1 to be
differentially phosphorylated (p<0.05 after correction for
multiple hypothesis testing) in MS patients relative to the
controls, confirming the differential activation of cell
survival and proliferation (MAPK), and pro-inflammatory
(STAT) pathways in immune cells.

Quantitative differences found in signaling pathways
under therapy
We then quantified differences in signaling between pa-
tients treated with MS-specific therapies, using the same
procedure as for healthy donors versus untreated MS pa-
tients. We focused on the strongest signals, i.e., those in
the upper quartile of the group mean (Additional file 3:
Figure S2). This yielded a signaling network of active
reactions characterizing each subgroup, uncovering the
effect of each MS-treatment on signaling at the mechan-
istic level (Additional file 3: Figure S3).
Interestingly, the activation of TAK1, a key component

involved in TGF-β, Toll-like receptor, B cell receptor,
and NFkβ pathways, as well as response to inflammation
was identified in all five networks inferred under treat-
ment (Additional file 3: Figure S3 A-E). Additionally, its
activity was persistently over-activated in terms of quan-
titative signaling activity by the currently approved MS
drugs (Additional file 3: Figure S2). In the case of IFNβ-
and GA-treated patients, the network revealed the acti-
vation of STAT1 and STAT3 by JAK1, whereas in the
EGCG-, FTY-, and NTZ-specific networks, the activa-
tion of the JAK1-STAT pathway is regulated via STAT3,
STAT6, and STAT1, respectively.
To validate that the therapy-specific pathways found

were consistent with the experimental measurements of
MS signatures, we quantified the degree to which the
original phospho-measurements supported the signaling
pathways predicted by modeling for each patient sub-
group. The proteins differentially phosphorylated across
all stimuli combinations were overrepresented in path-
ways found by model fitting (IFNβ p=1.2E−05; GA p=
1.4E−06; FTY p=0.0004; NTZ p=0.006; Fisher’s exact
test) except for EGCG, which was limited by the small
sample size (Additional file 3: Figure S3F and methods).

Network topology-based prediction of targeted
combination therapy
Our main goal was to use the subgroup networks found
to predict novel combination therapies. To this aim, we
defined a therapeutic goal to revert the signaling net-
work of patients with MS to a healthy-like activity. We
introduced a restriction to our method: the combina-
tions we sought included one approved MS drug which,

in spite of its known efficacy in MS, yielded a signaling
activity that differed from the healthy controls as identi-
fied by our topological modeling approach. Therefore,
we aimed to identify which kinase interactions within
the network needed its signaling activity to be reverted
to the healthy-like state when treated with the ongoing
therapy. We hypothesized that co-druggable interac-
tions, i.e., those that a given MS therapy failed to revert
to a healthy-like activity level, should be the model inter-
actions with a signaling value more distant between
healthy control and MS drug models than between
healthy control and untreated MS models (Fig. 1, Table
1 and see the “Methods” section). This yielded a list of
interactions with their corresponding score quantifying
co-druggability potential (Additional file 2: Table S6 and
Additional file 3: Figure S2). To identify the co-
druggable interactions, we selected those with a non-
positive score as described above and filtered for add-
itional conditions (see the “Methods” section), thereby
identifying both the interactions whose signaling activity
was different from healthy because of deregulation by
the disease as well as because of off-target primary drug
effect (Fig. 4a). The last step of our approach was to pre-
dict the stimulus that would revert to healthy-like signal-
ing activity of those interactions identified as co-
druggable. Therefore, the co-druggable interactions were
mapped onto the signaling network assessed for each
drug subgroup. As an example, Fig. 4b shows the co-
druggable interactions under FTY treatment mapped
onto the FTY network. Mapping the co-druggability for
each interaction allowed us to predict combination ther-
apies based on each treatment’s signaling network top-
ology. Finally, we employed a graph search approach to
identify the in vitro stimulus used in our study that acti-
vated interactions found to be co-druggable with each
drug. In other words, we found the experimental read-
outs that could be measured and reached from an
in vitro stimulus via an interaction found to be co-
druggable in vivo (Additional file 2: Table S7). It is im-
portant to note that our approach enabled the prediction
of combinations of approved MS therapies which yielded
a signaling activity distant from healthy controls with
drugs that stimulated or inhibited signaling. We statisti-
cally confirmed that the signaling models found for each
patient subgroup were reflected in the experimental
phospho-levels (see statistical confirmation in the “Methods”
section and Additional file 3: Figure S3).

Validation of a predicted combination therapy in the
animal model of MS
Next, we validated in vivo one of our predictions.
Among all predictions (Additional file 2: Table S7), we
chose to validate the combination of FTY with a TAK1
inhibitor based on (i) the striking signaling homogeneity
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across FTY models (as quantified in Fig. 3b), (ii) the
finding that TAK1 modulation of HSPB1 via MK12 is
largely deregulated (Additional file 3: Figure S2, panel
FTY, interaction MK12 - HSPB1), and (iii) the fact that
TAK1 is active and co-druggable in all 5 networks under
treatment with in vivo drugs, specifically TAK1 -
MAP2K4 for ECGC, IL1R1 - TAK1 for FTY, IL1R1 -
TAK1 for GA, LPS - TAK1 for IFNβ, and TAK1 - MK12
for NTZ (Additional file 2: Table S6).
To obtain an in vivo proof-of-concept of the efficacy

of the combination therapies proposed, we sought to as-
sess whether the combination therapies improved the
clinical course of the animal model of MS (EAE in the
C57BL6 mice immunized with the MOG35-55 peptide).
Mice were randomized after disease onset (after they
reached a clinical score >1.0), either to placebo (saline),
each drug alone, or the combination of FTY with the
TAK1 inhibitor (5Z-7-oxozeaenol). Doses were selected
from previous dose-efficacy studies [39] and [40] in the

EAE model, whereby the next lower dose without effi-
cacy below the efficacious one was selected. We found
that the combination FTY+TAK1-inhibitor ameliorated
the clinical course of EAE compared to placebo, TAK1-
inhibitor, or FTY alone (Mann-Whitney test; p<0.05)
(Fig. 4c). Therefore, our method was able to identify
combinations of drugs targeting different pathways that
achieved higher efficacy than single therapy.

Discussion
In this study, we have built donor-specific dynamic logic
models and developed a network-based approach to (i)
characterize signaling deregulation in MS and several of
its treatments and (ii) predict new targets for combination
therapy. Although highly effective therapies have already
been developed for MS, improving their efficacy further,
particularly for progressive MS, remains an important un-
met medical need [41]. Higher efficacy is desirable for
progressive MS, in which currently approved drugs

Fig. 4 Combination therapies predicted and in vivo validation. a All predicted co-druggable interactions of the MS drugs models. Based on the
subgroup models, the co-druggability of all 168 network interactions (X axis) was assessed using the co-druggability score, and those identified as
co-druggable (see Fig. 1, Table 1 and main text) are shown. For each interaction (X-axis) the number of drugs (Y-axis) is shown, in which it was
found to be co-druggable using the co-druggability criteria. b FTY network co-druggability: the case of FTY network co-druggability is shown as
an example (red line: interactions predicted to be co-druggable). c In vivo validation of the combination FTY+TAK1-inhibitor in the EAE model.
The graph shows the mean and the standard error of the clinical score for each group (n=7). Animals started treatment after disease onset
(clinical score >1.0) and were randomized to each treatment and rated in a blinded manner. Stars show days significantly different from the same
day with placebo
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(Ocrelizumab and Siponimod) show approximately 20%
amelioration in primary and secondary progressive MS re-
spectively compared to placebo. Even in the case of
relapsing-remitting MS, not all patients reach complete
control of the disease (no evidence of disease activity
(NEDA)). Recent studies have found that RRMS patients
accumulate disability independently of relapses even if
treated with low or high efficacy therapies as shown in the
Ocrelizumab trials [42]. Whether the combinations that
we identified with our approach would improve such
outcome will require to be tested in clinical trials.
In addition to predicting combination therapies, the

approach presented here allows insights into signaling
deregulation in MS by comparing signaling networks in
untreated MS patients with those of healthy controls. The
comparison demonstrates enhanced pro-survival effects of
the trophic factor signaling pathway (AKT1) and modula-
tion of the interferon pathway (JAK1, STAT3). In line with
the differences found here, aberrant STAT phosphoryl-
ation signaling in peripheral blood mononuclear cells
from MS patients has been reported [43]. The NFkβ path-
way has been reported to be overactivated in PBMCs from
patients with MS [44, 45] as well as to contribute to the
genetic susceptibility of the disease [46, 47]. Our analysis
supports the systemic pro-inflammatory state of PBMCs
in MS. The trophic factor pathway involving SLP76 and
AKT was found active in patients under treatment with
GA, NTZ, and IFNβ and has also been associated with
MS [17] and MS susceptibility via CD6 gene [48, 49]. The
involvement may reflect a pro-survival signaling state of T
and B cells in the context of the pro-inflammatory micro-
environment. Finally, we observed overactivation of the
cytokine/interferon pathway (JAK1), which has previously
been reported in MS [17]. Moreover, STAT3 has been
confirmed as susceptibility gene for the disease [50], and
its activation is impaired in response to IL-10 in MS
patients [51], suggesting a defective response of regulatory
Tr1 cells. Regarding the interactions that were decreased
in MS patients compared to controls, PBMCs from
patients with MS showed lowered inhibition of STAT5 by
LCK suggesting impairment of the regulation of T/B cell
signaling and IL-2 trophic effects [52] or cytotoxicity [53],
as well as the regulation of the ubiquitination system
modulated by CBL-B [54]. LCK is modulated by EVI5,
and influences STAT5 in our analysis, both being suscep-
tibility genes for MS [50]. The second inhibited interaction
involved the MS susceptibility gene CBL-B [55], which
regulates TCR and co-stimulatory signals and regulates
immune tolerance through its ubiquitin E3-ligase activity.
CBL-B expression is reduced in CD4 cells from MS
patients and alters the signaling of the type I interferon
pathway [56, 57]. CBL-B is activated by EGFR, leading to
inhibition of several pathways by ubiquitination, including
that of EGFR itself [58, 59]. In summary, our results are

supported by multiple previous studies identifying deregu-
lation of pathways in MS [17] and shows the activation of
pro-inflammatory pathways and the inhibition of path-
ways related with immune tolerance.
Furthermore, the phosphoproteomic dataset designed

for and used in this study was also used in an accom-
panying work [26] that performs a statistical comparison
of phosphorylation of single kinases and their association
to genetic susceptibility. The accompanying study found
multiple differentially phosphorylated and associated
kinases, which are crucial components of the pathways
found deregulated here.
The combination therapies predicted with our topo-

logical modeling approach may contribute to reducing
the treatment’s unwanted effects in two ways. First, our
method enables the characterization of drug-specific ef-
fects on signaling. For example, the models revealed the
activation of JAK1-STAT1 pathway [60, 61] in IFNβ-
treated patients, the activation of AKT, PLC [62, 63] in
patients treated with FTY, or the activation of MAPK,
and NFkβ (via TAK1) [64–66] in NTZ-treated patients.
By identifying models of MS drugs, our method found
the pathways activated downstream of drug targets in
our signaling network. Further, it identified interactions
with other disease-associated pathways, which may not
directly be involved in the signaling targeted by such a
drug. Therefore, our modeling approach can be used to
provide a wider context of the effects of a given drug on
the functions of the target cells. Specifically, our co-
druggability score identifies not only those interactions
that are unhealthy-like due to MS deregulation but also
those that change due to first line treatment, whose sig-
naling can be reverted to healthy-like by a combination
drug. Second, rational identification of drug combina-
tions may allow us to use lower doses of approved drugs,
thereby reducing the dose-related adverse events of each
single drug, improving safety and tolerability while main-
taining efficacy. As we show in this study, the latter
aspect can be predicted from in vitro measurements and
validated in animal models, as we did with the combin-
ation of FTY and a TAK1 inhibitor. In the specific case
of FTY, its most common side effects are dose-
dependent and include lymphopenia, transient bradycar-
dia, increased rate of latent infections with HSV-1 and
VZV, liver enzyme elevation, and a few others. Fingoli-
mod acts by trapping lymphocytes in secondary lymph-
oid organs by functional antagonism of S1P receptors.
However, its effects on cell signaling are poorly under-
stood. Some of its adverse events may be prevented by
reverting signaling to healthy-like in the TGF-β, Toll-
like receptor, B cell receptor, NFkβ, or proinflammatory
pathways of which TAK1 is a member. Further, in our
validation, we made use of suboptimal doses and showed
that the combination is effective in EAE mice as it is
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with Fingolimod at full dose, although using significantly
smaller doses. Hence, safety can be reasonably expected
to be improved. While these considerations regarding in-
creased safety by drug combinations are reasonable,
demonstrating them is likely more difficult and will re-
quire careful testing in patients. For instance, to date
TAK1-inhibitors have not been and are not in clinical
testing according to ClinicalTrials.gov for MS. However,
TAK-1 inhibitor Takinib has been shown to broaden the
therapeutic potential of anti-TNF approaches in cancer
and autoimmune disease [67], and we anticipate that it
is going to be developed for clinical testing. We hope
that these insights can be used to reduce unwanted side
effects and tailor treatment to patients.
Our study has several limitations. First, the analysis of sig-

naling signatures is based on phosphoproteomics of mixed
immune cells, i.e., PBMCs. While this allows us to measure
key pathogenic MS features with a focus on immune mech-
anisms such as T cell and B cell activation, cell adhesion
and migration, proinflammatory differentiation, and others
in the multiple cell types that have been related to MS
pathogenesis [68], it yields a signal that is the average of the
signals in cell subtypes and hence can mask cell-type-
specific responses. To avoid a signal averaged across
PBMCs, one could filter specific immune cell subtypes such
as CD4+, CD8+, B cells, and monocytes. Subsequently ana-
lyzing signaling abnormalities while accounting for differen-
tial contribution to disease susceptibility or response to
therapy across cell subtypes may reveal new therapeutic tar-
gets. Alternatively, technologies to collect information at
the single-cell level such as mass cytometry [69] would
allow us to separate cells by type, but the cost is consider-
ably higher, limiting the number of subjects. A more afford-
able alternative would be flow cytometry, which on the
other hand can measure a lower number of analytes. Sec-
ond, our current coverage using validated xMAP assays was
restricted to 17 proteins. Although designed to maximize
the coverage of immune- and MS-related pathways and
confirmed as representative by topological analysis, these
constitute a small subset of the signaling molecules and
pathways that may be activated in immune cells. Some
technologies such as mass spectrometry allow studying
multiple phosphosites and at whole proteomic scale. How-
ever, the specific proteins measured are not chosen and
cost per sample is much larger. Therefore, the number of
patients, timepoints, and replicates would have to be re-
duced given our budget, making our study unfeasible. In
those cases where upscaling the number of readouts is pos-
sible, robust quantitative phosphoproteomic assays covering
thousands of phosphosites in hundreds of samples can be
used for logic modeling [70]. This will allow us to signifi-
cantly expand the scope of our models. Furthermore, other
modifications such as ubiquitination can play an important
role in signaling. Such data, if available, can be included in

our models. Third, the Boolean logic approach does not de-
scribe processes biochemically and models processes as
binary, hence missing subtle aspects of signal transduction
[10]. One of the main goals of our study was to develop a
modeling approach that can guide the rational development
of combination therapies. Our signaling topology-based ap-
proach has the advantage of allowing prediction of combi-
nations between drugs currently used in patients with MS
and compounds that can stimulate signaling where those
drugs yield a signaling activity distant from the healthy
state. Many strategies have been developed to predict drug
combinations [71]. Others have used phosphorylation data
upon perturbation using statistical approaches [13], data-
driven network inference [5, 11], or a combination of
mechanistic and Bayesian network modeling [72]. Due to
their simplicity, logic networks can model large networks
and provide a useful framework to study drug combinations
[23–25]. We used this logic framework to analyze a large
dataset encompassing 183,600 data points derived from a
newly recruited cohort of 169 donors. Our approach is a
compromise between data availability, technical feasibility,
and computational burden that sacrifices details to be able
to capture a broad portion of the signaling machinery.
Fourth, in this study, we have explored only some of the
currently approved drugs for MS patients. And fifth,
we have averaged individual patients’ networks to ob-
tain the subgroup (drug) networks, which leads to
losing individual variability, probably related to differ-
ential genetic susceptibility, or immune system
activation.
In summary, we have built donor-specific dynamic

logic models and developed a network-based approach
to (i) characterize MS and treatment deregulation of sig-
naling and (ii) predict new targets for combination ther-
apy. This approach can be applied to other diseases.

Conclusions
Here, we applied a modeling approach to characterize
signaling activity both at the donor-specific and at the
subgroup level using phosphoproteomic data from
primary immune cells of MS patients and healthy donors.
At the subgroup level, we identified models of the signal-
ing network for healthy controls, untreated, and drug-
treated MS patients. Our approach allowed us to
characterize signaling deregulation in this complex and
heterogeneous disease. Further, based on the data-driven
models, we developed a network-based method to predict
novel combination therapies for the treatment of MS. We
hypothesized that the interactions in the subgroup models
in response to single drugs that were not reverted to a
healthy-like activity state can be co-drugged. Hence, we
developed a co-druggability score identifying those inter-
actions. Finally, we used that score on a newly developed
strategy to predict combination therapies based on
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network topology. Thus, our algorithm identifies interac-
tions within signaling networks that should be targeted to
restore the network to a healthy-like state.
As validation, we tested in vivo the combination of

one approved drug for MS, FTY, with an inhibitor of
TAK1, a key component in the predicted signaling
networks of all five studied in vivo drugs, which was
found highly deregulated in FTY. This combination
largely ameliorated the course of the animal model of
MS with significantly higher efficacy than each treat-
ment alone, providing in vivo proof-of-concept for
our approach.
In conclusion, the approach developed here can be

applied to other diseases with poorly understood patho-
genesis and treatments which may produce severe side
effects or only partially ameliorate the disease. We ex-
pect our approach will contribute to a better under-
standing of disease- and therapy-related signaling
deregulation and aid in the development of combination
therapies to restore healthy signaling.
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