
RESEARCH ARTICLE

Recruitment of release sites underlies

chemical presynaptic potentiation at

hippocampal mossy fiber boutons

Marta OrlandoID
1,2☯*, Anton DvorzhakID

1,2☯, Felicitas BruentgensID
1,2☯,

Marta Maglione2,3, Benjamin R. Rost1,4, Stephan J. Sigrist2,3,4, Jörg BreustedtID
1,2,

Dietmar SchmitzID
1,2,4,5,6,7*
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Abstract

Synaptic plasticity is a cellular model for learning and memory. However, the expression

mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we

investigate functional and structural correlates of presynaptic potentiation at large hippo-

campal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We per-

formed 2-photon imaging of the genetically encoded glutamate sensor iGluu that revealed

an increase in the surface area used for glutamate release at potentiated terminals. Time-

gated stimulated emission depletion microscopy revealed no change in the coupling dis-

tance between P/Q-type calcium channels and release sites mapped by Munc13-1 cluster

position. Finally, by high-pressure freezing and transmission electron microscopy analysis,

we found a fast remodeling of synaptic ultrastructure at potentiated boutons: Synaptic vesi-

cles dispersed in the terminal and accumulated at the active zones, while active zone den-

sity and synaptic complexity increased. We suggest that these rapid and early structural

rearrangements might enable long-term increase in synaptic strength.

Introduction

The term synaptic plasticity describes the ability of synapses to change their strength and effi-

cacy over time. Long-term forms of synaptic plasticity are postulated as cellular mechanisms

responsible for learning and memory [1,2]. Changes in synaptic strength are paralleled by

changes in the structure of neuronal contacts that underlie long-term circuit reorganization

[3,4]. A long-term increase in synaptic strength (long-term potentiation [LTP]) can be

expressed postsynaptically, importantly by changes in postsynaptic receptor number or prop-

erties [5], but also presynaptically, by changes in neurotransmitter release [4].
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In this study we investigated chemical presynaptic potentiation at large hippocampal mossy

fiber boutons (hMFBs) [6]. Dentate gyrus granule cells form excitatory synapses onto spines of

proximal dendrites of CA3 pyramidal neurons [7]. hMFBs were the first synapses described to

undergo a NMDA-receptor-independent form of LTP that is both induced and expressed at

the presynaptic terminal [8,9]. Here, the increase in intracellular calcium following high-fre-

quency firing activates calcium/calmodulin-dependent adenylyl cyclases, which leads to an

increase in the intracellular concentration of cyclic adenosine monophosphate (cAMP),

which, in turn, drives the activation of protein kinase A (PKA). Ultimately, PKA phosphoryla-

tion events result in a long-lasting increase in neurotransmission [6,10].

A variety of knockout models provided information on potential PKA phosphorylation tar-

gets required for presynaptic potentiation. Rab3A [11], its interaction partners RIM1α and

Munc13 [12], and synaptotagmin-12 [13] have all been shown to be crucial for presynaptic

LTP at hMFBs. A-kinase anchoring protein 7 (AKAP7) localizes PKA presynaptically at

hMFBs and is required for cAMP-induced LTP and pattern separation behaviors [14]. Despite

this body of literature, it is still not known exactly how these proteins are involved in presynap-

tic LTP induction and expression [4].

Presynaptic LTP at hMFBs has traditionally been described as the long-lasting increase in

release probability (Pr) [9,15,16], but vesicle availability as well as changes in the number of

release sites could also play a major role in setting the stage for increased neurotransmission.

Indeed, at hMFBs, an increase in docked vesicles has been proposed as a mechanism for post-

tetanic-potentiation [17]. At cerebellar parallel and climbing fiber synapses, PKA and its vesi-

cle-associated target, synapsin, dynamically control release site occupancy and dictate the

number of vesicles released per action potential without altering Pr [18]. Moreover, activation

of silent synapses and addition of release sites have been suggested as potential mechanisms

for the expression of presynaptic LTP at hMFBs [19,20]. Changes in the number and localiza-

tion of docked vesicles [21], potentially accompanied by addition of new release sites, could

underlie functional changes at hMFBs.

The morphological complexity of mossy fiber boutons has been shown to increase in mice

kept in an enriched environment [22] and in cryo-fixed organotypic slices treated with the

potassium channel blocker tetraethylammonium [23]. Moreover, the transport of active zone

(AZ) AU : Thepaperusesboththetermsactivezone=AZandactivearea:Iftheserefertothesamething; Irecommendstandardizingorequatingtheseterms:proteins via vesicular cargo to nascent AZs likely underlies long-term plasticity in the

hippocampus [24].

Synapses are organized in nanocolumns [25]. Stimulated emission depletion (STED)

microscopy allowed the detection of a rapid reorganization of pre- and postsynaptic modules

upon chemically induced structural plasticity [26]. Changes in AZ nano-architecture upon

LTP induction have also been hypothesized to sustain the increase in Pr. Direct double patch-

clamp experiments from presynaptic hMFBs and postsynaptic CA3 pyramidal neurons indi-

cated a relatively long distance (70 to 80 nm) between calcium channels and synaptic vesicles

(SVs) and therefore a functionally “loose coupling” between calcium source and calcium sen-

sor [27]. Loose coupling is responsible for the intrinsically low Pr of this synapse [28]. Remark-

ably, experiments at dissociated hMFBs suggested an induced decrease in coupling distance

between calcium channels and calcium sensor as a possible mechanism for LTP expression

[29].

The complexity of the phenomenon and the fact that a variety of different experimental

models have been used in the past decades might explain why we currently face several diverg-

ing theories to explain hMFB presynaptic LTP.

Our aim, in this context, was to characterize the ultrastructural and functional correlates of

chemical presynaptic potentiation in brain slices to clarify whether and how synapses, vesicles,

or AZs reorganize to express and sustain the long-term increase in neurotransmitter release.
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By means of 2-photon fluorescent imaging of glutamate release, STED microscopy, and 3D

transmission electron microscopy (EM) analysis, we addressed the following questions: Do the

addition of release sites and the rearrangement of AZ nano-architecture play a role in presyn-

aptic potentiation? How does glutamate release dynamics change upon presynaptic

potentiation?

Results

Increased presynaptic surface area of transmitter release at potentiated

mossy fibers

To investigate neurotransmission dynamics, we monitored glutamate release in the stratum

lucidum of CA3 (Fig 1A), a region close to CA3 pyramidal cell bodies, where hMFBs form syn-

apses on proximal dendritic spines of CA3 pyramidal neurons. We imaged glutamate release

from hMFBs by 2-photon microscopy, using the genetically encoded and plasma-membrane-

bound glutamate sensor iGluu with low sensitivity (Kd = 600 μM) [30] (Fig 1A, 1B, 1D and

1G).

iGluu expression did not alter basic neurotransmission (S2 Fig), and its specific fluorescent

signal was readily distinguishable from background autofluorescence (Fig 1C; overlaid to

iGluu signal in Fig 1D). Electrical stimulation of granule cell axons elevated iGluu fluorescence

intensity in a complex spatiotemporal pattern (Fig 1E–1I). To assess AU : Pleasecheckthattheeditstothesentence}Toassess:::}captureyourmeaning:Ifnot; pleaseprovidecorrectwording:the dynamic characteris-

tics of iGluu transients, the area occupied by suprathreshold pixels (active area) and the cumu-

lative, mean, and maximal amplitudes of ΔF/F signals for pixels in the active area were

analyzed (see Methods for details). We tested the range of iGluu sensor response by monitor-

ing the cumulative amplitude of single-hMFB iGluu dynamics after a train of 6 stimuli at 50

Hz (Fig 1K–1N). When we compared the iGluu signal of the last stimulus (Fig 1M) to that of

the first stimulus (Fig 1L), we could monitor a 4-fold increase in the cumulative amplitude

(Fig 1N).

Presynaptic potentiation at hMFBs was induced by incubating organotypic hippocampal

cultures for 15 min in 50 μM forskolin. Forskolin-treated hMFBs, in comparison with

untreated hMFBs, showed a significant increase in the fraction of active area (Fig 2A–2D),

whereas forskolin did not change the virtual bouton diameter (diameter of a circle with an

area equal to the area of the recorded bouton) (Fig 2E). Forskolin also significantly elevated

the cumulative amplitude of iGluu transients (Fig 2F and 2G). The average paired-pulse ratio

(PPR) of the cumulative amplitudes (PPRCum) under control conditions was 1.45 ± 0.25 (Fig

2H), a value that is close to the PPR for excitatory postsynaptic currents (EPSCs) recorded at 2

mM extracellular Ca2+ [31]. The cumulative amplitude reflects the total amount of released

glutamate [32,33] and is negatively correlated with PPR (S1A Fig), thus showing an activity-

dependent form of short-term plasticity. Neither the mean amplitude nor the active area corre-

lated with PPR (S1B and S1C Fig). Taken together, these data indicate that the cumulative

amplitude of iGluu transients is the parameter best suited for a comparison with evoked

EPSCs.

hMFBs in forskolin-treated slices showed a significant decrease in PPRCum (Fig 2F and 2H).

This is in accordance with the potentiation effect of forskolin on hippocampal mossy fiber

transmission, which has been extensively characterized by electrophysiological recordings

[34,35].

The measured active area depends on several factors, such as the number of active release

sites, the concentration of glutamate in the synaptic cleft, the bouton size, and the effectiveness

of glutamate clearance. To target the last of these, we analyzed the decay kinetics of the cumu-

lative iGluu transient by fitting a monoexponential decay function to the signal, and observed
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Fig 1. Two-photon imaging of single hippocampal mossy fiber bouton (hMFB) iGluu transients. (A) Fluorescent image of an organotypic

hippocampal slice culture 3 wk after transfection with the genetically encoded glutamate sensor iGluu in dentate gyrus (DG) granule cells. The

square shows the region in (B–D). DG and CA3 are outlined by overlay. sl, stratum lucidum. (B) iGluu fluorescent signal acquired by 2-photon

imaging in stratum lucidum (average of 15 frames). (C) Image of nonspecific autofluorescence with emission> 600 nm. (D) Composite of (B)

and (C). The red rectangle marks the recorded area of the hMFB shown in (E). Note the position of the stimulation electrode indicated by the

drawing. sp, stratum pyramidale. (E) High-resolution image illustrating the hMFB shown in (B) and (D) immediately before the high-speed

imaging recordingsAU : Ichangedfast � imagingrecordingstohigh � speedimagingrecordings:Ifthisisnotcorrect; pleaseedit:. A hand-drawn green curve contours the bouton. (F–H) Single frames of the same hMFB showing ΔF/F signals at rest (F)

and at the peak response after the first (G) and second (H) electrical stimulation in control conditions. The green line in (F–H) contours the
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similar decay kinetics for control and potentiated boutons (Fig 2F and 2I). Of note, the size of

the active area correlated with the cumulative amplitude (S1D Fig), but not with the mean

(S1E Fig) or maximal amplitudes (S1F Fig). The maximal (Fig 2J and 2K) and mean (Fig 2L

and 2M) amplitudes of the iGluu signal in the population of active pixels were not significantly

altered by forskolin (Fig 2J–2M), indicating that the concentration of glutamate released in the

synaptic cleft does not contribute to forskolin-induced potentiation at hMFBs. However, this

result may also be explained by glutamate sensor saturation. To test this, we stimulated mossy

fibers with 5 pulses at 50 Hz (S2A–S2E Fig). We saw that single pulse responses were located

in the lower part of the iGluu working range (Figs 2J, 2K and S2E). The absolute fluorescence

of hMFBs at rest did not differ significantly between control and forskolin-treated groups (S2F

Fig), ruling out a role of different iGluu expression in mediating the observed effects on active

area and mean or maximal amplitudes. Moreover, iGluu imaging of the same hMFBs before

and after forskolin treatment (S3 Fig) also revealed a significant elevation of active area without

a change in mean amplitude (S3B, S3D and S3E Fig). However, the interpretation of these

results was complicated by iGluu bleaching. (S3A and S3C Fig). Taken together, our results

indicate that, at hMFBs, the forskolin-induced increase of active area likely reflects an increase

in the area of active glutamate release, rather than a diffusional glutamate spread.

Thus, we show that forskolin potentiates presynaptic glutamate release at hMFBs by

increasing the presynaptic membrane area at which exocytosis occurs.

Enhancement of release synchronicity

As shown here and previously [36], different iGluu hotspots can display opposite paired-pulse

behaviors and are activated in an apparently stochastic manner (Fig 1E–1H and 1K). This

means that hMFBs likely harbor a probabilistic fraction of silent release sites, which may be

activated after forskolin treatment [19,20]. Unfortunately, diffraction-limited light microscopy

does not allow us to directly visualize glutamate release from single release sites. However, we

can indirectly assess the fraction of silent release sites by the spatial randomness and anisot-

ropy of iGluu transients. It can be assumed that a spatially inhomogeneous distribution of

iGluu transients reflects a large number of silent release sites, while a homogeneous distribu-

tion of the iGluu signal indicates a smaller fraction of silent release sites. To test if forskolin

would increase the number of active release sites, we analyzed the informational entropy and

non-triviality spatial patterns of the iGluu transients [37]. Before electrical stimulation, hMFBs

had a random ΔF/F spatial pattern with a maximal entropy and minimal non-triviality (Figs

1F, 2N and 2O). The evoked glutamate release from hMFB resulted in an increase in iGluu

fluorescence on presynaptic membrane portions that are closest to the release sites. This ren-

dered the profile of ΔF/F a heterogeneous and anisotropic presynaptic landscape, i.e., it

decreased the entropy and increased the non-triviality of the ΔF/F spatial pattern (Fig 2N and

2O). Forskolin-treated hMFBs showed significantly smaller changes of entropy (Fig 2N and

2P) and non-triviality (Fig 2O and 2Q) than untreated boutons. In other words, forskolin

hMFB silhouette shown in (E). Colored boxes represent pixels for which the intensity plots are shown in (I)AU : InthelegendtoFig1; IchangedintensityplotsareshowninðKÞandðIÞtointensityplotsareshowninðIÞ:Ifthisisnotcorrect; pleaseedit:. (I) Plot representing dynamic ΔF/F
fluorescent signals for each pixel in (F–H). Colored traces represent signals from pixels in colored boxes in (F–H). (J) Scheme illustrating the

2-photon laser scanning pattern with mean spatiotemporal resolution characteristics. (K) High-resolution image of a hMFB used for high-

frequency stimulation experiments. The bouton contour was manually outlined by a green line. (L and M) Single frames of the hMFB

illustrated in (K) showing ΔF/F signals at the peak response after the first (L) and sixth (M) electrical stimulation in control conditions. The

green line shows the hMFB location. Contoured pixels represent active area. Note elevated pixel intensity and active area after 50-Hz

stimulation. (N) The trace represents cumulative response dynamics for the given hMFB example in (K–M). The arrows indicate time points

taken for illustration in (L) and (M). Note the almost 4-fold increase in cumulative ΔF/F signal after the last stimulation compared to the first,

which illustrates the operating range of the iGluu sensor. El. stim., electrical stimulation. The data underlying this figure can be found at doi: 10.

5281/zenodo.4498214.

https://doi.org/10.1371/journal.pbio.3001149.g001
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Fig 2. Forskolin increases the presynaptic surface area of glutamate release and the spatial synchronization of glutamate release within

hMFBs. (A and B) Example images illustrating the spatial distribution of ΔF/F signals for 2 different hMFBs in control conditions (A) and in the

presence of forskolin (B). The manually drawn green curve contours the profile of the recorded hMFB, based on the high-resolution image

acquired before the stimulation experiment. The ΔF/F signals are taken at the peak responses to a first electrical stimulation (the time point is

indicated by a black arrow in (C, F, J, L, N, and O)AU : InthelegendtoFig2; IchangedblackarrowinðC;E; I;KÞtoblackarrowinðC;F; J; L;N; andOÞ:Ifthisisnotcorrect; pleaseedit:. Suprathreshold pixels (pixels with ΔF/F intensities more than 3 × SD of the baseline signal,

i.e., 50 ms before the stimulation) are contoured with a black line and represent the active area. Note the larger fraction of red pixels in the

presence of forskolin (B) at equal intensities. (C) Example traces representing active area (the area of suprathreshold pixels) dynamics for hMFBs
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increases the spatial homogeneity and isotropy of iGluu transients in hMFBs. For this analysis,

we used the area of the whole synaptic bouton and even some small portion of the surrounding

space. This means that forskolin effects on entropy and non-triviality may be associated with

the increased fraction of pixels whose signal is changed by glutamate release rather than by

individual pixel behavior. However, neither entropy nor non-triviality correlated with the size

of the active area (S1G Fig).

The amount of released glutamate might also affect entropy and non-triviality. However,

neither mean nor cumulative amplitudes correlated with entropy and non-triviality (S1H and

S1I Fig).

Together, our data likely indicate that forskolin increases the portion of simultaneous

release events.

No change in coupling distance at potentiated synapses

The increase in releasing area at potentiated hMFBs could be driven by addition of new release

sites or by activation of functionally silent release sites. Since hMFBs exhibit loose coupling

between calcium channels and primed vesicles [27], such activation could be the result of a

tightening of the coupling distance [29]. This could also explain the increase in glutamate

release synchrony between multiple release sites, as a tighter coupling would drive vesicle

fusion more reliably [38].

To determine whether a change in the distance between calcium source and release sites

contributes to the increase in neurotransmitter release during presynaptic potentiation at

hMFBs, we performed time-gated STED (gSTED) microscopy on forskolin-treated and

untreated acute brain slices obtained from the same animal. Slices were stained for Cav2.1, to

detect P/Q-type calcium channels; for Munc13-1, as a marker for release sites [39]; and for

Homer1, a postsynaptic marker for glutamatergic synapses (Fig 3A). The CA3 stratum luci-

dum was identified by staining for a mossy-fiber-specific zinc transporter (ZnT3; S4E Fig).

gSTED allowed us to detect a punctate immunostaining of synaptic proteins. Here, we refer to

these puncta as clusters, as in a previous study [40]. We measured the distance between pre-

synaptic Cav2.1 and Munc13-1 clusters only when they were juxtaposed to a HomerAU : Thereweretwoinstancesof HomerinthepaperðhereandinTable2ÞthatseemedtorefertothesamethingasHomer1:IchangedthesetoHomer1:Ifthisisnotcorrect; pleaseedit:1 cluster,

making sure that the clusters belonged to the same AZ (Fig 3B).

The distances measured between Cav2.1 and Munc13-1 clusters were unchanged between

control and potentiated slices. Measured distances ranged up to 180 nm for controls (n = 584

synapses from 11 animals) and up to 200 nm for forskolin-treated synapses (n = 525 synapses

from 11 animals). Ninety-five percent of distances were shorter than 120 nm (Fig 3C). The

mean distance was 64.62 ± 1.43 nm for control and 63.62 ± 1.43 nm for forskolin-treated slices

under control conditions (blue) and in the presence of forskolin (red). (D) Bar graph showing the active area at peak of response to the first

stimulation normalized to the hMFB area. Note forskolin-mediated increase of hMFB active area. (E) Forskolin does not change the virtual

bouton diameter (diameter of a circle with area equal to the area of the recorded bouton) of hMFBs. The bouton area was calculated using high-

resolution images obtained before high-speed recordings. (F) Traces of cumulative intensities (spatial integral of suprathreshold pixels). The

signal decay after the second stimulation is fitted with a monoexponential curve (thick lines) to identify the tau of decay (τ). (G–I). Bar graphs

indicating the significant increase in cumulative amplitude in the presence of forskolin (maximal response to the first stimulation) (G), the

decrease in the cumulative PPR (H), and the unchanged tau of decay of the cumulative intensities (I). (J) Traces of maximal ΔF/F values for

suprathreshold pixels. (K) Bar graph showing that forskolin does not affect the maximal amplitude. (L) Traces of mean ΔF/F for suprathreshold

pixels. (M) Bar graph showing that forskolin does not affect the mean amplitude. (N and O) Example traces representing informational entropy

(N) and non-triviality (O) (see definitions in Methods) calculated for 2D patterns of ΔF/F spatial distributions at each time point for different

hMFBs under control conditions (blue traces) and in the presence of forskolin (red traces). (P and Q) Bar graphs showing significantly decreased

amplitudes of entropy (P) and non-triviality (Q) at the peak response to the fist stimulation. ampl., amplitude; AU : IaddedanabbreviationslisttothelegendofFig2; perPLOSstyle:IdefinedbothMWandMW � tðinpanelPÞasMann � WhitneyUtest:Ifthisisnotcorrect; pleaseedit:CTRL, control; El. stim., electrical

stimulation; FSK, forskolin; hMFB, hippocampal mossy fiber bouton; MFB, hippocampal mossy fiber bouton; MW, Mann–Whitney U test; MW-

t, Mann–Whitney U test; PPR, paired-pulse ratio; ut-t, unpaired t test. The data underlying this figure can be found at doi: 10.5281/zenodo.

4498214.

https://doi.org/10.1371/journal.pbio.3001149.g002
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(Fig 3D; p = 0.62, Mann–Whitney U testAU : Ichangedthe3instancesof Mann � WhitneytestinthepapertoMann � WhitneyUtest;whichwasthetermmorecommonlyusedinthepaper:Ifthisisnotcorrectði:e:; iftheserefertodifferenttestsÞ; pleaseedit:), when comparing all measured synapses. The same

result was reflected in the means of the animals: The mean distance was 64.21 ± 3.63 nm for

control and 63.54 ± 2.93 nm for forskolin-treated slices. The measured mean distance is con-

sistent with the loose coupling configuration of hMFBs previously determined by electrophysi-

ological recordings [27], as well as by a previous study measuring coupling distances by

gSTED in situ [40].

To validate that our gSTED analysis could indeed retrieve shorter coupling distances, we

measured coupling distances in the CA1 stratum radiatum of untreated slices (n = 491 synap-

ses from 11 animals; S4A–S4D Fig). Here, our method revealed a significantly shorter distance

between Cav2.1 and Munc13-1 clusters than observed in control synapses in the CA3 stratum

lucidum: The mean distance for CA1 synapses was 54.87 ± 1.47 nm in contrast to 64.62 ± 1.43

nm for CA3 control synapses (p< 0.0001, Mann–Whitney U test). Also, the mean distances

per animal showed the same result, with a mean of 54.79 ± 2.56 nm for CA1 compared with

64.21 ± 3.63 nm for CA3 control slices (p = 0.047, unpaired t test). Importantly, the frequency

distribution was shifted towards smaller values in CA1, with most measured distances being

between 20 and 60 nm (S4C Fig), in line with distance simulations for Schaffer collateral syn-

apses [41].

Fig 3. Coupling distance between Cav2.1 and Munc13-1 in the CA3 stratum lucidum is unchanged in control

versus forskolin. (A) Example scan in ZnT3-positive area of the CA3 stratum lucidum in 100-μm-thick hippocampal

slices: confocal scan (top), raw gSTED scan (middle), and deconvolved gSTED scan (bottom). Staining for Cav2.1

(green), Munc13-1 (magenta), and Homer1 (cyan). (B) Example of an analyzed synapse: The distance between Cav2.1

(green) and Munc13-1 (magenta) was measured only if they were in close proximity to a Homer1-positive spot (cyan).

Line profiles were plotted at the dotted line (top), drawn through the intensity maxima of the Cav2.1 and Munc13-1

signals (arrowheads). The distance was calculated between the intensity maxima of the Cav2.1 and Munc13-1 signals,

shown in the example normalized intensity plots for control (middle) and forskolin-treated (bottom). (C) The

distribution of measured distances between Cav2.1 and Munc13-1 in the CA3 stratum lucidum is unchanged in

control versus forskolin-treated (p = 0.81, 2-sample Kolmogorov–Smirnov test). Frequency distribution (left y-axis,

bars) and cumulative frequency (right y-axis, lines) with a bin size of 20 nm, for control (blue) and forskolin-treated

(red). (D) The mean distance between Cav2.1 and Munc13-1 in the CA3 stratum lucidum is unchanged in control

versus forskolin-treated. Scatter plot from all measured synapses: distances (nm) for CA3 control in blue (n = 584

synapses from 11 animals) and CA3 forskolin-treated in red (n = 525 synapses from 11 animals). Bar graphs show

mean values ± SEM. Significance tested with Mann–Whitney U test (p = 0.62). CS, cumulative frequency; CTRL,

control; FD, frequency distribution; FSK, forskolin; gSTED, time-gated stimulated emission depletion; KS,

Kolmogorov–Smirnov test; MW, Mann–Whitney U test. The data underlying this figure can be found at doi: 10.5281/

zenodo.4498214.

https://doi.org/10.1371/journal.pbio.3001149.g003
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Taken together, our gSTED measurements indicate that modulation of coupling distances

upon presynaptic potentiation at hMFBs is highly unlikely, suggesting that other mechanisms

account for the increase in neurotransmitter release after potentiation, such as the insertion of

new calcium channels and/or new release sites.

Increased presynaptic complexity and AZ density after forskolin treatment

To investigate the close-to-native ultrastructure of hMFBs with a nanometer resolution we

used rapid high-pressure-freezing (HPF) and EM imaging of acute slices (Fig 4A). hMFBs

were easily identifiable for their size and the fact that they make contact onto multiple spine

heads [42] (Figs 4A and S5A) in the stratum lucidum of the CA3 region of the hippocampus

(Figs 4A and S5A). Presynaptic potentiation was induced by incubating acute slices for 15 min

in 50 μM forskolin. After HPF, the ultrastructure of potentiated hMFBs was compared to that

of control hMFBs from the same mouse. Forskolin treatment increased synaptic complexity

(measured as the perimeter of the whole presynaptic bouton divided by the bouton area in 2D

images) (Fig 4C). To test the hypothesis that the activation of silent presynaptic release sites

might contribute to chemical presynaptic potentiation at hMFBs [19,20], we analyzed the den-

sity of AZs in partial 3D reconstructions. In forskolin-treated terminals, we observed an

increase in AZ density, measured as AZ number per cubic micron (Fig 4D). The presynaptic

area measured in 2D profiles of hMFBs was not significantly altered (Fig 4E), although we

observed a tendency towards a reduced presynaptic area under forskolin treatment, probably

due to the increase in presynaptic complexity. In a set of parallel experiments, we investigated

the ultrastructure of hMFBs in acute sagittal slices after chemical fixation (S5 Fig). In this prep-

aration, forskolin treatment increased hMFB AZ density (S5D Fig), while synaptic complexity

and presynaptic area were unchanged (S5B and S5C Fig).

SVs disperse upon potentiation

Forskolin-driven increase in cAMP concentration and the subsequent activation of PKA have

recently been shown to act on synapsin to modulate short-term plasticity [43], multivesicular

release [18], and vesicle availability [44]. We analyzed the 3D distribution of SVs in the presynap-

tic mossy fiber bouton and compared the number and localization of SVs under forskolin and

control conditions. Forskolin did not provoke a change in SV density (Fig 5B); however, it

induced SV dispersion inside the terminal. Thus, we measured the distance from each vesicle to

all other vesicles in 3D and normalized it by the stack volume. In forskolin-treated hMFBs this

distance was significantly increased (636.3 ± 47.26 for control and 836 ± 51.26 for forskolin-

treated, p = 0.0050, Mann–Whitney U test; Fig 5C). We also measured the mean nearest neighbor

distance (MNND) between vesicles. Since the size of our sections (z) is bigger than the nearest

neighbor distance, we measured this parameter in 2D images. We found no significant difference

in MNND between forskolin-treated and control synapses (Fig 5D). In chemically fixed slices, the

increase in vesicle-to-vesicle distance after forskolin treatment was similar to that observed in

cryo-fixed slices (S6C Fig), while SV density and MNND were unchanged (S6B and S6D Fig).

Note that, due to the fact that the slice thickness is comparable to 2 times a vesicle diameter, the

projection of vesicles in the z-dimension might result in a slight underestimation of the MNND.

Mitochondria are the most voluminous organelles in presynaptic terminals; hence, the dif-

ference in SV distribution might be a consequence of different mitochondrion volume in con-

trol and potentiated boutons. Mitochondria also have important functional relevance: They

provide ATP, maintain calcium homeostasis in presynaptic terminals, and are thought to regu-

late SV mobility during plasticity [45]. For these reasons, we measured the volume of mito-

chondria as a percentage of the total volume of the reconstructed presynaptic terminal. No
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Fig 4. Three-dimensional EM analysis reveals an increase in presynaptic complexity and AZ density in forskolin-treated cryo-fixed acute slices. (A) EM image of

the stratum lucidum of the hippocampal CA3 region. Mossy fiber axon bundles (mf) are visible in the left panel. In the central panel, large presynaptic terminals

contacting multiple spine heads (sp) are visible. The right panel shows a high-magnification image of a single AZ; this is a magnification of the spine marked in red (sp)
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in the middle panel. (B) Partial 3D reconstruction computed from manually segmented serial images of hMFBs in control conditions or after forskolin treatment.

Presynaptic membrane is green, postsynaptic membrane is light blue, synaptic vesicles are yellow, AZs and docked or tethered vesicles are blue (control) or red

(forskolin). (C) Bar graph indicating the quantification of bouton complexity (perimeter/area) obtained from images like the middle image of (A); bouton complexity

was larger in forskolin-treated terminals (p = 0.0001, unpaired t test). (D) Bar graph indicating the quantification of AZ density (AZ/μm3) obtained from 3D

reconstructions like those in (B); AZ density was larger in forskolin-treated terminals (p = 0.0035, Mann–Whitney U test). (E) Bar graph indicating the quantification of

presynaptic area (μm2) obtained from images like the middle image of (A); presynaptic area was unchanged in forskolin-treated terminals when compared to controls (p
= 0.07, unpaired t test). In all graphs, scatter points indicate individual boutons, n = 22 boutons for control and 20 boutons for forskolin-treated slices from 4 animals.

Values represent mean ± SEM. AZ, active zone; CTRL, control; EM, electron microscopy; FSK, forskolin; hMFB, hippocampal mossy fiber bouton; MW, Mann–

Whitney U test; ut-t, unpaired t test. The data underlying this figure can be found at doi: 10.5281/zenodo.4498214.

https://doi.org/10.1371/journal.pbio.3001149.g004

Fig 5. SVs disperse upon forskolin-induced presynaptic potentiation in cryo-fixed acute slices. (A) Partial 3D reconstruction of hippocampal mossy fiber boutons in

control conditions or after forskolin treatment. Presynaptic membrane is green, postsynaptic membrane is light blue, and SVs are blue (control) or red (forskolin). (B)

Bar graphs indicating the quantification of SV density per cubic micron of reconstructed volume; SV density was comparable in forskolin-treated and control terminals

(p = 0.5639, unpaired t test). (C) Bar graphs indicating the quantification of SV distance from other SVs normalized by the volume of the reconstruction (nm/μm3);

distance between vesicles was increased in forskolin-treated terminals (p = 0.0050, Mann–Whitney U test). (D) Bar graphs indicating the quantification of MNND

between vesicles (nm); MNND was comparable in forskolin-treated and control terminals (p = 0.1946, Mann–Whitney U test). In all graphs, scatter points indicate

individual boutons, n = 22 boutons for control and 20 boutons for forskolin-treated slices from 4 animals. Values represent mean ± SEM. CTRL, control; FSK, forskolin;

MNND, mean nearest neighbor distance; MW, Mann–Whitney U test; SV, synaptic vesicle; ut-t, unpaired t test. The data underlying this figure can be found at doi: 10.

5281/zenodo.4498214.

https://doi.org/10.1371/journal.pbio.3001149.g005
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difference was found between control and potentiated synapses (data available at doi: 10.5281/

zenodo.4498214). In summary, we found that forskolin treatment triggers the dispersion of SV

in the hMFB, an effect that likely increases SV availability at the release sites.

Increase in docked and tethered vesicle density upon forskolin-induced

potentiation

Vesicles physically docked at the AZ membrane are considered a good approximation of the

readily releasable pool (RRP) of SVs [46]. Interestingly, physiological measurements of the

RRP at hMFBs reported around 40 SVs per AZ [47], a value that is bigger than the morpholog-

ically docked pool and that can be approximated by the sum of vesicles whose center is found

up to 60 nm from the plasma membrane [42] or by the sum of docked and tethered vesicles

[48]. We asked whether, upon forskolin treatment, the increase in neurotransmitter release

was paralleled by changes in the number of docked and tethered vesicles (Fig 6).

Fig 6. Docked vesicle density increases upon forskolin-induced potentiation. (A) Two-dimensional electron microscopy image from a high-pressure frozen mossy

fiber AZ showing docked (light blue) and tethered (blue) SVs. (B) Three-dimensional reconstruction of mossy fiber AZs from acute slices cryo-fixed in control

conditions or after forskolin treatment. Top panels show the xz views, and bottom panels the xy views. (C) Bar graph indicating the quantification of AZ area (μm2) for

control and forskolin-treated boutons. (D–F) Bar graphs indicating the quantification of docked vesicle density in the whole bouton (docked SV/μm3) (D), docked

vesicle density per square micron of AZ (docked SV/μm2) (E), and tethered vesicle density per square micron of AZ (tethered SV/μm2) (F) in control and forskolin-

treated boutons. (G) Bar graph indicating the quantification of the putative readily releasable pool, measured as docked and tethered vesicle density per square micron of

AZ (docked and tethered SV/μm2) in control and forskolin-treated boutons. Scatter points indicate the mean value for each individual bouton from 4 animals. Values

represent mean ± SEM. AZ, active zone; CTRL, control; FSK, forskolin; MW, Mann–Whitney U test; SV, synaptic vesicle; ut-t, unpaired t test. The data underlying this

figure can be found at doi: 10.5281/zenodo.4498214.

https://doi.org/10.1371/journal.pbio.3001149.g006
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With HPF followed by EM imaging and 3D reconstruction of AZs, we observed an increase

in docked vesicles per bouton (Fig 6D) as well as a 20% increase in docked vesicle density at

individual AZs (Fig 6E). These values correspond to an average of 9.07 vesicles per AZ in con-

trol conditions and 10.25 vesicles per AZ after potentiation. To have an estimate of the mor-

phological correlate of the RRP, we measured docked and tethered vesicles (Fig 6A and 6B).

We observed a significant increase in the density of tethered vesicles and, consequently, in the

sum of docked and tethered vesicles (putative RRP) in forskolin-treated samples compared to

controls. Potentiated AZs on average displayed 118 ± 4.1 (mean ± SEM) vesicles per square

micron, while controls had an average of 98.9 ± 5.5 (mean ± SEM) vesicles per square micron

(Fig 6G). We also found a statistically significant increase in the number of docked vesicles per

cubic micron of reconstructed boutons in chemically fixed slices, likely a consequence of the

increase in the number of release sites visible in that preparation.

Discussion

Our study elucidates the structural and functional modifications that underlie chemical pre-

synaptic potentiation at hMFBs. Taken together, our data show that an increase in the number

of available release sites—and not only in release probability—is instrumental for forskolin-

induced mossy fiber presynaptic potentiation.

Growing evidence suggests that presynaptic plasticity may involve structural changes [28],

and indeed, persistent increase in mossy fiber complexity has been shown to occur in mice

kept in enriched environments [27].

Here we show that the recruitment of new release sites contributes to chemically induced

presynaptic potentiation. This presynaptic unsilencing has been previously suggested by

electrophysiological recordings of autaptic neurons [19] and by calcium imaging in cultured

hippocampal slices [20]. Our EM and glutamate imaging analyses indicate that an increase in

AZ and release site number leads to the increase in neurotransmission. EM of potentiated

hMFBs revealed an increase in synaptic complexity, in AZ density (Fig 4), and in the morpho-

logical correlate of the RRP (Fig 6). Moreover, we gained evidence for an increase in the pre-

synaptic releasing area by live 2-photon imaging of the glutamate sensor iGluu. In our

experimental conditions, the structural changes occurred already after 15 min of incubation in

forskolin. This indicates that structural rearrangements occur in a short time frame and, if

maintained, could consolidate long-term changes in synaptic strength. A similar time course

of structural synaptic remodeling was observed at Drosophila neuromuscular junctions: There,

rapid AZ remodeling, possibly implicating the insertion of AZ molecular scaffolds resulting in

the incorporation of new release sites, has been shown to consolidate presynaptic potentiation

and to sustain long-term changes in synaptic strength [49,50]. Our data thus suggest mecha-

nistic conservation in the mechanisms of presynaptic long-term plasticity.

At cerebellar climbing fiber–Purkinje cell synapses, cAMP/PKA stimulation shifts the bal-

ance from univesicular to multivesicular release without affecting Pr [18]. By direct monitoring

of glutamate release at hMFBs, we observed a forskolin-mediated decrease in the PPR of the

released glutamate (Fig 2G), consistent with the previous notion of a forskolin-mediated

increase in vesicular Pr [20,34]. Our experiments demonstrate that forskolin increases the

active area without changing the amplitudes of the iGluu transients (Fig 2A–2D and 2I–2L).

This is rather inconsistent with a switch from uni- to multivesicular release mode, which

would imply an elevation of the peak glutamate concentration at the presynaptic membrane

and/or in the synaptic cleft. However, we cannot exclude that a shift from uni- to multivesicu-

lar mode might occur at lower concentrations of extracellular calcium, as previously described

for hMFBs [31]. Interestingly, we occasionally observed paired-pulse facilitation of maximal
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iGluu transients under control conditions at the single pixel level (Fig 1E–1H and 1K), while

on the whole bouton level, the maximal amplitude invariably showed a paired-pulse depres-

sion (Fig 2G). This observation suggests that a switch from uni- to the multivesicular release

per se might exist at these synapses that, however, is not prominently induced by forskolin at 2

mM extracellular Ca2+. Finally, potentiation was not associated with a decrease in glutamate

clearance (Fig 2H) or an increase in the bouton size (Fig 1I). These data collectively suggest

that forskolin mediates an increase in release site density. Nevertheless, the observed increase

in AZ density (Fig 4D) cannot fully account for the 170% increase in the releasing area mea-

sured by glutamate imaging (Fig 2).

We could confirm recent findings [36] (Fig 1E–1H and 1K) that hMFBs display multiple

sites of stochastic release. Such a feature might enable synapses to strongly facilitate release by

switching from a random, low-probability mode of release to a more synchronous, high-prob-

ability mode at multiple AZs. Unfortunately, diffraction-limited 2-photon microscopy does

not allow us to directly visualize release from single AZs. We attempted to unravel such syn-

chronization by observing forskolin-induced changes in 2D patterns of iGluu transients. We

found less entropy reduction (pixel randomness; Fig 2O) and less increase of non-triviality

(pixel anisotropy; Fig 2P) in the presence of forskolin. It can be assumed that small (32% for

entropy and 25% for non-triviality) but significant differences in these parameters were proba-

bly due to the 38%–46% addition of new AZs. At the release peak a high fraction of pixels in

the image have a high intensity, and the addition of “bright” pixels may increase pixel homoge-

neity in the image. This might explain the small entropy decrease and the non-triviality

increase that we observed (Fig 2M–2P). However, such an increase in pixel homogeneity may

be due to equal changes induced in active pixels (pixel synchrony) due to glutamate release.

Our measurements show no correlation between the active area and changes of entropy and

non-triviality (S1G Fig), indicating that entropy and non-triviality are sensitive to global pixel

synchrony rather than to local changes at single release sites. However, these results do not

exclude the forskolin-mediated insertion of new AZs. Based on EM and glutamate imaging

data, we propose that both processes (AZ insertion and the synchronization of multiple release

sites, probably by increasing release probability) could be involved in hMFB LTP. The forsko-

lin-induced simultaneous activation of multiple AZs can be interpreted as a forskolin-medi-

ated decrease of the probabilistic pool of silent release sites or simply as an activation of silent

release sites, as suggested before [19,20].

Synchronization of release sites requires an extended pool of vesicles ready to be released.

Indeed, by EM, we observed an increase in the number of docked and tethered vesicles in for-

skolin-treated hMFBs. A similar PKA-dependent increase in docked vesicles has been recently

observed at hMFBs after a high-frequency stimulationAU : Pleasecheckthatthetermtrainiscorrecthere:, and it has been proposed to constitute

a “pool engram” that sustains post-tetanic potentiation and, possibly, short-term memory

[17]. Further studies will be needed to determine whether the regulation of the RRP is respon-

sible solely for short-term plasticity or whether it might also underlie the longer form of plas-

ticity and memory.

Following adenylyl cyclase activation, we observed that SVs were more dispersed inside

hMFBs. We do not know the molecular mechanism that regulates such dispersion. An edu-

cated guess would be that synapsin phosphorylation is mediating such dispersion, favoring the

increase in the RRP size. In fact, vesicle clustering at the presynaptic terminal is known to be

mediated by the synapsin family of proteins [51,52] and synapsins contain a conserved PKA

phosphorylation site (Serine9) [53] that, when phosphorylated, mediates synapsin dissociation

from vesicles [54]. PKA- and synapsin-mediated modulation of vesicle availability has also

been observed in cultured human neurons [43].
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We speculate that the dispersion of vesicles, their reorganization in the terminal, and the

increase in the number of vesicles attached to the AZ are instrumental for the increase in

release of neurotransmitter in the potentiated state.

Recent evidence implicates a direct role of nano-scale SV remodeling also as a presynaptic

mechanism for Hebbian forms of plasticity [55]. It seems that the effect of forskolin on SV dis-

persion and mobilization mimics a more general mechanism that synapses adopt to modulate

presynaptic performance, and forskolin effects might differ at different synapses depending on

the variety of presynaptic molecular architecture of release sites.

The shortening of the coupling distance between presynaptic calcium channels and release

sites has also been proposed to mediate the increase in neurotransmitter release at potentiated

hMFBs [29]. We tested this hypothesis and performed gSTED microscopy to measure the dis-

tance between Cav2.1 and Munc13-1 signals. We confirmed a rather loose coupling distance of

about 65 nm between calcium source and release sites at mossy fibers, as previously estimated

by electrophysiological recordings [27] and gSTED microscopy [40]. These values were similar

for control and potentiated synapses, suggesting that the tightening of the distance between cal-

cium source and release sites does not underlie presynaptic potentiation. We are aware that the

change in distance that we seek to measure is close to the resolution limit for our technique.

However, we could measure a shorter coupling distance, of about 55 nm, between Cav2.1 and

Munc13-1 in the area CA1, indicating that with our experimental design we can, in principle,

resolve shorter distances (S4 Fig). We did not analyze the distance between other calcium chan-

nel types (N-type, R-type) and Munc-13. Further experiments will be needed to determine

whether their reorganization might contribute to hMFB forskolin-mediated potentiation.

In summary, our results demonstrate that elevating cAMP at hMFBs increases their mor-

phological complexity, recruits new AZs, and prepares the release machinery for synchronous

release from multiple release sites, seemingly without altering the distance between calcium

channels and release sites. The rapid structural remodeling and the increased release syn-

chrony may thereby support the presynaptic expression of LTP at mossy fiber synapses.

Activity-dependent ultrastructural changes have been recently investigated at hMFBs by flash-

and-freeze EM [56,57]. This technique, combined with the new optogenetic tool synaptoPAC

that drives light-induced adenylyl cyclase activation [58], will help to unravel the differential effect

of chemically induced and action-potential-evoked presynaptic potentiation at hMFBs.

Methods

Ethics statement

All animal experiments were carried out according to the guidelines stated in Directive 2010/

63/EU of the European Parliament on the protection of animals used for scientific purposes

and were approved by the animal welfare committee of Charité–Universitätsmedizin Berlin

and the Landesamt für Gesundheit und Soziales–Berlin (permit T 0100/03).

Chemical potentiation induction

Chemical presynaptic potentiation was induced in organotypic and acute slices by incubating

slices from the same animal at room temperature for 15 min in either 50 μM forskolin in artifi-

cial cerebrospinal fluid (ACSF) or in ACSF + DMSO (1:1,000) as a control.

Organotypic cultures of mouse hippocampus

Organotypic hippocampal slice cultures were prepared as described previously [59]. Briefly,

postnatal day 3–8 C57BL/6N male mice were anesthetized by isoflurane, and the brain was
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removed and placed in ice-cold sterile slicing solution consisting of 50 mM sucrose, 87 mM

NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 3 mM MgCl2, 0.5 mM CaCl2 and

10 mM glucose. Horizontal brain slices (350 μm) were prepared with a vibratome (VT1200 V,

Leica Microsystems) and placed on 30-mm hydrophilic PTFE membranes with 0.4-μm pores

(Merck, Millipore, Ireland). Membranes were inserted into 35-mm petri dishes containing 1

mL of culture medium, and cultures were maintained up to 25 d in an incubator at 37˚C, 95%

O2/5% CO2. Culture medium was replaced 3 times per week and contained 50 mL of Basal

Medium Eagle, 25 mL of Hanks’ balanced salt solution, 25 mL of horse serum, 0.5 mL of Glu-

taMAX-I Supplement (200 mM), and 2.5 mL of glucose (6 g/l). One day after preparation, the

medium was supplemented with 0.5 mL of penicillin/streptomycin.

Autaptic cultures

Autaptic cultures were prepared as previously described [60]. Briefly, hippocampi from post-

natal day 1 C57BL/6N mice were removed and placed in cold Hanks’ balanced salt solution.

The dentate gyrus was separated from the hippocampus and digested with Papain solution.

Subsequently, cells were manually titrated and plated on glia cell islands grown on 30-mm cov-

erslips in 6-well plates with a density of 4.95 × 102 cells/cm2. Wells contained 3 mL of Neuro-

basal-A (Thermo Fisher Scientific, #10888022) supplemented with 2% B27 (Thermo Fisher

Scientific, #17504001) and 0.2% penicillin/streptomycin (Thermo Fisher Scientific,

#15140122).

Viral transduction

Organotypic cultures. One day after the preparation, slice cultures were transduced with

adeno-associated virus (AAV) serotype 9 particles encoding CaMKII.iGluu.WPRE-hGH [30].

AAV particles were produced by the Viral Core Facility of the Charité–Universitätsmedizin

Berlin (5.88 × 1012 genome copies/mL). Two hundred nanoliters of the virus suspension was

injected into the hippocampal dentate gyrus under sterile conditions through a 20-μm glass

capillary fixed on a mechanical manipulator under visual control through a binocular. The

capillary was connected to a 5-μl Hamilton syringe. After transduction, cultures were incu-

bated for at least 2 wk before being used for experiments. Because iGluu stains the plasma

membrane, the somata of hippocampal granule cells appear dark in contrast to the bright den-

dritic tree and axons (Fig 1A and 1D). Despite the dense packing of hMFBs in the stratum luci-

dum of the CA3 area, this type of transduction, in combination with 2-photon imaging, does

not allow the visualization of more than 1 bouton in a 20-μm2 view field (Fig 1D).

Autaptic cultures. One to 2 d after the preparation, autaptic cultures were transduced

with 2 μl of the AAV encoding CaMKII.iGluu.WPRE-hGH per well.

Quantification of elevation of synaptic glutamate concentration with iGluu

Glutamate release from single hMFBs was visualized using the genetically encoded ultrafast

glutamate sensor iGluu [30], which has been used for high-speed glutamate imaging before

[32,33,61]. The main advantages of this sensor are its low sensitivity (Kd = 600 μM) and fast

decay kinetics, which allow only intrasynaptic glutamate with good temporal resolution to be

visualized and eliminate the registration of glutamate signals from neighboring synapses. To

image synaptically released glutamate, transduced organotypic hippocampal cultures were

submerged into a perfusion chamber with a constant flow of oxygenated ACSF at a rate of 1–2

mL/min. ACSF contained 120 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3,

10 mM glucose, 2 mM CaCl2, and 1 mM MgCl2, with pH 7.3 and osmolarity 300 mOsm/LAU : Ichangedtheosmolarityunitsð3instancesintheMethodsÞfrommOsmtomOsm=L:Ifthisisnotcorrect; pleaseedit:.

Temperature during the recordings was maintained at 32–35˚C.
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A Femto2D 2-photon laser scanning system (Femtonics, Budapest, Hungary) equipped

with a femtosecond pulsed Ti:Sapphire laser tuned to λ = 805 nm and power 0.5 W (Cameleon,

Coherent, Santa Clara, CA, US) controlled by the MATLAB-based MES software package

(Femtonics, Budapest, Hungary) was used for the excitation of iGluu expressed at hippocampal

mossy fibers (Fig 1A and 1D). Fluorescence was acquired in epifluorescence mode with a

water immersion objective (LUMPLFL 60×/1.0 NA or UMPlanFL 10×/0.3 NA, Olympus,

Hamburg, Germany). Transfluorescence and transmitted infrared were detected using an oil

immersion condenser (Olympus).

At rest, the low-affinity iGluu sensor produces a weak fluorescence (480–600 nm) indistin-

guishable from autofluorescence (Fig 1B). To discriminate between iGluu-positive structures

and autofluorescent elements (Fig 1C) that emit light in the whole visible spectral range, fluo-

rescent photons from both green (<600 nm) and red (�600 nm) spectral bands AU : Thevalue600iscurrentlyincludedinneitherrangeð< 600and > 600Þ:Ifoneofthesesymbolsshouldbe � or �; pleaseedit:were collected

simultaneously, but separately with 2 photomultipliers (Fig 1B–1D). hMFBs were identified by

the following criteria (Fig 1B–1D): (1) fluorescence in the green but not in the red spectral

range, (2) a round form with an approximate diameter < 6 μm, (3) the form being connected

to a clearly visible axon, and (4) green fluorescence increase in response to electrical

stimulation.

In order to evoke glutamate release from hMFBs, we electrically stimulated an axon con-

nected to the boutons with pairs of a negative rectangular current pulse (�5 μA, generated

with the Isolator-11, Axon Instruments, US) through a unipolar glass electrode filled with

ACSF (tip diameter 1 μm, resistance 8 MΩ). The interstimulus interval in pairs was 50 ms. The

stimulation electrode was placed on the axon in vicinity (<20 μm) of the bouton (Fig 1D). For

measurements of the virtual bouton diameter (diameter of a circle with area equal to the area

of the recorded bouton), we used images of big view fields (100 × 100 μm2) with a spatial reso-

lution of 0.1 μm/pixel, which we acquired by averaging 15 individual frames at the confocal

plane where the bouton had the largest iGluu-positive area.

The iGluu fluorescence signal was acquired at a frequency of 1.6 kHz from a rectangular

region of interest (ROI) covering the whole bouton at the confocal plane with maximal bouton

area. The scanning pattern and mean spatiotemporal scanning characteristics are shown in Fig

1J. These characteristics varied for each individual recording, with a coefficient of variation of

35% to reach maximal resolution for each bouton, but they were not significantly different

under different conditions. The analysis of fluorescent signal was performed with a custom-

made routine. To evaluate evoked responses, signals for all pixels of the ROI were filtered with

a 100-Hz low-pass filter and evaluated separately. The iGluu pixel signal was expressed as a

change of fluorescence intensity (ΔF) in percent of the mean baseline fluorescence F (ΔF/F) for

the given pixel. The baseline was determined as the data points acquired during a 50-ms period

prior to stimulation (baseline). For the construction of time- and space-dependent Glu con-

centration profiles after evoked release, suprathreshold pixels were determined, the threshold

being defined as 3 × SD of ΔF/F (Figs 1F–1H, 1K, 2A and 2B). The stimulus-induced changes

of suprathreshold ΔF/F in time or space are referred to as “iGluu transients.”

To assess the dynamic characteristics of the iGluu signal, the area occupied by suprathres-

hold pixels (active area) (Fig 2A and 2B) and the pixel intensities expressed as ΔF/F were plot-

ted against time (Fig 2C, 2E, 2I and 2K). Peak values (Fig 2D, 2F, 2J and 2L) and their PPRs

(Figs 2G, S1B and S1C) were determined for the active area, the cumulative amplitude (spatial

integral of intensities for suprathreshold pixels), the maximal amplitude (maximal intensity

for a population of suprathreshold pixels), and the mean amplitude (mean intensity for a pop-

ulation of suprathreshold pixels) of the iGluu transients. The mean amplitude indicates the

mean concentration of glutamate in the synaptic cleft, and the maximal amplitude refers to the

glutamate concentration near release sites. The tau of decay (τ) is the time constant of decay
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derived by fitting a monoexponential function to the decay from the peak of the cumulative

iGluu transients (Fig 2F). Data analysis was performed blinded to the experimental condition.

Entropy and non-triviality measurements

The main idea of the non-triviality–entropy analysis is to quantify the spatial properties of rep-

resentative 2D ΔF/F images with respect to their balance between randomness and structural

order, triviality, and non-triviality. Highly ordered structures (like a grid) have near-zero

entropy and near-zero non-triviality. In contrast, completely disordered structures (e.g., inde-

pendent and identically distributed Gaussian noise) have maximal entropy and very small

non-triviality. Intermediate values of entropy are associated with higher values of non-triviality

if the underlying pattern contains features with preferred orientation [62,63]. In our analysis,

informational entropy characterizes the homogeneity of 2D patterns, and non-triviality at high

entropy characterizes their anisotropy. A detailed theoretical overview of the analysis is

described in a method paper [37], and an implementation Python code is available at doi: 10.

5281/zenodo.1217636. To avoid overlapping terms in this paper, we have replaced the origi-

nally published term “complexity” with its synonym “non-triviality.”

Electrophysiological recordings in autaptic cultures

To control for the effect of the expression of iGluu on neurotransmission, we performed

electrophysiological recordings of autaptic hippocampal neurons transduced with an AAV

encoding for iGluu. Neurons were recorded at day in vitro 14–17 at room temperature on an

IX73 inverted microscope (Olympus, Shinjuku, Tokyo, Japan) using a Multiclamp 700B

amplifier under the control of a Digidata 1550 AD board and Clampex 10 software (all Molec-

ular Devices). Data were acquired at 10 kHz and filtered at 3 kHz, and series resistance was

compensated at 70%. The extracellular solution contained 140 mM NaCl, 2.4 mM KCl, 10 mM

HEPES, 10 mM glucose, 2 mM CaCl2, and 4 mM MgCl2 (pH adjusted to 7.3 with NaOH, 300

mOsm/L). The intracellular solution contained 136 mM KCl, 17.8 mM HEPES, 1 mM EGTA,

4.6 mM MgCl2, 4 mM Na2ATP, 0.3 mM NaGTP, 12 mM disodium phosphocreatine, and 50

U/mL creatine phosphokinase (pH adjusted to 7.3 with KOH, 300 mOsm/L). Chemicals were

purchased from Tocris, Merck, or Carl Roth. Autaptic neurons were recorded in whole-cell

voltage clamp mode using thick-walled borosilicate pipettes (3–4 MΩ). Membrane potential

was set to −70 mV. Paired EPSCs were evoked every 5 s by triggering 2 unclamped action

potentials with 40-ms interstimulus interval using 1-ms depolarizations of the soma to 0 mV.

The PPR AU : Pleasecheckthattheeditstothesentence}ThePPR:::}captureyourmeaning:Ifnot; pleaseprovidecorrectwording:was calculated as the ratio of the second to the first EPSC amplitude. Data were ana-

lyzed using AxoGraph X (AxoGraph, Sydney, Australia). EPSC slope was determined by a lin-

ear fit to the average EPSC signal of 6 sweeps, and the EPSC decay time constant was

determined by a monoexponential fit. We could not observe any difference in synaptic trans-

mission between iGluu-expressing neurons and non-transduced cells (S2 Fig).

Immunocytochemical staining of autaptic cultures

Transduced and non-transduced cultured hippocampal neurons were fixed at room tempera-

ture in 4% paraformaldehyde (PFA) for 15 min at day in vitro 21. Afterwards, cultures were

washed in 0.1 M phosphate buffer saline (PBS), permeabilized with PBS containing 0.1%

Tween20 (PBS-T) and quenched with PBS containing 100 mM glycine. Cells were blocked for

30 min in PBS containing 5% normal goat serum and then incubated with primary antibodies

at room temperature for 1 h (chicken anti-GFP [1:1,000] and rabbit anti-MAP2 [1:1,000])

(Table 1). After thorough washing with PBS-T, secondary antibodies were incubated at room

temperature for 1 h in the dark (goat anti-chicken Alexa Fluor 488 [1:1,000] and goat anti-
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rabbit Alexa Fluor 594 [1:500]). After several washing steps with PBS-T and PBS, cultures were

mounted on coverslides in Mowiol (Carl Roth, #0713.1) and cured in the dark for 18 h.

Confocal microscopy

Cured mounted cultures were imaged using a confocal microscope (Leica TCS SP5), equipped

with a 40× oil immersion objective. Images were acquired with the LAS AF software (Leica

Microsystems). For excitation of Alexa Fluor 488, counterstaining the GFP molecule from the

iGluuSNFR construct, an argon laser at 488 nm was used with 10% power. For excitation of

Alexa Fluor 594, a DPSS laser at 561 nm was used with 10% power. Emission was detected by 2

photomultiplier tubes. Laser power and gain were kept the same for all imaged cultures and

conditions. Z-stacks were acquired in a sequential line-by-line mode in z-steps of approxi-

mately 1 μm, with a speed of 200 Hz and a line average of 4.

Immunofluorescence images depict the summed fluorescence signal from the z-stacks.

Brightness, intensity, and contrast were adjusted, and colors were inverted.

Acute slice preparation

Postnatal day 27–29 male WT C57BL/6N mice were anesthetized with isoflurane and decapi-

tated, and brains were quickly removed and placed in ice-cold sucrose–ASCF (s-ACSF) con-

taining 50 mM NaCl, 25 mM NaHCO3, 10 mM glucose, 150 mM sucrose, 2.5 mM KCl, 1 mM

NaH2PO4, 0.5 mM CaCl2, and 7 mM MgCl2. All solutions were saturated with 95% O2/5%

CO2 (vol/vol) (pH 7.4).

For STED microscopy, hemispheres were embedded in 4% low-melt agarose in HEPES-

buffered solution. Sagittal slices (100 μm for STED microscopy, 350 μm thick for conventional

EM, and 150 μm thick for HPF) were cut with a vibratome (VT1200 V, Leica Microsystems) in

ice cold s-ACSF solution, stored submerged in s-ACSF for 30 min at 35˚C (at room tempera-

ture for STED microscopy), and subsequently stored at room temperature in ACSF containing

119 mM NaCl, 26 mM NaHCO3, 10 mM glucose, 2.5 mM KCl, 1 mM NaH2PO4, 2.5 mM

CaCl2, and 1.3 mM MgCl2 saturated with 95% O2/5% CO2 (vol/vol) (pH 7.4). Experiments

were started 1 to 3 h after the preparation. For STED microscopy, slices were fixed with 4%

PFA in PBS for 1 h at room temperature immediately after the induction of chemical potentia-

tion and were later stored in PBS + 0.1% NaN3 for up to 4 d until staining.

Immunohistological staining for STED microscopy

After PFA fixation, slices were washed in 0.1 M phosphate buffer (PB) containing 20 mM gly-

cine. They were incubated for 3 h in a blocking solution containing 10% normal goat serum

and 0.3% TritonX-100 in PB. After rinsing with 0.3% TritonX-100 in PB, a second blocking

step was performed with goat Fab fragments anti-mouse IgG (1:25) in PB for 1 h at room tem-

perature. After rinsing with 0.3% TritonX-100, primary antibodies (mouse anti-ZnT3 [1:500],

chicken anti-Homer1 [1:200], guinea pig anti-Cav2.1 [1:500], and rabbit anti-Munc13-1

Table 1. Antibodies used in immunocytochemical stainingAU : PerPLOSstyle; IhaveaddedatitleandacalloutforTable1:Pleasecheckthatthesearesuitable:Ifnot; pleaseedit:.

Target

molecule

Primary antibody Secondary antibody

GFP Chicken-α-GFP, (Abcam, #13970), 1:1,000 Goat-α-chicken–Alexa488 (Invitrogen, #11039),

1:1,000

MAP2 Rabbit-α-MAP2 (Merck Millipore, #AB5622),

1:1,000

Goat-α-rabbit–Alexa594 (Invitrogen, #A-11012),

1:500

https://doi.org/10.1371/journal.pbio.3001149.t001
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[1:150]) (Table 2) were incubated on a shaker at 4˚C for 40 h in PB containing 5% normal goat

serum and 0.3% TritonX-100.

AU : Pleasecheckthattheeditstothesentence}Overaperiod:::}captureyourmeaning:Ifnot; pleaseprovidecorrectwording:Over a period of 3 h at room temperature, slices were washed in 0.3% TritonX-100 in PB

every 15–20 min. Secondary antibodies (goat anti-rabbit ATTO647N [1:200], goat anti-mouse

Alexa Fluor 405 [1:200], goat anti–guinea pig Alexa Fluor 594 [1:100], and goat anti-chicken

Alexa Fluor 488 [1:200]) were centrifuged at 4˚C and 300 relative centrifugal force for 30 min.

Then, slices were incubated with secondary antibodies in PB containing 5% normal goat

serum and 0.3% TritonX-100 for 2 h on the shaker, in the dark and at room temperature.

After washing, slices were mounted on superfrost coverslides (VWR), embedded with Pro-

long Gold (Thermo Fisher Scientific), covered with high-precision coverslips (Carl Roth), and

cured for 24 h at room temperature in the dark. STED imaging was performed after 5–7 d to

ensure the best refractive index for Prolong Gold. Imaging in CA1 for a subset of the data (5

out of 11 animals) was performed more than 40 d AU : Ichangedover40dtomorethan40d:Ifthisisnotcorrect; pleaseedit:after the staining.

STED microscopy imaging

Cured slices were checked for ZnT3-Alexa405 staining, which specifically labels the mossy

fiber band, using a confocal microscope (Leica TCS SP5). Slices were imaged with a time-gated

STED (gSTED) setup (Expert Line, Abberior Instruments, Germany) equipped with an

inverted IX83 microscope (Olympus) and a 100×, 1.40 NA oil immersion objective. Images

were acquired using the Imspector software (version 16.1.6477, Abberior Instruments,

Germany).

After orientation in the slice, imaging areas in CA3 or CA1 were chosen. Overview images

of 75 × 75 μm were scanned in confocal mode. Within this overview, several ROIs of

10 × 10 μm were chosen for scanning in STED mode. In CA3, scanning was performed in stra-

tum lucidum, close to CA3 pyramid cell bodies (see S4E Fig). In CA1, scanning was performed

in stratum radiatum more distal from the pyramidal cell bodies (see S4F Fig). Sixteen-bit 2D

gSTED images were acquired within chosen areas with a pixel size of 20 × 20 nm, a laser dwell

time of 2 μs, and a line accumulation of 10 (confocal mode) or 30 (gSTED mode). Pulsed exci-

tation lasers had wavelengths of 640 nm, 561 nm, and 488 nm. The dyes ATTO647N and

Alexa594 were depleted first, using a pulsed gSTED laser at 775 nm (0.98-ns pulse duration, up

to 80-MHz repetition rate). Subsequently, Alexa Fluor 488 was depleted using a pulsed gSTED

laser at 595 nm (0.52-ns pulse duration, 40-MHz repetition rate). Time gating was set to 750

ps. Avalanche photodiode detectors collected fluorescence signals sequentially in a line-by-line

mode. In parallel to gSTED scanning, confocal images were acquired. One slice per condition

and mouse was imaged with the gSTED microscope. Per slice, 6–8 images were scanned. After

595-nm STED imaging, we verified the localization of the bleached ROIs in the ATTO647N

channel within ZnT3-positive regions using a confocal microscope (Leica SP5; see S4E and

Table 2. Antibodies used in immunohistological stainingAU : IhaveaddedatitleandacalloutforTable2:Pleasecheckthatthesearesuitable:Ifnot; pleaseedit:.

Target

molecule

Primary antibody Secondary antibody

ZnT3 Mouse-α-ZnT3, Synaptic Systems, #197 011),

1:500

Goat-α-mouse–Alexa405 (Invitrogen, #31553),

1:200

Homer1 Chicken-α-Homer1 (Synaptic Systems, #160

006), 1:200

Goat-α-chicken–Alexa488 (Invitrogen, #11039),

1:200

Cav2.1 Guinea pig-α-Cav2.1 (Synaptic Systems, #152

205), 1:500

Goat-α-guinea pig–Alexa594 (Invitrogen, #A-

11076), 1:100

Munc13-1 Rabbit-α-Munc13-1 (Synaptic Systems, #126

102), 1:150

Goat-α-rabbit–ATTO647N (Activ Motif,

#15048), 1:200

https://doi.org/10.1371/journal.pbio.3001149.t002
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S4F Fig). With our approach, we cannot exclude that a small fraction of the distances measured

do not belong to hMFBs. Nevertheless, this eventuality remains unlikely considering that, in

the CA3 stratum lucidum, most excitatory/asymmetric synapses are formed by mossy fibers

onto CA3 thorny excrescences [64]. In our study, we used Homer1 as marker for excitatory

synapses, to further restrict our analysis to hMFBs.

STED microscopy analysis

Raw triple-channel gSTED images were deconvolved for quantification with the Imspector

software (version 16.1.6477, Abberior Instruments, Germany) using the Richardson–Lucy

algorithm. The point spread function had a full width at half maximum of 40 nm, based on

measurements with 40-nm Crimson beads, and was computed with a 2D Lorentzian function.

Coupling distance measurement. Deconvolved 32-bit gSTED images were merged with

Fiji (ImageJ version 1.52n) to a triple-channel composite. Up to 17 synapse configurations

(i.e., triads of juxtaposed Cav2.1, Munc13-1, and Homer1 signals) were manually chosen in

each composite. The intensity maxima of Cav2.1 and Munc13-1 were retrieved using the Fiji

“Find maxima” tool with a prominence > 20, except for a subset of CA1 data where the promi-

nence was > 10. The intensity maxima were output as point selections and used to measure

the distance between Cav2.1 and Munc13-1 clusters: With the Fiji tool for straight lines (size: 1

pixel), a line was drawn through both intensity maxima. Then the “modified multichannel plot

profile” plugin (written by Tiago Ferreira) was used to plot the intensities of all 3 channels

along this line, meaning that each intensity value corresponded to a distance value on the line.

Based on this, the distance was calculated between the locations of the intensity maxima of the

Cav2.1 and Munc13-1 signals. Data acquisition and analysis were performed blinded to the

experimental condition.

Conventional EM

After the induction of chemical potentiation, 350-μm-thick acute slices were immersed in a

solution containing 1.2% glutaraldehyde in 66 mM sodium cacodylate buffer for 1 h at room

temperature.

After washes in 0.1 M sodium cacodylate buffer, slices were then postfixed in 2% OsO4 in

dH2O for 1 h at room temperature. Slices were then washed and en bloc stained with 1% ura-

nyl acetate in dH2O and dehydrated in solutions with increasing ethanol concentration. Final

dehydration was obtained incubating slices in propylene oxide, and then the infiltration of

Epoxy resin was obtained by serial incubations in increasing resin/propylene oxide con-

centrationsAU : Ichangedincreasingresin=propyleneoxidedilutionstoincreasingresin=propyleneoxideconcentrations:Ifthisisnotcorrect; pleaseedit:. Samples were finally flat embedded in epoxy resin (Epon 812 Kit, Science Ser-

vices) for 48 h at 60˚C.

Serial sections of 70 nm were cut with an UltraCut ultra microtome (Leica) equipped with a

45˚ Ultra Diamond Knife (Diatom) and collected on formvar-coated copper slot grids (Science

Services).

HPF and freeze substitution

After the induction of chemical potentiation, 150-μm-thick acute slices of hippocampi were

dissected and placed in a 3-mm aluminum HPF Carrier Type A (Science Services). Samples

were cryo-fixed using a HPF machine (EM ICE, Leica) in ACSF (with or without forskolin). A

drop of 20% BSA in ACSF was added for cryo-protection and a 3-mm aluminum HPF Carrier

Type B (Science Services) was placed on top of the sample prior to HPF. Frozen samples were

transferred in a freeze substitution machine (AFS2, Leica) and placed in a solution containing

2% OsO4 and 0.4% uranyl acetate in anhydrous acetone at −90˚C. The following substitution
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protocol was performed: Samples were kept at −90˚C for 54 h, then temperature was brought

from −90˚C to −60˚C in 6 h, held at −60˚C for 8 h, and then raised to −30˚C in 6 h. Subse-

quently, temperature was held for 8 h at −30˚C and then brought to 0˚C in 4 h. At 0˚C, sam-

ples were washed in anhydrous acetone and slowly infiltrated in increasing concentrations of

Epon in acetone. The last infiltration steps were carried out at room temperature in pure Epon

and were followed by embedding at 60˚C for 48 h.

HPF of acute slices is challenging because an acute slice’s minimal slice thickness is similar

to the maximal thickness compatible with HPF (200 μm), and this often results in suboptimal

sample freezing and/or vibratome damage [57]. Despite this drawback, acute slice preparation

is a good way to preserve the tissue in conditions that are crucial for the read-out of physiologi-

cal phenomena such as presynaptic plasticity [17,56].

EM imaging of serial sections and 3D reconstructions

The CA3 region of the hippocampi was identified by semi-thin sectioning and toluidine blue

staining for light microscopy observation. When the CA3 region was clearly visible, the ROI

was trimmed, and 70-nm ultrathin serial sections were collected on formvar-coated copper

slot grids (Science Services). Imaging was performed with an EM 900 Transmission Electron

Microscope (Zeiss) operating at 80 kV and equipped with a 2K digital camera (Olympus). Ini-

tially 2D imaging was performed with a Tecnai G20 (Thermo Fisher Scientific) operated at

higher voltage (120–200 kV), but for our serial sections, we opted for 80-kV imaging in order

to have a better contrast. We focused AU : Pleasecheckthattheeditstothesentence}Wefocused:::}captureyourmeaning:Ifnot; pleaseprovidecorrectwording:the imaging on the stratum lucidum of the hippocampal

region of the CA3, because the presence of big mossy fiber boutons was easily distinguishable

and because the stratum lucidum is located just above the pyramidal cell layer. Serial images of

the same mossy fiber boutons were manually acquired using ImageSP software and were

aligned using the midas script of IMOD software, and for each bouton, synaptic profiles and

all organelles were manually segmented in each image. Data acquisition and analysis were per-

formed blinded to the experimental condition.

Statistics

Data are shown as mean ± SEM. For statistical analysis, all datasets were tested for normality

using the D’Agostino and Pearson normality test. For comparisons between normally distrib-

uted datasets, we performed a 2-tailed unpaired t test. If the variance was significantly different

between the compared datasets, t tests were performed with Welch correction. For non-nor-

mally distributed data, we performed a 2-tailed non-parametric Mann–Whitney U test com-

paring the ranks of treated synapses and controls. Cumulative distributions were tested using

the 2-sample Kolmogorov–Smirnov test. We used Prism 6.2 and 8.4 software (GraphPad) for

the analysis. Levels of significance are indicated in the figures as �p< 0.05, ��p< 0.01, ���p<
0.001, and ����p< 0.0001.

Supporting information

S1 Fig. Correlograms for different parameters of iGluu transients acquired from hMFBs

under control conditions. (A–C) Correlograms of cumulative amplitude (A), mean amplitude

(B), and active area (C) versus their paired-pulse ratios demonstrate that among others cumu-

lative amplitude (A) best reflects the activity-dependent form of short-term plasticity. (D–F)

AU : PleasecheckthattheeditstotheðD � FÞandðG � IÞlegendsectionsforS1Figcaptureyourmeaning:Ifnot; pleaseprovidecorrectwording:Correlograms of active area versus cumulative (D), mean (E), and maximal (F) amplitudes

show that the active area is independent of glutamate concentration within the synaptic cleft

(E and F), but is associated with the total amount of released glutamate (D), i.e., the measured

active area reflects more a releasing area than a diffusional glutamate spread. (G–I)
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Correlograms of active area (G), mean amplitude (H), and cumulative amplitude (I) versus

entropy and non-triviality change provide evidence that entropy and non-triviality are inde-

pendent of the active area and amount of released glutamate. The data underlying this figure

can be found at doi: 10.5281/zenodo.4498214.

(TIF)

S2 Fig. Analysis of synaptic transmission in autaptic cultures of hippocampal neurons

revealed no difference between neurons expressing iGluu and noninfected control neurons.

(A) Immunofluorescence images of cultured hippocampal neurons PFA-fixed at day in vitro

21 and stained for the dendritic marker MAP-2 and iGluu. The iGluu signal was enhanced by

immunolabeling with anti-GFP antibodies. (B) Exemplary traces of whole-cell voltage clamp

recordings of excitatory postsynaptic currents (EPSCs) evoked by 1-ms depolarizations in

autaptic cultures of a noninfected control neuron, or neuron transduced with an AAV encod-

ing iGluu. Fits for calculating the EPSC slope (red) and EPSC time constant (green) are shown

as overlay. (C–E) EPSC amplitude (C), slope (D), and decay time constant (E) were not differ-

ent between control and iGluu-expressing neurons. (F) Example traces of 2 EPSCs evoked at

25 Hz in a control and an iGluu-expressing neuron. (G) Typical synaptic currents evoked by

brief applications of hypertonic sucrose solutions (500 mM) to deplete the readily releasable

pool (RRP). (H–J) Paired-pulse ratio (PPR) (H), size of the RRP (I), and vesicular release prob-

ability (Pr) (J) were not significantly different between control and iGluu-expressing neurons.

(K) Control neurons (open circles) and iGluu-expressing neurons (black circles) showed simi-

lar short-term kinetics of release during 10-Hz stimulation. Control: n = 12–13; iGluu: n = 12–

14; N = 2 cultures for both conditions. The data underlying this figure can be found at doi: 10.

5281/zenodo.4498214.

(TIF)

S3 Fig. Longitudinal iGluu imaging experiments reveal forskolin effect on hMFB glutamate

release. (A) Image sequence showing iGluu fluorescence for the hMFB recorded at different

time points before (−12, −6, and 0 min) and after (6, 12, and 18 min) forskolin application.

High-resolution images were taken before high-speed imaging. The green rectangle on the pic-

tures marks the area of high-speed imaging. Note strong iGluu bleaching during recordings.

(B) Sequence of pictures demonstrating ΔF/F spatial distributions at peak response to the first

electrical stimulation acquired with high-speed imaging of marked (A) area for hMFB at dif-

ferent time points before (−12, −6, and 0 min) and after (6, 12, and 18 min) forskolin applica-

tion. The contoured pixels represent the active area (pixels with response amplitude > 3 × SD

of ΔF/F at rest). Note increased number of active pixels after forskolin application. (C) Graph

demonstrating mean iGluu fluorescence signal F (black line and symbols) and mean standard

deviation of ΔF/F at rest (gray line and symbols) for all pixels (n = 169) used for high-speed

imaging. The data were calculated by averaging all values (mean F or SD of ΔF/F) calculated

for each point of the baseline (50 ms prior to electrical stimulation). Data are normalized to

the first value, 12 min before the forskolin application. Note 50% bleaching and 25% increased

pixel noise. (D) Graph shows the cumulative amplitude, active area, and mean and maximal

amplitudes of the iGluu fluorescent signal of the hMFB in (A and B). Data are normalized to

the mean values of given parameters under control conditions. Note the forskolin-induced

200% increase in active area and cumulative amplitude, while mean and maximal amplitudes

remain unaltered. (E) Graph demonstrating statistics for the active area (black line and sym-

bols) and mean amplitudes (gray line and symbols) for 5 different hMFBs. Numbers in brack-

ets show the number of data points used for averaging. Asterisks mark time points where the

active area was significantly bigger than the active area at time point 0 min (significance was

tested with paired t test, p< 0.05). Note the significant increase of the active area and the non-
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significant elevation of mean amplitudes. The latter tendency can be explained by the fact that

the sensor bleaching leads to increased pixel noise, elevated threshold for active pixels, and

decreased portion of low-amplitude pixels in the active pixel pool taken for averaging. The

data underlying this figure can be found at doi: 10.5281/zenodo.4498214.

(TIF)

S4 Fig. Coupling distance between Cav2.1 and Munc13-1 in CA1 is shifted towards smaller

values. (A) Example scan in area CA1: confocal scan (top), raw gSTED scan (middle), and

deconvolved gSTED scan (bottom). Staining for Cav2.1 (green), Munc13-1 (magenta), and

Homer1 (cyan). (B) Example of an analyzed synapse in CA1: The distance between Cav2.1

(green) and Munc13-1 (magenta) was measured only if they were close to a Homer1-positive

spot (cyan); line profiles were measured at the dotted line (top), drawn through the intensity

maxima of the Cav2.1 and Munc13-1 signals (arrowheads). The distance was calculated

between the intensity maxima of the Cav2.1 and Munc13-1 signals, shown in the correspond-

ing normalized intensity plot (bottom). (C) Frequency distribution with a bin size of 20 nm

for CA3 control (blue) and CA1 (yellow). The distribution of measured distances between

Cav2.1 and Munc13-1 is different for CA1 compared to CA3 control. (D) Cumulative fre-

quency with a bin size of 20 nm for CA3 control (blue) and CA1 (yellow). The cumulative dis-

tribution was significantly shifted to smaller values for CA1 compared to CA3 (p< 0.001,

Kolmogorov–Smirnov test). (E) Imaging areas in CA3 were situated in the ZnT3-positive area.

After STED imaging, images were taken at a confocal microscope to visualize the ZnT3 stain-

ing (i) and the imaging areas, which were bleached in the red channel by the second STED

laser (ii) and situated within the ZnT3-positive mossy fiber band (iii) in the stratum lucidum,

close to the CA3 pyramidal somata (iv). Imaging areas are indicated by black arrowheads. (F)

Imaging areas in CA1. Confocal images were acquired after STED imaging to visualize the

absence of ZnT3 in CA1 (i) as well as the bleached imaging areas in the red channel (ii), which

were situated in area CA1 (iii) in stratum radiatum, with some distance to CA1 pyramidal

somata (iv). Imaging areas are indicated by black arrowheads. The data underlying this figure

can be found at doi: 10.5281/zenodo.4498214.

(TIF)

S5 Fig. Three-dimensional EM analysis reveals an increase in presynaptic complexity and

active zone density in forskolin-treated chemically fixed acute slices. (A) Electron micros-

copy image of the stratum lucidum of the hippocampal CA3 region. A pyramidal cell soma

(pyr) and mossy fiber axon bundles (mf) are visible in the left panel. In the central panel large

presynaptic terminals contacting multiple spine heads (sp) are visible. The right panel shows a

high-magnification image of 3 AZs. (B) Partial 3D reconstruction computed from manually

segmented serial images of hMFBs in control conditions (CTRL) or after forskolin treatment.

Presynaptic membrane is green, postsynaptic membrane is light blue, synaptic vesicles are yel-

low, and active zones and docked vesicles are blue (control) or red (forskolin). (C) Bar graph

indicating the quantification of bouton complexity (perimeter/area) obtained from images like

the middle image of (A); bouton complexity was unchanged in forskolin-treated terminals

compared to controls (p = 0.27, unpaired t test). (D) Bar graph indicating the quantification of

active zone density (AZ/μm3) obtained from 3D reconstructions like those in (B); AZ density

was larger in forskolin-treated terminals (p = 0.0049, unpaired t test). (E) Bar graph indicating

the quantification of presynaptic area (μm2) obtained from images like the middle image of

(A); presynaptic area was unchanged in forskolin-treated terminals compared to controls (p =
0.07, unpaired t test). In all graphs, scatter points indicate individual boutons, n = 16 boutons

for control and 14 boutons for forskolin-treated slices from 3 animals. Values represent

PLOS BIOLOGY Release site increase mediates presynaptic potentiation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001149 June 21, 2021 24 / 29

https://doi.org/10.5281/zenodo.4498214
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001149.s004
https://doi.org/10.5281/zenodo.4498214
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001149.s005
https://doi.org/10.1371/journal.pbio.3001149


mean ± SEM. The data underlying this figure can be found at doi: 10.5281/zenodo.4498214.

(TIF)

S6 Fig. Synaptic vesicles disperse upon forskolin-induced presynaptic potentiation in

chemically fixed acute slices. (A) Partial 3D reconstruction of hMFBs in control conditions

(CTRL) or after forskolin treatment. Presynaptic membrane is green, postsynaptic membrane

is light blue, and synaptic vesicles are blue (control) or red (forskolin). (B) Bar graphs indicat-

ing the quantification of synaptic vesicle density (SV/μm3); SV density was comparable in for-

skolin-treated and control terminals (p = 0.8629, unpaired t test). (C) Bar graphs indicating

the quantification of synaptic vesicle distance from other synaptic vesicles normalized by the

volume of the reconstruction (nm/μm3); distance between vesicles was increased in forskolin-

treated terminals (p = 0.0186, Mann–Whitney U test). (D) Bar graphs indicating the quantifi-

cation of mean nearest neighbor distance (MNND) between vesicles (nm); MNND was com-

parable in forskolin-treated and control terminals (p = 0.9136, Mann–Whitney U test). In all

graphs, scatter points indicate individual boutons, n = 17 boutons for control and 14 boutons

for forskolin-treated slices from 3 animals. Values represent mean ± SEM. The data underlying

this figure can be found at doi: 10.5281/zenodo.4498214.

(TIF)
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