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Abstract: Aromatic amino acid aminotransferases present a special potential in the production of
drugs and synthons, thanks to their ability to accommodate a wider range of substrates in their
active site, in contrast to aliphatic amino acid aminotransferases. The mechanism of active site
adjustment toward substrates of psychrophilic aromatic amino acid aminotransferase (PsyArAT)
from Psychrobacter sp. B6 is discussed based on crystal structures of complexes with four hydroxy-
analogs of substrates: phenylalanine, tyrosine, tryptophan and aspartic acid. These competitive
inhibitors are bound in the active center of PsyArAT but do not undergo transamination reaction,
which makes them an outstanding tool for examination of the enzyme catalytic center. The use
of hydroxy-acids enabled insight into substrate binding by native PsyArAT, without mutating the
catalytic lysine and modifying cofactor interactions. Thus, the binding mode of substrates and the
resulting analysis of the volume of the catalytic site is close to a native condition. Observation of
these inhibitors’ binding allows for explanation of the enzyme’s adaptability to process various sizes
of substrates and to gain knowledge about its potential biotechnological application. Depending on
the character and size of the used inhibitors, the enzyme crystallized in different space groups and
showed conformational changes of the active site upon ligand binding.

Keywords: crystal structure; aromatic amino acids aminotransferase; active center adaptability;
substrate specificity; psychrophilic; enzyme-inhibitor complexes

1. Introduction

Transamination stands as a bright example of reaction, which is nowadays conducted
almost exclusively by biotechnological means. [1] Enzymatic methods allow to elude mul-
tistage and complicated chemical reactions and grant an enantiomerically pure product
with high efficiency. Aromatic amino acid aminotransferases (ArAT) play a crucial role
in the biosynthesis and degradation of various biomolecules. They participate in sev-
eral essential metabolic pathways: methionine, tyrosine and phenylalanine metabolism;
phenylalanine, tyrosine and tryptophan biosynthesis; novobiocin biosynthesis and al-
kaloid biosynthesis. [2] Although aminotransferases have been the subject of extensive
research for more than half a century, their industrial importance has gradually grown
from the early 2000s. The revolution started when the main problem of enzyme-driven
transamination, which is unfavorable reaction kinetics, was overcome first by using sub-
strate excess and then by product removal and by introduction of enzymatic cascade
reactions. [3–7] Most of ArAT’s applications are related to ω-aminotransferases, as they
are not limited to substrates with an amino group adjacent to the carboxyl one. How-
ever, the enantiomerically pure amino acids and their close derivatives are still in high
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demand. Thus, α-aminotransferases (αAts) remain industrially viable. [8–12] Interest-
ing chemicals, which can be obtained via αAT-catalyzed reactions, are primary amines,
such as L-tert-leucine, L-homoalanine, L-homophenylalanine, L-6-hydroxynorleucine, L-
3-hydroxyadamantylglycine, L-2-aminooctanoic acid and L-2-naphtyl alanine. [13] Such
a broad range of products is related to the high elasticity of Ats’ active pocket and/or
improvements obtained by directed evolution of enzymes. [14,15] Another group of chemi-
cals worth mentioning is the precursors for drugs, such as L-homoalanine, serving in the
production of Ethambutol, Levetriacetam and Brivaracetam or amino acids and amines
acting as pharmaceutics themselves, e.g., L-thienylalanine or L-norephedryne. Some of the
enzyme-driven transamination products are useful in fields not related to pharmacy, for
example, L-diphenylalanine, which is a substrate for the synthesis of peptide nanotubes
that can be used as piezoelectric clean energy harvesters [16,17].

The awareness of the environmental impact of industrial processes, which is rapidly
growing nowadays, puts psychrophilic enzymes in the spotlight. Cold-adapted enzymes
show high activity, even at low temperatures, cutting the heat demand of the process. [18]
Moreover, cold-adapted enzymes are a perfect solution for processes involving thermola-
bile substrates or products. Thus, structural analysis of such enzymes, based on crystal
structures, is needed to fully understand the structure–function relationship and structural
changes responsible for their function and potential usage. However, the search of the
Protein Data Bank revealed a lack of such information for this group of proteins.

The psychrophilic aromatic aminotransferase from Psychrobacter sp. B6 is a repre-
sentative of pyridoxal phosphate (PLP)-dependent enzymes. This vast group includes
proteins belonging to five EC classes: oxidoreductases, transferases, hydrolases, lyases and
isomerases. They are also subdivided into four fold-types; D-amino acid and branched-
chain amino acid aminotransferases are members of the fold-type IV family; the rest of the
aminotransferases, including aspartic and aromatic amino acid aminotransferases, such
as that investigated in this work, PsyArAT, are fold-type-I PLP-dependent enzymes. [19]
To this day, investigated in this work, PsyArAT is the only psychrophilic bacterial ArAT
of known structure. [20] However, its mesophilic analog from Paracoccus denitrificans [21],
thermophilic from Pyrococcus horikoshii [22] and fungal homolog from Candida albicans [23]
were structurally studied.

PsyArAT exhibits an activity typical for ArAT: transamination, which is a transfer of an
amine group between aromatic α-amino acids and α-ketoacids. The reaction is described
by a bi-bi ping-pong mechanism, due to its two half-stage reversible character. The first half
of the reaction starts upon the binding of the catalytic lysine ε-amine group to the aldehyde
group of PLP with the release of a water molecule and the creation of internal aldimine
(PLI). The second step is an actual transamination, in which PLI is transformed into external
aldimine (PLE) by the substitution of lysine with an amino acid. Next, PLE is hydrolyzed
with the creation of α-ketoacid, corresponding to a substrate and pyridoxamine phosphate
(PMP). In the second half-reaction, α-ketoacid reacts with PMP, giving an appropriate
amino acid as a product and setting the cofactor back into the PLP state. This activity
is of great importance for the metabolism of amino acids, enabling their degradation by
conversion into citric acid cycle substrates and the synthesis of some nonessential amino
acids [24].

Hydroxy-analogs of amino acids, chosen for complex creation with PsyArAT, are
good candidates for the analysis of conformational changes occurring in the PsyArAT
active center during ligand binding. The only close bacterial homolog of PsyArAT, of
which structures in the form of complexes are available in the PDB (PDB IDs: 1AY5, 1AY8,
2AY2–2AY9) [25], is its mesophilic counterpart from Paracoccus denitrificans. Thus, all amino
acid analogs used for bacterial aromatic aminotransferases’ structural and mechanistic
proper-ties up to this point were carboxylic acids. We decided to use ligands having an
amino group replaced by a hydroxyl group to keep the inhibitory character of an analog
and enable its orientation to be presented in a manner mimicking the orientation of a
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real substrate, due to its ability to make an additional hydrogen bond with a Schiff base
(Figure 1).
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Figure 1. The mechanism of the transamination reaction, catalyzed by PsyArAT (upper line), and 

broken by the presence of the inhibitor, hydroxy-analog of phenylalanine (lower line). 
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the catalytic pocket in the most similar surrounding as has place upon substrate binding. 
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strates, i.e., phenylalanine (FOH), tyrosine (YOH), tryptophan (WOH) and aspartic acid 

(DOH), that are presented in this work, show great adaptability of its catalytic center to-
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Figure 1. The mechanism of the transamination reaction, catalyzed by PsyArAT (upper line), and broken by the presence of
the inhibitor, hydroxy-analog of phenylalanine (lower line).

Due to the broad application of transamination in the chemical and pharmaceutical
industry, it is important to provide comprehensive knowledge about the architecture and
functions of transaminases obtained from extremophilic organisms, such as Psychrobacter
sp. B6. Therefore, we found a way to show the active site of PsyArAT in complexes, with its
substrate structural analogs acting as inhibitors, to observe conformational changes in the
catalytic pocket in the most similar surrounding as has place upon substrate binding. The
four crystal structures of PsyArAT complexed with hydroxy-analogs of enzyme substrates,
i.e., phenylalanine (FOH), tyrosine (YOH), tryptophan (WOH) and aspartic acid (DOH),
that are presented in this work, show great adaptability of its catalytic center towards
binding various sized ligands. Moreover, a structural comparison of the investigated
structures with native PsyArAT (PDB ID: 4RKC) and with that complexed with aspartate,
PsyArAT/D (PDB ID: 4RKD), [20] provides an extended knowledge about interactions
of the ligand within the catalytic center and the conformational changes of the enzyme
active pocket.

2. Materials and Methods
2.1. Protein Preparation

The protein, used for obtaining PsyArAT/FOH, PsyArAT/YOH and PsyArAT/DOH
complexes, was prepared as described previously [24]. To improve the homogeneity of
the protein sample and crystallization, a new expression construct, expression system and
protein purification protocol was designed.

The psyarat gene was optimized for expression in E. coli (Eurofins, Luxembourg). It
was amplified using Q5 High-Fidelity 2X Master Mix (New England Biolabs, Ipswich,
MA, USA) and primers designed to be compatible with the pMCSG7 vector (AT_lic_fw, 5′-
TACTTCCAATCCAATGCCATGTTCGAGCG-3′; AT_lic_rv, 5′-TTATCCACTTCCAATGTT
AATCCTTGAGAACATC-3′). Cloning was performed using the ligation-independent
cloning (LIC) method [26–28]; T4 DNA Polymerase, dGTP and dCTP were provided
by New England Biolabs (Ipswich, MA, USA). DH5α competent cells were transformed
with the resulting pMCSG7_psyarat vector using a basic heat shock procedure. Obtained
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transformants were cultivated overnight at 37 ◦C on LB-agar plates, with ampicillin as a
selective marker. The plasmid was isolated using Promega kit and verified by sequencing
(Genomed, Warsaw, Poland).

An inoculum of ArcticExpress (DE3) cells, transformed with pMCSG7_psyarat vectors,
was cultivated with the addition of ampicillin (100 µg/mL) and gentamycin (20 µg/mL)
overnight. TB medium was inoculated with 1% of the overnight culture, and protein
overexpression was induced with 1 mM IPTG at OD ~0.6 and cultivated at 12 ◦C overnight.
Pellet was collected by centrifugation at 3000× g at 4 ◦C for 20 min.

Cell pellets were resuspended in buffer A (20 mM TrisHCl, 500 mM NaCl, 20 mM
imidazole, pH 7.4) supplemented with DTT at a final concentration of 100 mM. Cell lysis
was performed by sonication using Bandelin Sonopuls GM 3200 (Bandelin electronic
GmbH & Co. KG, Berlin, Germany). The extract was centrifuged for 60 min at 4 ◦C and
10,000× g. The clarified supernatant was then subjected to affinity chromatography using
ÄKTA Pure system (GE Healthcare, Chicago, IL, United States) and HisTrap 5 mL column
(GE Healthcare) equilibrated in buffer A. The tagged protein was eluted with buffer B
(20 mM TrisHCl, 500 mM NaCl, 400 mM imidazole, pH 7.4). TEV protease digestion
was performed overnight, parallel with buffer exchange to buffer A via dialysis. Reverse
affinity chromatography was performed using the same setup to separate PsyArAT from
TEV protease and His6-tag. Size exclusion chromatography, with the usage of a HiLoad
16/600 Superdex 200 pg column (GE Healthcare) and buffer C (20 mM Tris-HCl pH 7.4,
100 mM NaCl), was performed to ensure sample purity necessary for crystallization. The
PsyArAT was concentrated to 12 mg/mL using Vivaspin20 (30.000 MWCO) concentrators
(Sartorius, Göttingen, Germany). Each step of the purification was controlled by SDS-PAGE
electrophoresis.

2.2. Crystallization

All crystallizations of the reported PsyArAT complexes were performed by the hanging
drop vapor-diffusion method at 291 K, using 24-well crystallization plates (Hampton
Research, Aliso Viejo, CA, USA). Crystallization drops were set manually at 1 Ml + 1 µL,
protein and well solution, respectively. The protein was concentrated to 9–11 mg/mL
in 10 mM Tris–HCl buffer, pH 7.5, using Vivaspin concentrators with a 10 kDa cutoff
(Sartorius, Göttingen, Germany). Hexagonal crystals of the PsyArAT/DOH complex, with
aspartic acid hydroxy-analog (DOH), were obtained in conditions consisting of 2.1 M DL-
Malic acid, pH 7.0 and 0.1 M Tris-HCl buffer pH 7.5. Monoclinic crystals of PsyArT/YOH
and PsyArAT/FOH were obtained by co-crystallization, using 0.2 M MgNO3, 20% PEG
2000, HEPES buffer, pH 7.5 and a 20-fold molar excess of L-tyrosine and L-phenylalanine
hydroxy-analogs (YOH and FOH). C-centered monoclinic crystals of PsyArAT/WOH were
obtained by soaking native crystals, grown in the presence of 0.2 M MgNO3 and 20% PEG
3350 in HEPES buffer, pH 7.5, with a 5-fold molar excess of PLP and 10-fold molar excess
of 3-indolelactic acid (hydroxy-analog of L-tryptophan–WOH), for 3 h.

2.3. Diffraction Data Collection, Structure Solution and Refinement

Diffraction measurements were carried out at 100 K temperature in the vapor stream of
liquid nitrogen at HZB BESSY II synchrotron in Berlin, Germany. Crystals of PsyArAT/DOH
did not need any cryoprotectant, because they were obtained in the presence of dicarboxylic
acid [29]. Diffraction data of PsyArAT/DOH were processed in a hexa-gonal system to a
resolution of 1.62 Å using HKL2000 [30]. The structure was solved in one of the enantiomor-
phic space groups, P6522, using the monomer of PsyArAT (PDB ID: 4RKC) as a model
in Molrep [31]. Crystals of PsyArAT/YOH, PsyArAT/FOH and PsyArAT/WOH were
transferred for a moment to the drop containing a mixture of well solution and PEG 400 in
a ratio of 1:1 before the diffraction experiment. For these complexes, diffraction data were
processed using the XDSapp program. [32,33] PsyArAT/YOH and PsyArAT/FOH were
indexed in monoclinic space group P21 to a resolution of 2.31 Å and 2.50 Å, respectively,
and PsyArAT/WOH in C2 to a resolution 2.59 Å. The calculation of solvent content [34]



Materials 2021, 14, 3351 5 of 19

showed that a monomer is present in the asymmetric unit of PsyArAT/DOH, a dimer in
the asymmetric unit of PsyArAT/YOH and PsyArAT/FOH and two dimers in the case of
PsyArAT/WOH. The structures of PsyArAT/YOH and PsyArAT/FOH complexes were
solved by molecular replacement in Phaser [35], using the dimer of the native enzyme
as a model. The structure of PsyArAT/WOH was solved by molecular replacement in
Molrep [31] using the dimer of PsyArAT (PDB ID: 4RKC) as a model. For all crystal struc-
tures, the refinement was performed in REFMAC5 [36] from the CCP4I suite [37] with
TLS restrains [38]. Structures were rebuilt using graphical program COOT [39] and vali-
dated using MolProbity programs [40,41]. Statistics details of the diffraction experiment,
diffraction data reduction and crystal structure refinement are presented in Table 1.

Table 1. Diffraction data collection, processing, and refinement statistics for crystal structures of PsyArAT complexes with
substrates hydroxy-analogs.

Data Collection PsyArAT/DOH PsyArAT/YOH PsyArAT/FOH PsyArAT/WOH

Radiation source BL.14.2, BESSY, Berlin BL.14.2, BESSY, Berlin BL.14.2,
BESSY, Berlin

BL.14.1,
BESSY, Berlin

Wavelength (Å) 0.9184 0.9184 0.9184 0.9184
Temperature of

measurements (K) 100 100 100 100

Detector Pilatus 3S 2M Pilatus 3S 2M Pilatus 3S 2M Pilatus 3S 2M
Space group P6522 P21 P21 C2

Cell parameters (Å)
a, b, c (Å)
α, β, γ (◦)

a = b = 90.21 c = 241.75
γ = 120.00

a = 71.67 b = 63.80
c = 82.77
β = 102.66

a = 71.41 b = 60.42
c = 81.96
β = 103.01

a = 177.27 b = 82.29
c = 98.21
β = 106.42

Resolution range (Å) 40.00–1.62 45.62–2.31 50.00–2.49 47.10–2.59
Total no. of reflections 993,205 (57,550) 100,722 (15,260) 79,436 (11,992) 280,530 (42,499)

No. of unique reflections 72,901 (5755) 31,189 (4701) 23,715 (3723) 41,474 (6368)
Completeness (%) 97.02 (78.1) 96.40 (91.0) 98.8 (96.2) 98.3 (94.6)

Redundancy 13.6 3.23 3.35 6.76
I/σ (I) 39.03 (5.73) 9.71 (1.87) 8.29 (0.86) 10.37 (1.16)

Overall B factor from
Wilson plot (Å2) 21.4 35.5 53.4 64.5

Rmerge (%) 5.6 (39.0) 9.1 (50.8) 10.3 (135.6) 13.1 (142.9)
Rcryst/Rfree 12.36/16.37 19.79/24.56 19.89/24.33 19.08/24.74

No. of atoms: Pro-
tein/Ion/Ligand/Water 3215/0/24/510 6200/2/93/305 6202/1/71/79 12,228/3/98/163

R.m.s. deviations: Bonds
(Å)/Angles (◦) 0.02/1.63 0.02/1.64 0.01/1.44 0.01/1.34

Ramachandran plot: Most
favored (%)/Allowed (%) 97/3 98/2 96/4 96/4

PDB IDs 6T3V 6ZUR 6ZUP 6ZVG

Values in parentheses correspond to the last resolution shell.

3. Results and Discussion
3.1. Overall Structure of PsyArAT Complexes

Four crystal structures of PsyArAT in complexes with substrate hydroxy-analogs,
L-malic acid (DOH), 3-phenyllactic acid (FOH), 3-(4-hydroxyphenyl)-lactic acid (YOH)
and 3-indolelactic acid (WOH) (Figure 2), were determined to 1.62 Å, 2.31 Å, 2.52 Å
and 2.59 Å resolution, respectively. The aforementioned complexes crystallized in three
space groups: hexagonal P6522 for PsyArAT/DOH, monoclinic P21 for PsyArAT/FOH
and PsyArAT/YOH and C2 for PsyArAT/WOH, as a result of different crystallization
conditions and the presence of ligands varying in size and chemical character.
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Figure 2. Hydroxy-analogs of PsyArAT substrates: (A) L-malic acid (DOH, MLT); (B) L-3-
Phenyllactic acid (FOH, HFA); (C) L-p-Hydroxyphenyllactic acid (YOH, TYF); (D) L-3-indolelactic
acid (WOH; 3IL).

The overall architecture of the PsyArAT is typical for the type-I PLP-dependent en-
zymes and was previously described [24]. The dimer, functional unit of the enzyme,
has an ovaloid shape with a 2-fold noncrystallographical symmetry axis (in the case of
PsyArAT/DOH, it is also a crystallographic axis) laying along with its height (~45 Å) and
dividing the homodimeric structure into two identical subunits. The longest dimension
of ~100 Å crosses over both monomers. Subunits are connected by salt bridges created
between the carboxylic group of Glu253 and α-amino nitrogen of His289, as well as by
side chains of Arg63 and Glu53 and by hydrophobic interactions between Ile101 of adja-
cent monomers and anchoring residues of the N-terminal coil (Met1, Phe2 and Ile5). The
interface area between monomers measured 3112 Å2. Each subunit is divided into two
domains differing in function and architecture. A flexible small domain, responsible for
closing of the active site during ligand binding, is built of both N- and C-termini of the
protein, involving residues Met1-Leu66 and Pro286-Asp398. Both parts are connected by
short parallel β-sheets: β-strand1 (β1) Val29–Leu31 and β-strand10 (β10) Gly366–Tyr368,
which allow for the simultaneous movement of the mentioned protein N- and C-terminal
fragments (Figure 3). The large domain is a conformationally stable part of the monomer;
its architecture can be described as a Rossmann-like α-β-α sandwich fold, which is related
to the main function: PLP binding and stabilization. This kind of arrangement is typical for
nucleotide-binding proteins, and PsyArAT’s interaction with pyridoxal phosphate could
be explained as analogous to interactions at the active sites of FAD and NAD(P) binding
proteins, e.g., phosphoglycerate dehydrogenase or glutathione reductase, where ligands
are also bound by a phosphate group and nitrogen of a heterocyclic aromatic ring [42].

Depending on the crystal form of PsyArAT, the determined complexes have different
asymmetric units (ASU). In the case of PsyArAT/FOH and PsyArAT/YOH, the ASU is
created by a functional dimer; in PsyArAT/DOH the asymmetric unit represented only
a monomer, but the functional dimer is reproduced with the symmetry-related molecule.
The two-fold axis of the dimer is collinear with the crystallographic diagonal two-fold axis.
In the PsyArAT/WOH complex, two functional dimers are present in the asymmetric unit
(Figure 4).
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monomer; (B) PsyArAT/FOH (P21), dimer; (C) PsyArAT/YOH (P21), dimer and (D) PsyArAT/WOH
(C2), two dimers.

3.2. The Active Site of PsyArAT Complexes with Hydroxy-Analogs of Substrates

Entrances to the active pockets create two grooves on the opposite sites of the protein
surface. Each monomer contains an equivalent active center with pyridoxal-5′-phosphate
(PLP); however, depending on the reaction stage, the cofactor may have taken a different
form. In PsyArAT/FOH, PsyArAT/YOH and PsyArAT/DOH complexes, fractional occu-
pancy for PLP was observed. In PsyArAT/WOH, PLP was added to the crystallization
solution, which helped to obtain very good electron density maps for the cofactor.

The PLP molecule is bound in the enzyme active center by an extensive network of
hydrogen bonds. The only nonpolar interaction holding PLP is π-stacking of the pyrimidine
ring with the indole ring of Trp130. Conformation of the amine group of Lys246, which is
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essential for transamination catalysis, depending on the stage of the reaction, can create
a hydrogen bond to an entity present in position C4 of the cofactor, the formyl group of
PLP, the amine group of pyridoxamine phosphate (PMP), or a covalent bond with internal
aldimine (PLI) [24].

While the creation of the internal aldimine is not caused by direct contact with a
substrate (or inhibitor), as this is an initial step enabling their eventual further conjugation,
it seemed to be triggered by the presence of the ligand in the pocket. Interestingly, although
all hydroxy-analogs of substrates used for the creation of PsyArAT/FOH, PsyArAT/YOH,
PsyArAT/WOH and PsyArAT/DOH complexes acted as competitive inhibitors, the active
sites should be essentially at the same pre-reaction stage; however, the form of the cofactor
was not uniform among the pockets. The internal aldimine (PLI) (covalently bound PLP to
Lys246) was observed in the PsyArAT/DOH, in all of the four pockets of PsyArAT/WOH
and the one monomer of PsyArAT/YOH and PsyArAT/FOH homodimers. Despite the
presence of an inhibitor in the pockets of chain B of PsyArAT/YOH and PsyArAT/FOH
dimers, the non-bound form of PLP was present, similarly, as it was in the catalytic center
at both monomers of the native enzyme structure. In the PsyArAT/FOH complex, the
closest distance between the ligand and PLP (measured from the α-hydroxyl group of the
inhibitor to aldehyde carbon of PLP) was 4.1 Å in monomer A and 3.3 Å in monomer B,
while in the PsyArAT/YOH structure respective distances were bigger (5.7 Å and 4.6 Å).
The pockets in monomers A of these two complexes were also larger in volume than the
centers of chains B, the center of PsyArAT/DOH and centers of PsyArAT/WOH monomers
with bound WOH. Thus, it can be concluded that strong binding of the ligand leads to a
more compact structure, with the cofactor formed in a pre-reactionary stage.

3.3. PsyArAT Interactions with Hydroxy-Analogs of Substrates

The hydroxy-analogs of PsyArAT substrates used in this work (Figure 1) were clearly
visible in electron density maps (Figure 5) of the solved structures. Ligands interact in the
enzyme active center mostly by hydrogen bonds between their carboxylic groups, with the
guanidine group of Arg374 belonging to the C-terminus and the amine group hydrogen
of Gly34 belonging to the N-terminus of the small domain. They also created polar and
hydrophobic contacts with two residues of the large domain: Asn183 and Trp130. Such
a set of amino acids involved in inhibitor binding allows for the formation of the closed
protein conformation by bringing together both the large and the small domains.

The hydrogen bonds network made by a FOH ligand were slightly different for both
monomers of the PsyArAT/FOH complex (Figure 6A,B). In either case, carboxyl group of
FOH creates two parallel hydrogen bonds with the guanidine group of Arg374 (3.2 Å and
3.0 Å in monomer A, 2.3 Å and 2.8 Å in monomer B), one with a side-chain nitrogen of
Asn183 (3.2 Å for both monomers) and one with an indole ring nitrogen of Trp130 (3.4 Å
for both pockets). Interactions between the ligand carboxyl group and the cofactor was
present only in pocket B, where it had contact with formyl oxygen (3.1 Å). The interaction
with the peptide bond nitrogen of Gly34 was made by the carboxyl oxygen of FOH (2.8 Å)
in the active site of pocket B, while the ligand in the neighboring subunit made contact
with the same residue, using its hydroxyl group (3.4 Å). Generally, most of the differences
were a result of different placement of the -OH group in the pockets due to a rotation of
ligand by 90◦. Thus, in monomer A, besides the aforementioned interaction with Gly34,
the hydroxyl group of FOH made bonds with the carbonyl oxygen of Gly34 (3.4 Å), the
hydroxyl oxygen of Tyr214 (3.3 Å) and PLI Schiff base nitrogen (3.5 Å). In pocket B, the
-OH of the ligand made the second contact with Trp130 (3.3 Å) and created two hydrogen
bonds with a PLP molecule, first with the aldehyde group (2.3 Å) and the second with the
hydroxyl oxygen of the cofactor (3.1 Å).
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Despite the high chemical similarity to FOH, the interaction of the YOH inhibitor
with the residues forming the active site of subunit A is slightly weaker, and only five
hydrogen bonds were created, two with the guanidine moiety of Arg374 (2.8 Å and 3.3 Å),
one with the peptide nitrogen of Gly34 (3.0 Å) and another two with the indole nitrogen of
Trp130 (the first like all of those mentioned, by a carboxyl group (3.5 Å), and the second
by a hydroxyl group of YOH (2.8 Å)) (Figure 6C). In the pocket B, the ligand made a
weaker network of hydrogen bonds, interacting only with one nitrogen atom of the Arg374
guanidine group (2.8 Å) and the carbonyl oxygen of Gly34 (3.2 Å), by its carboxyl group
and by its hydroxyl group with Gly34 nitrogen (3.5 Å) (Figure 6D). In the catalytic center
of both complexes, the Arg280* switch was in the “down” position; however, in the case of
PsyArAT/YOH, it was placed a little deeper than in the PsyArAT/FOH complex. In the
subunit A, Arg280*, which was pushed down by a YOH ligand, made two hydrogen bonds
between guanidine moiety nitrogen atoms and carboxyl oxygens of Asp11 (2.8 Å and 3.5 Å).
In monomer B, only one contact was present with Asp11 (2.9 Å), but another bond was
created with the hydroxyl group of Asn132 (3.5 Å). As stated, in PsyArAT/FOH complex,
Arg280* was placed slightly further from the ligand; in the active site of monomer A, it
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interacted with Asp11 (2.8 Å) like in the previous case, but it also reached Tyr8 hydroxyl
oxygen (3.2 Å). In the active pocket of monomer B, Arg280* made an even shorter bond
with the OH group of Tyr8 (2.8 Å), but the interaction with Asn132 (2.9 Å) replaced the one
with Asp11.
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Figure 6. Interactions of ligands in the active center of PsyArAT complexes: (A,B) PsyArAT/FOH
in monomer A and B, respectively; (C,D) PsyArAT/YOH in monomers A and B, respectively;
(E) PsyArAT/DOH in monomer A; (F) PsyArAT/WOH in monomer A. (Chain A is shown in pink
and B in blue in all presented structures.)

Tryptophan hydroxy-analog (WOH) created a network of contacts, enabling the
involvement of both termini and a large domain, which resulted in closure conformation.
High similarity of interactions with an inhibitor in catalytic centers of monomers A and C
allowed for the description of only one of them, and we arbitrary choose monomer A. The
carboxylic group of the WOH is planar to the Arg374 guanidine group, and two hydrogen
bonds of 3.2 Å and 2.9 Å are made between them. The another contact in the length of
2.4 Å, of the mentioned carboxyl group, was made with the peptide bond hydrogen of
Gly34, being part of the motile, long entrance loop. Additionally, side chain nitrogen atoms
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of Trp130 and Asn183, from the large domain, make hydrogen bonds (3.4 Å and 3.2 Å)
with the carboxyl group of the ligand. Internal aldimine present in the catalytic center
interacts with the carboxyl group of the WOH; the bond between the Schiff base nitrogen
and oxygen atom is 3.2 Å long (Figure 6E). Like in the case of the remaining complexes with
aromatic ligands, FOH and YOH, Arg280*, from the second monomer, is in the “down”
position, and one of its terminal nitrogen atoms creates two hydrogen bonds with side
chains of Tyr8 and Asp11 (3.2 Å and 2.6 Å).

DL-malic acid sodium salt was used for the PsyArAT/DOH complex creation, but
only L-malic acid (DOH) was bound in the active center. The ligand creates considerably
more hydrogen bonds than aromatic inhibitors; 10 interactions with residues in the active
site were present (Figure 6E). Oxygen atoms of the α-carboxylic group of malic acid create
strong parallel hydrogen bonds with two nitrogen atoms of the guanidine group from
Arg374: (2.8 Å and 2.8 Å). Additionally, they are involved in contact with the amide
group of Gly34 (2.8 Å) and Asn183 (3.0 Å). Oxygens of the β-carboxylic group of the
ligand interacted, via hydrogen bonds, with Arg280* (2.9 Å and 2.9 Å) and Trp130 (2.8 Å).
Hydroxyl oxygen of malic acid creates weak hydrogen bonds with Trp130 (3.2 Å) and
stronger bonds with Nζ of Lys246 (2.9 Å) (Figure 6F). Interaction with Arg280* was of
special importance; in this situation, the arginine switch was in the “up” position, and the
ligand is shoved further from the entrance; hence, the helix H1 is able to close the active
site fully. In this position Arg280* is still interacting with Asp11 (2.8Å, 3.4 Å) from the
N-termini domain.

3.4. Arginine Switch

The action of Arg280* of the adjacent monomer (*) is important for the control over
volume and substrate specificity of the PsyArAT active pocket [43]. The long electrophilic
side chain of this “arginine switch” can take one of two positions, “up” or “down”, due to
a guarding interaction with Asp11 and Asn132, responsible for limiting its conformational
freedom. In the “down” position, additional contact with Tyr8 can be made. This hydrogen
bond system allows for both control of the chemical environment and the volume of the
active site. When an aromatic hydrophobic inhibitor or a substrate was present in the active
center, Arg280* took the “down” position, allowing for the entrance of the hydrophobic
ligand and creates a sterical hindrance between helices H1 and H6, preventing the closing
of the side entrance and making the pocket more spacious (Figure 7). The “up” position
was taken when dicarboxylic ligand, such as malic acid, entered the active pocket. A lack
of sterical hindrance enabled for the full closure conformation, and additional interactions
with the ligand were made due to the presence of the guanidine group of Arg280 in the
vicinity of the active site (Figure 7).

Interestingly, in the active site of monomer A and C in the PsyArAT/WOH complex,
the presence of a big, hydrophobic indole group of the WOH molecule, just near the
Arg280* residue, prevented its contact with the Asn132 side chain (which was pushed
away from the active pocket). Seemingly, such interaction was not necessary, as the
conformational freedom of Arg280* was limited by the inhibitor itself. However, the
carboxyl group of Asp11 interacted with the guanidino group of Arg280* via two (2.8 Å
and 3.4 Å) hydrogen bonds.

3.5. Active Pocket Volume and Area of the PsyArAT in Native and Complexes Form

Contrary to all structures of aromatic aminotransferases complexed with inhibitors
which are currently published, conformational changes in PsyArAT monomers seem to
be induced exclusively by a ligand presence. Unit cell dimensions for the native enzyme
PsyArAT, PsyArAT/FOH and PsyArAT/YOH complexes are nearly the same, despite
motions occurring in domains. Moreover, calculations done using PISA [44] showed
differences in the areas of contact made by each subunit in dimeric structures. For the
PsyArAT/YOH complex, the difference in the interface area between subunits A and
B is only 14.5 Å2, in favor of domain B, while for PsyArAT/FOH, it was 87.2 Å2, with
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more contacts for monomer B as well. However, the conformational changes for these
two complexes did not seem to be in relation to these values, as the PsyArAT/YOH
complex showed bigger differences between monomers. Moreover, putting monomers
B of these three structures in order from the most closed to the most open, which was
PsyArAT/FOH, PsyArATYOH and the native enzyme, did not correlate to the order of
contact area from lowest to the highest: native, PsyArAT/FOH and PsyArAT/YOH. The
PsyArAT/DOH complex could not be so easily compared to the structures with analogs of
phenylalanine and tyrosine, as it crystallized as a monomer in ASU in a hexagonal unit cell;
however, the areas of contact (excluding the one being the dimer interface) was about 720Å,
which was similar to values for PsyArAT/FOH, being much more relaxed structurally.
PsyArAT/WOH was another complex with different crystallographic properties, as it
crystallized in a C2 group as a double dimer with noncrystallographical symmetry. In
the case of this complex, it is possible that crystal packing affected the conformation, as a
difference in the area of contact with neighboring proteins in a lattice was high (~500 Å2),
where more contacts were made by closed domains.
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PsyArAT/YOH and PsyArAT/WOH complexes.

The different position, interactions and presence or lack of the ligand in the active
center of the studied complexes prompted us to investigate the volume and area of the
active pockets and entrances to it in all monomers. Volumes were measured using the
CASTp 3.0 tool [45], with probe size set to 1.2 Å. Interestingly, the volume of the pockets
in one monomer was much smaller than in the second one of the dimer in all complexes
(excluding PsyArAT/DOH), but the difference in the case of FOH bound caused a smaller
disparity between them than in the case of YOH present in the active center (Table 2)
(Figure 8C–F). The PsyArAT/DOH active site is considerably smaller (Figures 8B and S1)
in comparison to the two mentioned. Baffling was a lack of WOH in one monomer of
each dimer in PsyArAT/WOH, which resulted in a huge difference in the volume of the
active pocket, with the tryptophan hydroxy-analog present or absent in the active center
(Figure 8G,H). Even more surprising were the twice bigger values of the volume and
surface of the active pocket lacking an inhibitor in comparison to the one occupied by the
ligand. Analyzing these parameters with the native enzyme (Figure 8A), we found that
the fully opened pocket of the native PsyArAT was about two times bigger in comparison
to pockets in PsyArAT/FOH and PsyArAT/YOH complexes, two times bigger than for
PsyArAT/WOH and four times bigger than for PsyArAT/DOH (Table 2).
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Table 2. Parameters showing conformational changes in PsyArAT complexes (for the calculation of the active site volume
and area, 1.2 diameter of the probe was used).

Kink on Long
H14 Helix

Shear
Movement

of C-Terminal

Shear
Movement

of N-Terminal

Active Site
Volume

Active Site
Area

PsyArAT/FOH/A 6.0◦ 2.2 Å 2.7 Å 245 Å3 462 Å2
PsyArAT/FOH/B 4.5◦ 1.7 Å 3.0 Å 230 Å3 434 Å2
PsyArAT/YOH/A 1.5◦ 0.5 Å 1.2 Å 315 Å3 518 Å2
PsyArAT/YOH/B 2.0◦ 1.0 Å 1.8 Å 249 Å3 466 Å2

PsyArAT/WOH/A, C 8.5◦ 3.3 Å 5.2 Å 186 Å3 406 Å2
PsyArAT/WOH/B, D 0◦ 0 Å 0 Å 440 Å3 584 Å2

PsyArAT/DOH 9◦ 3.8 Å 4.5 Å 94 Å3 234 Å2
PsyArAT reference reference reference 412 Å3 598 Å2
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FOH in A and B monomers; (E,F) PsyArAT/YOH in A and B monomers; (G,H) PsyArAT/WOH in A
and B monomers.
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Hence, it can be concluded that the volume of the PsyArAT active center differs
depending on the conformational states adopted by the enzyme, and on the size of the
ligand bound in the active pocket. These open, closed and semi-closed conformations were
also related to structural motions triggered by the presence of a specific ligand.

3.6. PsyArAT Motions upon the Binding of the Substrate Hydroxy-Analogs

The binding of different types of ligands caused conformational adjustment of the
PsyArAT monomers/domains in relation to each other. Generally, during the pocket closing,
three main motions occurred in the enzyme structure: kink on a long helix H14 and two
perpendicular to each other and shear motions of the small domain main components: N-
terminal H1 helix and C-terminal helices (H16, H17 and H18) towards the pocket entrance
(Figure 9). Using the open form of monomer B of the native PsyArAT as a reference,
approximate lengths of these movements were measured. The biggest differences in
respect to the structure with no ligands bound (except for the cofactor) were recognized for
PsyArAT/DOH and PsyArAT/WOH. Namely, the kink on the helix H14 was estimated at
9 and 8.5 degrees for two complexes, respectively, measured motions of small domain C-
terminal helices were equal 3.8 and 3.3 Å and for N-terminal helix H1, these values equated
to 4.5 and 5.2 Å in the aforementioned complexes. Despite the similar size and aromatic
character of FOH and YOH ligands, motions in the structure of PsyArAT complexed with
the phenylalanine analog were slightly more significant. The kink on the long helix H14 was
at least two times bigger for PsyArAT/FOH (~6◦ in monomer A and ~4.5◦ in monomer B)
than for PsyArAT/YOH (~1.5◦ in monomer A and ~2.0◦ in monomer B). Movements of
the N-terminal (~2.7 Å/A, ~3.0 Å/B) and C-terminal (~2.2 Å/A, 1.7 Å/B) parts of the
small domain were also bigger for the PsyArAT/FOH complex than for PsyArAT/YOH
(~1.2 Å/A, 1.8 Å/B and ~0.5 Å/A, ~1.0 Å/B, respectively).

The shear motion of the helix H1 is crucial for the closing of the pocket, due to
the presence of hydrophobic Ile13, Leu14 and Val17 residues being part of it. During
movement of the helix H1, simultaneous rotation took place, which caused a shift of the
amino acids towards the entrance from the outer region; thus, an impervious water plug
was created. The side chain of Ile33 also helped to plug the entrance because of the Asn25–
Val45 long loop movement, which is coordinated with the small domain C-terminus shear
motion. Leu14 is responsible not only for providing the hydrophobic environment, but
also acted as a “probe”, sensing the size of a bound ligand. In complexes of PsyArAT/FOH,
PsyArAT/YOH and PsyArAT/WOH, the leucine side chain was unable to move further into
the enzyme catalytic pocket due to a sterical hindrance made with the inhibitor molecule.
DOH is a ligand of smaller size than aromatic hydroxy-analogs, and due to interactions
with Arg280*, it was shoved deeper in the active site; in this situation, Leu14 moved into
the center, enabling proper rotation of H1 and full closure conformation (Figure 9).

In the previously determined structure of PsyArAT in the complex with aspartic
acid (PDB ID: 4RKD), four dimers were present in the asymmetric unit. This structure
represented a different stage of transamination reaction; the conformation of the monomers
in each dimer was not identical, but more similar than in complexes studied in this work
(RMSD values for Cα in a range 0.40–0.49Å). This indicated that processing of the small
size substrate does not require a big conformational movement of the whole functional unit.
A similar observation was noticed for two structures of complexes with ligands of medium
size (FOH and YOH), where the ligand was present in the active center of both monomers
(RMSD for Cα of 0.46 Å and 0.42 Å, respectively). In the apo structure of PsyArAT (PDB
ID: 4RKC), the conformational changes of monomers were larger (RMSD for Cα of 0.79Å).
These differences indicates that one of the active sites was more open to accommodate the
potential substrate. More significant conformational differences of monomers in dimers
of PsyArAT/WOH are visible, where the RMSD for Cα between monomers are around
1.07 Å and 1.30 Å (Table 1). This observation was made in a number of other structures
of the PLP-dependent enzyme, which clearly indicates domain motion depending on the
reaction stage.
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Most of atoms, especially in the enzyme center of PsyArAT, presented a low value
of the displacement parameter, but chains attending in ligand incorporation to the active
pocket have considerably higher average B-factors, which indicates their motility during
transamination reaction (Figure 10).

3.7. Comparing Structures of PsyArAT with PdeArAT Complexes and Other ArATs

Structural analysis of PsyArAT in relation to its bacterial homolog from Paracoccus
denitrificans [20] highlights some similarities. All residues involved in cofactor binding are
highly conserved among these two enzymes, as well as amino acids building the smaller
compartment of the active pocket being responsible for the binding of substrates by their
α-carboxylic group. The most substantial differences is observed in the large chamber of
the active site being a place for the ligands’ bulkier parts, responsible for their chemical
character. For example, in the place of serine 285 in PsyArAT, there is a phenylalanine
297 in the mesophilic analog PdeArAT (Figure 11). Such a drastic amino acid difference
impacts the depth of ligand binding, as aromatic moieties of inhibitors tend not to have
enough space.
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Figure 11. Structural comparison of the active center of bacterial aromatic aminotransferases with
ligands: PsyArAT (PDB ids: 6ZUR, 6ZUP, 6ZVG; blue), PdeArAT (PDB ids: 2AY1, 2AY2, 2AY5; green)
and PhoArAT (PDB id: 1DJU; salmon). All ligands bound in the active center are shown in the same
color as the enzyme peptide chain. In the structure of 1DJU, a ligand was not present.

Broadening the analysis by aromatic aminotransferases from a little more evolutionary
distant organisms, thermophilic archaeon (Pyrococcus horikoshii (PDB id: 1DJU)) [22] and
mesophilic yeast (Candida albicans (PDB id: 6HNU)) [21] confirms that many residues in the
active pocket are conserved, but they also shows some interesting differences. Residues of
the PLP cavity and the smaller compartment of the active pocket were generally the same.
Only minor differences, such as the presence of phenylalanine instead of tryptophan in a
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position of a PLP π-stacking residue, for structures of archaeon and yeast aminotransferases
were observed. The most outstanding difference seemed to be a lack of an arginine switch,
which was proven to take part in the aromatic aminotransferases’ mechanism of operation.
In the case of the PhoArAT structure, the same position was occupied by a methionine
residue, having a very different chemical character (Figure 11). In the structure of CalArAT,
the long sidechain of arginine was swapped for a glutamic acid having an opposite charge
and a very low chance to operate in the same mechanism.

4. Conclusions

In this work, crystal structures of bacterial psychrophilic aromatic amino acid amino-
transferases in complexes with four hydroxy-analogs of substrates were presented. Three of
the ligands were derivatives of aromatic amino acids: phenylalanine (FOH), tyrosine (YOH)
and tryptophan (WOH), and one was of aliphatic aspartic acid (DOH). The partial occu-
pancy of PLP in the structures of FOH and YOH were the result of cofactor loss during the
purification process. This is why a crystal of WOH was obtained by co-crystallization with
a 20-molar excess of WOH and 5-molar excess of PLP. All ligands, acting as competitive
inhibitors, bound in the catalytic pocket allowed for structural analysis of the enzyme active
center. Observed structural changes of amino acids side chains in the enzyme catalytic
center, as well as the movement of whole domains, mimicked interactions occurring in the
active pocket during substrate binding. Although in both monomers of PsyArAT/FOH
and PsyArAT/YOH, in the catalytic centers, ligands were bound, we observed differences
between conformations of side chains of amino acids in the active pocket in monomers
of homodimers. The surface of catalytic pockets in both monomers after binding YOH
and FOH differs. For ligands of a similar size and chemical character, changes of the
active pocket volume were comparable, but the observed differences between monomers
in dimers of the PsyArAT/WOH complex were significantly bigger and the most intrigu-
ing. The volume of the pocket in monomer B (D) was twice as big as in monomer A (C)
(Figure 8). It was caused by the fact that only one monomer of each dimer bound the
ligand (A and C). This different action of catalytic centers in monomers of dimers may
indicate that the active centers are somewhat independent while binding bulkier substrates.
The small acidic inhibitor (DOH) caused different orientation of the Arg280* and forced
closed the conformation of the active center. The results of the structural investigation and
activity assay suggest a reverse correlation between activity and gravity of movement of
the small domain. The functional dimer of the PsyArAT/DOH complex was created from
two symmetry-related subunits. A lack of differences between monomers of this crystallo-
graphic dimer allowed for forming of the crystal in a high symmetry space group, with
one monomer in the asymmetric unit. The crystallographic experiments performed in this
work highlighted the PsyArAT active site’s adaptability towards different-sized substrates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14123351/s1, Figure S1: Graphical volume representations of PsyArAT active sites.
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