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PRISMA and BioID disclose
a motifs-based interactome of the intrinsically
disordered transcription factor C/EBPa

Evelyn Ramberger,1 Valeria Sapozhnikova,1 Elisabeth Kowenz-Leutz,1 Karin Zimmermann,1 Nathalie Nicot,2

Petr V. Nazarov,2 Daniel Perez-Hernandez,1,2 Ulf Reimer,3 Philipp Mertins,1 Gunnar Dittmar,1,2

and Achim Leutz1,4,5,*

SUMMARY

C/EBPa represents a paradigm intrinsically disordered transcription factor contain-
ing short linear motifs and post-translational modifications (PTM). Unraveling C/
EBPa protein interaction networks is a prerequisite for understanding the multi-
modal functions of C/EBPa in hematopoiesis and leukemia. Here, we combined
arrayed peptide matrix screening (PRISMA) with BioID to generate an in vivo vali-
dated and isoform specific interactionmapof C/EBPa. ThemyeloidC/EBPa interac-
tome comprises promiscuous and PTM-regulated interactions with proteinmachin-
eries involved in gene expression, epigenetics, genome organization, DNA
replication, RNA processing, and nuclear transport. C/EBPa interaction hotspots
coincide with homologous conserved regions of the C/EBP family that also score
as molecular recognition features. PTMs alter the interaction spectrum of C/EBP-
motifs to configure amulti-valent transcription factor hub that interacts withmulti-
ple co-regulatory components, including BAF/SWI-SNF or Mediator complexes.
Combining PRISMA and BioID is a powerful strategy to systematically explore
the PTM-regulated interactomes of intrinsically disordered transcription factors.

INTRODUCTION

CCAAT enhancer binding protein alpha (C/EBPa) is a lineage instructing pioneering transcription factor

involved in cell fate decisions in various cell types, including myeloid cells, adipocytes, hepatocytes, and

skin cells. In myelopoiesis, C/EBPa cooperates with other transcription factors and chromatinmodifying en-

zymes to regulate hematopoietic stem cell biology, lineage choice and expression of myeloid genes (Avel-

lino and Delwel, 2017; Zaret and Carroll, 2011). Knockout experiments in mice show that C/EBPa regulates

hematopoietic stem cell functions and that its removal blocks progenitor differentiation at the myeloid

commitment stage (Bereshchenko et al., 2009; Kirstetter et al., 2008a; Zhang et al., 2004). The intronless

CEBPA gene is mutated in approximately 10-15% of human acutemyeloid leukemia (AML) cases. Mutations

locatedwithin theN-terminal part of thegeneobstruct expressionof the full-length isoformp42C/EBPa and

favor expression of the N-terminally truncated isoform p30 C/EBPa (Fasan et al., 2014; Lin et al., 2005; Pabst

et al., 2001). Experimental hematology and targeted mouse genetics have demonstrated that p30 C/EBPa

represents a highly penetrant AML driver oncoprotein (Bereshchenko et al., 2009; Kirstetter et al., 2008b).

Unraveling the protein interaction network of C/EBPa in hematopoietic cells is a prerequisite for the under-

standing of diverse gene regulatory and epigenetic functions of C/EBPa in normal hematopoiesis and

AML. Previous research has shown that the N-terminus of vertebrate C/EBPa harbors short, conserved re-

gions (CRs) that function in a modular and combinatorial fashion to regulate gene expression (Leutz et al.,

2011; Tsukada et al., 2011). The N-terminally truncated, leukemogenic p30 C/EBPa isoform contains only

one of the transactivation modules (CR1L, TEIII). P30 C/EBPa retains residual gene regulatory and epige-

netic capacity to direct myeloid lineage commitment but lacks the cell maturation inducing and prolifera-

tion restricting functions of the long C/EBPa isoform p42 (Bereshchenko et al., 2009; Pedersen et al., 2001).

Only the C-terminal part of C/EBPa, comprising approximately one-quarter of the protein, may adopt a

structured basic leucine zipper (bZIP) domain upon binding to DNA target sites (Seldeen et al., 2008).

Otherwise, C/EBPa and family members, but also many other transcription factors contain several
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intrinsically disordered regions (IDRs), short linear motifs (SLiM) andmolecular recognition features (MoRF).

These are typical hallmarks of gene regulatory proteins that integrate signal transmission, gene regulation,

and epigenetic regulation through promiscuous interactomes (Dunker et al., 2002; Dyson andWright, 2005;

Tompa, 2012; Uversky et al., 2005; van der Lee et al., 2014; Ward et al., 2004; Wright and Dyson, 1999).

PTMs, downstream of signaling cascades, frequently alter dynamic protein interaction interfaces of IDR/

SLiM/MoRF modules and are of high biological relevance but remain difficult to capture with traditional

immune affinity-based methods because of their transient nature, weak affinity, and/or sub-stoichiometric

participation in biomolecular condensates (Perkins et al., 2010; Sabari et al., 2020).

Within the C/EBP family, mutation of PTM sites, including phosphorylation (S, T, Y residues), methylation (K, R

residues), and acetylation sites (K residues) or deletion of CRs in their N-termini may radically alter their biolog-

ical functions (Leutz et al., 2011). Assessment of the known C/EBPa interactome data showed a surprisingly low

overlap (less than5%)betweenvariouspublished immuno-affinity-mass spectrometry (MS)datasets, hampering

the deduction of C/EBPa functions and adjunct molecular mechanisms (Cirilli et al., 2017; Giambruno et al.,

2013; Grebien et al., 2016). Here, we combined the protein interaction screen using a peptide matrix (PRISMA)

method (Dittmar et al., 2019) with biotin proximity labeling identification (BioID) (Roux et al., 2012) tomatchhigh

confidence interactomes across the amino acid sequence and PTM sites with the p42/p30 C/EBPa isoforms in

living myeloblastic cells. This experimental strategy may be adapted to explore other multi-valent intrinsically

disordered transcriptional regulators, many of which are involved in development and disease.

RESULTS

Mapping the C/EBPa interactome with PRISMA

We have previously established the PRISMA method to explore the linear interactomes of intrinsically disor-

dered proteins and applied it to C/EBPb and its PTMs (Dittmar et al., 2019). Here, we slightly modified the

PRISMA protocol to explore the linear and PTM-dependent C/EBPa interactome. Briefly, 15 amino acid

long peptides covering the amino acid sequence of C/EBPa in a tiling fashion were spot-synthesized on a

membrane support. The peptide membrane was incubated with nuclear extracts derived from the human

promyelocytic leukemia cell line, NB4, and bound proteins of each spot were subsequently analyzed using

quantitative mass spectrometry (Figure 1A). The C/EBPa peptide array included 114 peptides with and

without PTMs that were designed with a sequence overlap of seven amino acids (Tables S1 and S2). The over-

all technical reproducibility of the PRISMA screen replicates showed a median Pearson correlation coefficient

of 0.85 and discrete patterns of correlation between different C/EBPa regions (Figure S1). PRISMA detected a

total of 2,274 proteins, of which 785 proteins passed the significance threshold (FDR <0.1) in at least one pep-

tide spot (Figure 2B, Table S3). The majority of significant protein interactions were observed with peptides

spanning AA 1-15 (CR2), AA 50-85 (part of CR3 and CR4) and AA 134-148 (part of CR1L) (Table S2). Together,

C/EBPa regions CR2, CR3, CR4 and CR1L correspond to subdivisions of previously identified trans-regulatory

regions with high sequence conservation between species and C/EBP factors (Leutz et al., 2011). Extracted

binding profiles, as shown in Figure 2C, highlight distinct interaction profiles of selected protein complexes

such as Mediator, or BAF/SWI-SNF components, previously shown to interact with C/EBPa.

The mediator of transcription complex (MED) is an essential transcriptional coactivator in eukaryotes that

interacts with RNA Pol II and many transcription factors and co-factors. PRISMA revealed 17 MED proteins

with similar binding patterns with dominant peaks in C/EBPa peptides corresponding to CR2,3,4 and CR1L.

This finding suggests that the MED-complex interacts with multiple CRs in the N-terminus of p42 C/EBPa

and with CR1L/TEIII, which corresponds to the N-terminus of p30 C/EBPa. The acetyltransferases, CBP/

p300 (KAT3A/KAT3B), most strongly bound to peptides spanning regions CR3,4 with residual binding in

CR2 and CR1L. Interaction with the chromatin remodeling BAF/SWI-SNF complex is essential for the

anti-proliferative and differentiation functions of C/EBPa and has been previously found to require

CR1L/TEIII in addition to the N-terminus of p42 C/EBPa (Muller et al., 2004; Pedersen et al., 2001). In

PRISMA, BAF/SWI-SNF subunits bound to peptides corresponding to CR1L and CR3,4.

C/EBP proteins are extensively decorated with PTMs that may alter their interactome to direct their func-

tion (Kowenz-Leutz et al., 2010; Leutz et al., 2011). Of particular interest are a number of C/EBP-family mem-

ber specific arginine residues, several of which have been shown in C/EBPb to be targets of mono- and di-

methylation, with their mutation profoundly changing C/EBPb biology (Dittmar et al., 2019; Leutz et al.,

2011). We examined C/EBPa for PTMs by mass spectrometry and discovered several known and novel

methylation sites, including methylation of R12, R35 and R156 and further identified R142 (CR1L) by a
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Figure 1. PRISMA delineates the linear interactome of CEBPA across conserved regions and PTM sites

(A) Schematic scaled depiction of CEBPA conserved regions (CRs) and post-translational modification (PTM) sites. The overlap of CRs with transactivating

elements (TE) is indicated. Spot synthesized, immobilized peptides with and without PTMs covering the complete amino acid sequence of CEBPA were

screened for protein interactions with PRISMA (n = 2).

(B) Line plots show liquid-liquid phase separation (LLPS; http://protdyn-fuzpred.org) and molecular recognition feature prediction (MoRF; https://morf.msl.

ubc.ca/index.xhtml) across the CEBPA sequence. Heatmap shows the binding profile of all significant proteins (y-axis) across CEBPA PRISMA peptides

ordered from N- to C-terminus (x-axis). Bar plot on top corresponds to the summed normalized LFQ intensities of all significant proteins in each peptide spot.

(C) Extracted CEBPA PRISMA profiles of Mediator and P300 complex (top) and BAF/SWI-SNF complex (bottom) subunits.

See also Figures S1 and S2, Tables S1, S2, andS3.
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targeted MS-parallel reaction monitoring approach as a novel methylation site (Figure S2). The PRISMA

data suggested increased binding of the BAF/SWI-SNF subunit SMARCE1 to R142 methylated peptides,

as compared to the unmodified counterpart. Other subunits of BAF/SWI-SNF (SMARCA4, SMARCC2) fol-

lowed a similar trend but their differential binding to the methylated peptide spanning R142 scored some-

what below the threshold set of statistical significance.

Given the sequence conservation between C/EBP proteins, we compared the PRISMA derived interactome

of C/EBPa with the previously published C/EBPb PRISMA interactome (Dittmar et al., 2019). Despite some

sequence differences in homologous regions and peptides, several shared interactors were identified. For

example, themediator complex was found to bind to the same homologueCRs in both proteins (Figure S3),

confirming the functional similarity of these regions within the C/EBP family (Jones et al., 2002).

proximity labeling
in living cells

quantitative
proteomics

biotin

data integration

A B

C

CEBPB

CEBPA

CEBPD

CEBPG

CEBPE

BirA*0.0

2.5

5.0

7.5

10 5 0 5 10
log2(CEBPA/control)

CEBPA P42 BioID

PRPF4

SMU1

KPNB1

SF1

SNRNP70

SNRPE

SNRPA1

PUF60

CPSF6

DDX41

CPSF7
EIF2S1

IFI16

CDK9

CTR9

PRKDC
NELFE

TCEB2
ZMAT2

CDK13

PAF1 NELFA

INTS12

TCEA1

USP39

GTF2F2

WBP11

PQBP1

IK

SAFB2

SUGP1

PRKRIP1
ELAVL1

DNAJC8

RNGTT

MCM5

RFC5

TOP2A

RFC3
RFC4

MCM4
TOP1

TCERG1

SNW1

HNRNPUL1

FUBP1
SNRPD3

PRPF19

SFPQ
HNRNPA0

NUP93

SRSF7

THOC2EIF4A3

SLBP

NXF1

DDX5

RBM17

HNRNPU

SART1

NONO

HNRNPK

RBM22

PSPC1

RBM39

RAVER1
FUS SET

PTBP1

DDX1
SMNDC1

YY1

IRF2BP1

IRF2BP2

KIF5B

HCFC1

GABPA

TP53

PARP1
SMC3

RAD21

RAD50

MED6 QKI

MED15

MED8 CDK8

MED17

HDAC1

NCOA3

WDR5

RCOR1

CHD4RBBP4

RNF2

RUVBL2 TBL1XR1

CHD8
GATAD2A

MED1

MED12

JUN

CEBPD

ATF3
CEBPB

ATF2

CEBPG

HDAC2 EP400

CREBBP

NCOA6
SIN3A

EP300

MTA2

SMARCE1
CBFB

GABPB1

UBTF

MAX

OGT

STAG1

RUNX1

FOXK1

BUB3

MCM7

RFC2

RPA1

RPA2

TAF7
KHSRP

SMARCA4

SMARCC1

SMARCC2

SMARCD2

CEBPA

DNA damage
response

chromatin
modification
& remodeling

bZIP
factors

MED
complex

trancription
& repression

trancription
factors

transcription
elongation

DNA
replication

nuclear
transport

RNA
processing

BioID & literature

BioID & PRISMA & literature

BioID & PRISMA

PRISMA & literature

Figure 2. Integration of BioID and PRISMAdata revealed a spatial CEBPA interactomewith high interconnectivity

(A) BioID proximity labeling data obtained in living cells was integrated with biochemical data obtained with PRISMA.

(B) The CEBPA BioID interactome in NB4 cells. Log fold changes (CEBPA/control) of proteins are plotted against their p-

values (student t-test, n = 4). The FDR cutoff (0.05) is indicated with a dotted line.

(C) Integrated protein interaction network of CEBPA. Color of nodes corresponds to detection in datasets as depicted in

the legend. Edges represent validated protein interactions retrieved from the STRING database. Interactors not

connected by any edges were removed from the plot (12 proteins).

See also Figures S3 and S4, Table S4.
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Cross-validation of PRISMA and BioID-C/EBPa interactomes

Next, we compared the interactomes derived from PRISMA and BioID proximity labeling data to generate a

myeloid live cell validated linear C/EBPa interactome (Figure 2A). Briefly, NB4 cells were transduced with a

Tet-On inducible lentiviral construct encoding a promiscuous biotin ligase (BirA*) fused to the C-terminus of

C/EBPa. As controls, we used non-induced NB4 C/EBPa-BirA* cells or cells expressing only the ligase moiety

(NB4BirA*). Proximity labeling identified397C/EBPaproximal interactors (FDR<0.05).Amongthemostenriched

proteinswereseveral transcription factorsof theC/EBPandATF families, representingknownheterodimerization

partners of C/EBPa(Tsukada et al., 2011) and thus confirming successful BioID labeling (Figure 2B,Table S4).

In total, 88 proteins overlappedbetween thePRISMAandBioIDderivedC/EBPa interactomesof which 21were

previously identified interactors, including members of chromatin remodeling and histone acetylation/deace-

tylation complexes. In addition, 49 proteins significant in PRISMAand 26proteins significant in BioID have been

previouslydescribed to interactwithC/EBPa (Chatr-Aryamontri et al., 2017;Grebienetal., 2016; Szklarczyketal.,

2015). Taken together, 137 proteins represent the subset of myeloid C/EBPa interactors with the highest con-

fidence that can be depicted across the linear C/EBPa sequence +/� PTM sites. These interactors show high

connectivity according to experimentally validated interactions listed in the STRING database (Figure 2C). Us-

ing the spatial information provided by PRISMA, we could also reveal distinct functional roles of individual CRs

including chromatin remodeling (CR3,4; CR1L; bZIP), transcriptional regulation (CR2; CR3,4; CR1L; CR6; bZIP),

and hematopoietic progenitor cell differentiation (CR3,4) (Figure S4, Table S5). CR3,4 is of particular interest

since it contains most of the significantly enriched GO terms, confirming the importance of the core transacti-

vating region of p42 C/EBPa. Although several proteins interacted with CR7, no GO terms were enriched with

this region, pointing toward functional heterogeneity.

Arginine methylation-dependent interaction of BAF/SWI-SNF complex subunits

Differential interactions with post-translationally modified peptides in the primary C/EBPa sequence were

also detected by PRISMA. Among themwas the BAF/SWI-SNF complex that has been previously described

to interact with C/EBPa (Pedersen et al., 2001). PRISMA revealed that the interaction with the SMARCE1

component is modulated by the newly discovered arginine methylation site R142 within CR1L/TEIII

(Figure 3A). Accordingly, we performed BioID with an R142/149/156 to L142/149/156 mutant (triple R to

L mutation; tR>L) of C/EBPa to examine the PTM-dependent BAF/SWI-SNF interaction in more detail. In

accordance with the PRISMA results, SMARCE1 and three additional BAF/SWI-SNF subunits (ARID1A,

ARID1B, ARID2) were significantly enriched in the p30 C/EBPa-tR>L mutant, as compared to the WT p30

C/EBPa-BioID (Figure 3B). BioID with p30 C/EBPa-tR>L also verified the methylation-dependent interac-

tion with the E3 ubiquitin ligase TRIM33 and the NuRD complex component GATAD2A, as also detected

by PRISMA. In addition, several Myb-Muvb/DREAM complex members (LIN9, LIN37, MYBL2) were identi-

fied as p30 C/EBPa-tR>L-specific interactors, but were not detected in PRISMA.

C/EBPa isoform specific interactions detected with BioID

The PRISMAdata predicted that p30 C/EBPa can still function to recruit major components of the transcrip-

tional and epigenetic machinery, albeit with lower efficiency compared to p42 C/EBPa. To further examine

the differences between the two C/EBPa isoforms, we expressed p42 and p30 C/EBPa as BioID fusions in

NB4 cells to compare their BioID interactomes. The isoform-specific interactomes (Figure 4A, Table S4)

confirmed the binding profiles observed in PRISMA: p42 specific interactors bound more strongly to

PRISMA peptides corresponding to the N-terminal, p42 unique part of C/EBPa, while p30 specific interac-

tors predominantly bound to PRISMA peptides corresponding to C-terminal C/EBPa regions (Figure 4B). In

accordance with the PRISMA interactions, most interactors identified by in vivo proximity labeling were

found to interact with both C/EBPa isoforms (Figure 4C). These data suggest that multi-valent interactions

with different affinities may occur with distinct C/EBPa CRs, including CR1L as part of p30 C/EBPa. Overall,

p42 C/EBPa-BioID and p30 C/EBPa-BioID pulldowns revealed 71 and 9 interactors that preferentially inter-

acted with p42 and p30 C/EBPa, respectively.

Proteinsdifferentially interactingwith thep30C/EBPa isoformand itsPTMsmayposea selective vulnerability for

AML cells expressing p30 C/EBPa. We therefore extracted CRISPR Cas9 knockout study derived dependency

scores of the nine p30 C/EBPa specific interactors in 18 different AML cell lines using the DepMap Portal (Fig-

ure S5) (Tsherniak et al., 2017). Among the AML cell lines inspected, 9 out of 18 scored as sensitive to TFAP4

knockout (threshold <– 0.5). Two and one cell line tested were sensitive to GATA1 and BCL11A or BLM
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knockout, respectively. Thep30C/EBPa specificbindingof theBAF/SWI-SNFcomplexmemberBCL11A further

highlights context-specific regulation of BAF/SWI-SNF complex interaction to C/EBPa isoforms.

To analyze connections between the C/EBPa isoform specific interactome with the transcriptome, we also

performed RNA expression analysis of NB4 cell lines ectopically expressing p42 or p30 C/EBPa. We found

that despite the largely overlapping interactome, the two isoforms induced differential gene expression

changes (Figure 4D) that could be attributed to differential interactions with other transcription factors.

Gene expression profiles were analyzed using gene set enrichment analysis (GSEA) employing immuno-

logic and transcription factor target databases from the molecular signature database (Subramanian

et al., 2005) (Figure 4E). The erythroid transcription factor GATA1 was found to interact differentially

with p30 C/EBPa; GSEA analysis detected enrichment of a GATA1 signature specifically in p30 C/EBPa ex-

pressing cells. Likewise, PPARG specifically interacts with p42 C/EBPa and p42 expressing cells also dis-

played significant enrichment of a previously published macrophage PPARG gene signature (Roszer

et al., 2011). Data from BioID experiments indicated that EGR1 specifically interacted with p42 C/EBPa.

Interestingly, we found that a gene signature based on the presence of EGR1 motifs was enriched in

p30 but not p42 C/EBPa expressing cells. RNA expression levels of EGR1 were upregulated by both p42

and p30 expression. Indirect interaction of EGR1 with DNA not at EGR1 motifs, but through other CEBPs,

has been described previously (Jakobsen et al., 2013) andmay contribute to the differential EGR1 signature

observed. Taken together, our data suggest that the specific interactions of C/EBPa isoforms with lineage

defining transcription factors are implicated in co-regulation of target genes in the hematopoietic system.

DISCUSSION

In the present study, we combined peptide array screening and BioID to overcome limitations of classical

immuno-affinity based interactomes of intrinsically disordered transcription factors, such as C/EBPa.

PRISMA reveals both SLiM- and PTM-dependent interactions (Dittmar et al., 2019; Meyer et al., 2018; Meyer

and Selbach, 2020) while BioID covalently biotinylates proteins that engage with C/EBPa in the living cell

and is thus well suited for the detection of dynamic interactions (Roux et al., 2012). The integration of both

methods fine mapped a high confidence C/EBPa interaction landscape across the C/EBPa sequence and

PTM sites.

Figure 3. BAF/SWI-SNF complex subunit SMARCE1 preferentially interacts with R142 methylated CEBPA

(A) PRISMA interaction profile of proteins differentially binding to CEBPA peptides centered at R142. Peptide sequence is

shown on top and methylation status of R142 is shown at the bottom. Interactors found significant (FDR 0.1) in the R142

dimethylated peptide are marked with *.

(B) BioID pulldowns with wildtype CEBPA and trR>L CEBPA were compared with a student t-test (n = 4). Proteins passing

the significance threshold (0.1 FDR) in wildtype to mutant comparison and significant compared to controls are marked in

color. Significant BAF/SWI-SNF subunits are indicated by bold letters.

See also Figure S2, Tables S3 and S4.
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The core interactome of 137 proteins is highly interconnected and, in addition to known C/EBPa interactors

that operationally represent positive controls, we also discovered novel associations of C/EBPa with pro-

teins involved in gene expression and epigenetic regulation, chromosome organization, RNA processing,

and DNA replication. The majority of C/EBPa interactions were nevertheless detected in only one of the

two datasets. Some of the unique C/EBPa interactors detected by BioID may require more complex, simul-

taneously occurring, multi-site interactions or multiple induced fit processes and were missed in PRISMA.

Discrepancies may also relate to restriction of BioID to proximal interactions, the absence of suitable

A

B

C

D

E

Figure 4. BioID with CEBPA p42/p30 isoforms disclose isoform-specific interactors in conjunction with PRISMA

profiles

(A) BioID interaction proteomics (n = 4) and microarray RNA expression (n = 3) were performed with CEBPA isoform (p42

or p30) expressing cells.

(B) PRISMA profiles of interactors showing preference for p42 (log2(p42/p30) > 1) or p30 (log2(p42/p30) < - 1) in BioID. LFQ

intensities of proteins were summed across PRISMA peptides corresponding to exclusively p42 or both isoforms. The

resulting numbers were divided by the total LFQ intensity of each protein across all PRISMA peptides. PTM-modified

peptides were omitted from the calculations.

(C) Relative enrichment of CEBPA interactors against the control, p42 is plotted against p30. Proteins marked in color

passed 0.1 FDR threshold in a direct comparison.

(D) Overlap of up- and downregulated genes as detected by microarray gene expression profiling (comparison to BirA*

cells, FDR <0.05, absolute fold change (FC) > 1).

(E) Induced gene expression changes were subjected to ssGSEA analysis. Normalized enrichment score (NES) and FDR of

informative gene sets are displayed next to running score line plots. The running score was calculated with Kolmogorov-

Smirnov (K-S) running sum statistics.

See also Figure S5, Table S4.
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biotinylation sites, or stability during the labeling period. PRISMA, on the other hand, may readily detect

distal, secondary interactors, such as in large protein complexes.

PRISMA revealed major hotspots of protein interactions in C/EBPa that strongly correlated with data derived

from the related transcription factor C/EBPb (Dittmar et al., 2019; Leutz et al., 2011). The interactors shared be-

tween C/EBPa and C/EBPbmay help to explain the partially redundant functions of both proteins (Chen et al.,

2000; Hirai et al., 2006; Jones et al., 2002). Many of the co-regulators identified also displayedmultiple interac-

tions with several conserved regions that represent subdivisions of previously defined trans-regulatory regions

foundwithin theC/EBP family (Leutz et al., 2011). The sameconserved regions scoredhighly asmolecular recog-

nition features (MoRF; Figure 1B) that may undergo induced folding and transient disorder-to-order transition

during contact with partner proteins (Oldfield et al., 2005). For example, the region CR3,4 of C/EBPε was pre-

viously shown to fold into twoshort orthogonal amphipathic helical regionson interactionwith theTAZ2domain

ofCBP (Bhaumiket al., 2014). Likewise,CBP/p300was found to interactwithPRISMApeptides coveringCR3,4of

C/EBPa, in concordance with homologous regions in C/EBPb (Dittmar et al., 2019). Interestingly, CR3,4 in C/

EBPa and C/EBPε are separated by only few amino acids, whereas species-specific IDRs separate both CRs

in C/EBPb, suggesting structural spatial flexibility and independent, yet combinatorial functions of CR3,4.

Many regulatory proteins involved in signaling, gene expression, and epigenetics harbor IDRs and PTMs

that determine their function and connectivity (Dyson and Wright, 2005, 2016). Multivalent, promiscuous

interactions of transcription factors with co-regulatory proteins have been observed before and may

relate to context dependent contacts during dynamic gene regulatory processes (Brzovic et al.,

2011;Clark et al., 2018; Vojnic et al., 2011). This concept is in accordance with the dynamic nature of SLiMs

and may reflect multi-modal regulation with a rapid exchange of alternative interaction partners (Dyson

and Wright, 2016; Ivarsson and Jemth, 2019). Modular transactivation domains in conjunction with multi-

valency are thought to participate in or to initiate biomolecular condensates that involve dynamic, ‘‘fuzzy’’

interactions with multiple co-regulators in interaction hubs (Boija et al., 2018; Brzovic et al., 2011; Chong

et al., 2018; Hahn, 2018; Martin and Holehouse, 2020; Tuttle et al., 2018). Remarkably, the C/EBPa primary

structure shows a very high degree of ‘‘fuzziness’’ with strong predictions as initiator regions of liquid-

liquid phase separation in the N-terminus (Figure 1B, red line), while the PRISMA interaction hotspots

largely coincide within regions that show maxima of MoRF predictions (Figure 1B, blue line) (Horvath

et al., 2020; Malhis et al., 2016).

Our data show that PTMs in C/EBPa may orchestrate multi-modal functions of C/EBPa by modulating in-

teractions with the components of transcriptional and epigenetic machinery. The comparison of C/EBPa

WT and the R142L methylation mimicry mutant by proximity labeling confirmed the differential interac-

tion with BAF/SWI-SNF components, as detected by PRISMA. These data are consistent with previous

findings showing that BAF/SWI-SNF interacts with CR1L (Muller et al., 2004; Pedersen et al., 2001). The

newly discovered R142 methylation-dependent differential interaction of BAF/SWI-SNF will help to

conceive hypothesis driven approaches to explore arginine methyltransferase-dependent epigenetic

downstream events.

Data presented here further demonstrate that most of the C/EBPa interactors bind to both C/EBPa iso-

forms, whereas a subset of 71 and 9 proteins preferentially interacted with the p42 and p30 C/EBPa isoform,

respectively. Many of the shared C/EBPa interactors showed diminished signal strength in p30 C/EBPa Bio-

ID, supporting the concept of p30 as a ‘‘weak’’ C/EBPa variant with relatively few exclusive binding partners.

This view is supported by the fact that defective myelopoiesis in the absence of C/EBPawas largely rescued

by p30 C/EBPa, although p30, in the absence of p42 C/EBPa, eventually elicits AML (Bereshchenko et al.,

2009; Kirstetter et al., 2008a, 2008b). Interestingly, several of the p30 C/EBPa-specific binders (TFAP4,

GATA1, BCL11A) affect the survival of AML cell lines. The p30 C/EBPa specific interaction with GATA1

may further hint at a role at the branchpoint of erythroid/myeloid commitment in replicative multi-potential

progenitors (Drissen et al., 2019), whereas p42 C/EBPa specific interactors, such as EGR1 or PPARg, are

important regulators of myeloid differentiation (Chinetti et al., 1998; Krishnaraju et al., 2001; Lefterova

et al., 2008, 2010; Mildner et al., 2017; Nguyen et al., 1993; Roszer et al., 2011; Tontonoz et al., 1994).

In summary, the cross-validated myeloid C/EBPa interaction map presented in this study may serve as a

resource for further exploration of the biological importance of individual and combinatorial SLiM and

PTM functions of C/EBPa. Beyond the C/EBPa,b interactomes, the integration of PRISMA and BioID
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approaches may help to explore the linear and PTM-dependent interactomes of many other important

intrinsically disordered proteins involved in cell signaling and cell fate determination.

Limitations of the study

Both, the PRISMA and BioID C/EBPa interactomes were generated with the human acute promyelocytic

leukemia cell line NB4. The BioID labeling required a 24 hr period and interactions with short-lived proteins

may be under-represented. Changing cell lines and/or biotin ligases with higher turnover rates may help to

identify additional interaction partners.
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the dataset identifier PXD022903. Microarray data generated during this study have been deposited in the

ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-9947.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

NB4 cells (RRID:CVCL_0005) were acquired from Leibniz Institute DSMZ- German Collection of Microor-

ganisms and Cell Culture, Germany (DSMZ no.: ACC 207). Cells were cultivated in a humidified incubator

at 37�C, 5% CO2 in RPMI1640. For metabolic labeling, NB4 cells were grown in SILAC RPMI1640 supple-

mented with 10% dialyzed FCS, 100 mg/ml penicillin-streptomycin, 25mM HEPES, 28 mg/ml L-arginine

and 48.67 mg/ml L-lysine (light) 13C615N2 (heavy lysine) or L-lysine D4 (medium heavy lysine).

CEBPA BioID NB4 cell lines

The rat C/EBPa p30 3L mutant (R140; 147; 154 mutated to leucine) was generated using the QuickChange

Site Directed Mutagenesis Kit according to the manufacturer’s protocol (Agilent #200519). The BirA Ligase

containing plasmid was purchased (Addgene #64395). The BirA Ligase was cloned in frame to the C/EBPa

C-terminus using BamHI and XhoI restriction sites. PCR primer: 5’-CGCGGATCCAGCGGTG-

GAAGTGGTGGCCTGAAGGACAACACCGTG and 3’- TGCTCTAGACTCGAGTTATTTATCGTC. The C/

EBPa p42, p30 or p30 R3L-BirA Ligase fragments were cloned into the pENTRY2B vector (Clontech

#3064) using BamHI and XhoI restriction sites and subsequently introduced into the pInducer21 GFP lenti-

viral vector (Clontech #3044) using the Gateway LR Clonase TM II cloning kit (ThermoFisher Scientific

#11791-020). Viral supernatants were obtained from Lenti-X 293T cells (Clontech #632180) transfected

with either pInducer21 GFP lentiviral vector or pInducer21 GFP constructs containing either p42, p30

WT-BirA Ligase, p30 R3L-BirA Ligase, or pInducer21 GFP-BirA ligase only using Lenti-X Packing Single

Shots (Clontech #631275) according to the manufacturer’s protocol. NB4 cells were centrifuged (1 h,

900g) with infectious supernatant collected 72 h after transfection and 8 mg/mL hexadimethrine bromide

and left for recovery overnight. GFP positive NB4 cells were sorted twice using an Aria II sorter (Becton

Dickinson) three days after infection.

METHOD DETAILS

NB4 induction

NB4 cells were briefly treated with differentiation inducing agents prior to harvesting. SILAC labeled NB4

cells were seeded during exponential growth in SILAC media supplemented with 2mM all-trans-retinoic

acid (ATRA; heavy), 50nM Tetradecanoylphorbol-acetat (TPA; medium heavy) or solvent only (light). Cells

were harvested after 12h (ATRA and solvent only treated cells) or 6h (TPA treated cells) and nuclear extracts

were prepared as described.

Nuclear extract preparation

Nuclear extracts from NB4 cells were prepared as described previously (Dignam et al., 1983) with slight

modifications. NB4 cells were harvested by centrifugation at 1000g, 4 min at 4�C and washed twice with

icecold PBS. Packed cell volume (pcv) was estimated and cells were resuspended in 5xpcv of ice-cold hy-

potonic buffer (10mM HEPES pH 7.5, 10mM NaCl, 3mM MgCl2) supplemented with protease inhibitors.

Cells were incubated on ice for 5 min, followed by addition of dodecyl-b-D-maltosid (DDM) to a final con-

centration of 0.05%. The sample was vortexed briefly and immediately centrifuged for 5 min at 600g, 4�C.
The cytosolic fraction was removed and the nuclei were washed with 20xpcv hypotonic buffer (5 min, 600g,

4�C). The supernatant was removed and the nuclei were washed with 20xpcv PBS (5 min, 600g, 4�C). The
nuclei were extracted with 2/3xpcv of high salt buffer (20mM HEPES pH 7.5, 400mM NaCl, 1mM EDTA

ph 8, 1mM EGTA pH 8, 20% glycerol, 1mM DTT) supplemented with protease inhibitors while shaking

on a tubeshaker at 4�C for 20 min at 750 rpm. Nuclear extracts were cleared by centrifugation at 18000g

for 20 min at 4�C and the buffer was exchanged to membrane binding buffer (20mM HEPES pH 7.5,

400mMNaCl, 1mM EDTA ph 8, 1mMEGTA pH 8, 25% glycerol, 1mMDTT) by gel filtration with PDMidiTrap

G10 columns (GE healthcare) according to instructions of manufacturers.

Protein interaction screen on a peptide matrix

Custom PepSpot cellulose membranes were ordered from JPT Peptide Technologies (Germany) and

PRISMA was performed as described before (Dittmar et al., 2019) with slight adaptations. All washing

and incubation steps were performed at 4�C on a rocking platform set to 700 rpm.Membranes were wetted
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in membrane binding buffer for 15 min, followed by a blocking step with 1 mg/ml yeast tRNA in membrane

binding buffer for 10 min. Membranes were washed 5 x for 5 min with membrane binding buffer and incu-

bated with nuclear extracts on ice for 30 min. The protein extract was removed and the membranes were

washed 3 x 5 min with membrane binding buffer. The individual peptide spots were punched out with a

2mm biopsy puncher and placed into single wells of a 96-well plate containing 20ml denaturation buffer

(6M urea, 2M thiourea, 10mM HEPES pH 8). The samples were digested in solution on a PAL robot system.

In brief, proteins were reduced with 1mM tris(2-carboxyethyl)phosphine for 30 min followed by alkylation

with 5mM 2-chloroacetamide for 20 min. To each sample 0.5 mg of sequencing grade lysyl endopeptidase

(LysC, FUJIFILMWako Pure Chemical Corporation) was added. Samples were digested for 2 h before being

diluted with four volumes of 50mM ammonium-bi-carbonate and continuation of the digestion overnight at

room temperature. Digested samples were acidified with formic acid and desalted with C18 stage tips as

described before (Rappsilber et al., 2003). Briefly, 3 disks of 3MTM EmporeTM C18 material were placed into

200 ml pipet tips and resulting stage tips were conditioned with 50 ml methanol, followed by 100 ml elution

buffer (50% acetonitrile/0.1% formic acid) and 100 ml 0.1% formic acid. Acidified samples were loaded,

washed three times with 100 ml 0.1% formic acid and eluted with 50 ml elution buffer. All steps were per-

formed in a tabletop centrifuge (2 min, 2000g). Samples were dried in a vacuum concentrator prior to

LC MS/MS analysis.

LC MS/MS

Desalted and dried peptides were resuspended in MS sample buffer (3% acetonitrile/0.1% formic acid) and

separated online with an Easy-nLCTM1200 coupled to a Q exactive+ or a Q exactive HF-X mass spectrom-

eter equipped with an orbitrap electrospray ion source (all Thermo Fisher Scientific). Samples were sepa-

rated on line on a 20 cm reverse-phase column (inner diameter 75mm) packed in house with 3 mm C18-Re-

prosil beads with a linear gradient ramping from 3% to 76% acetonitrile. PRISMA samples were separated

with a 1h gradient and MS data was acquired on a Q exactive+ in data dependent acquisition mode with a

top10 method. Full scan MS spectra were acquired at a resolution of 70000 in the scan range from 300 to

1700 m/z, automated gain control (AGC) target value of 1e6 and maximum injection time of 120ms. MS/MS

spectra were acquired at a resolution of 17500, AGC target of 1e5 and maximum IT of 60 ms. Ions were iso-

lated with a 2m/z isolation window and normalized collision energy was set to 26. Unassigned charge states

and single charged precursors were excluded from fragmentation and dynamic exclusion was set to 20s.

BioID pulldowns were separated on with a 2 h gradient and MS data was acquired on a Q exactive HF-X

in data dependent acquisition mode with a top20 method. Full scan MS spectra were acquired at a reso-

lution of 60000 in the scan range from 350 to 1700 m/z, automated gain control (AGC) target value was set

to 3e6 and maximum injection time to 10ms. MS/MS spectra were acquired at a resolution of 30000, AGC

target of 1e5 and maximum IT of 86 ms. Ions were isolated with a 1.6 m/z isolation window and normalized

collision energy was set to 26. Unassigned charge states and ions with a chare state of one, seven or higher

were excluded from fragmentation and dynamic exclusion was set to 30s.

BioID experiments

NB4 stable cell lines were grown in RPMI supplemented with tetracycline free FCS. Cells were seeded in

exponential growth phase in media supplemented with 1mM biotin and 1mg/ml doxycycline in quadru-

plicates. Cells were harvested after 24h by centrifugation and washed twice with cold PBS. Cell pellets

were resuspended in lysis buffer (50 mM tris-HCl (pH 7.2), 150 mM, NaCl, 1% NP-40, 1 mM EDTA,

1 mM EGTA, 0.1% SDS, 1% sodium deoxycholate) supplemented with cOmplete� Mini EDTA-free Prote-

ase Inhibitor Cocktail (Roche) and incubated on ice for 20 min. Samples were sonicated with a probe son-

icator for 5 pulses and centrifuged for 20 min at 4�C, 20 000g. For each pulldown (1x 15 cm dish), 80ml neu-

travidin-agarose bead slurry (Thermo Fisher Scientific) was used. Beads were washed twice in lysis buffer

and added to the protein extracts. The samples incubated rotating at 4�C for 2.5 h. Beads were washed 3x

with lysis buffer, 1x with 1M KCl, 1x 2M Urea in 50mM Tris pH8 and 3x with 50mM Tris pH8. Washing

buffers were kept on ice and each washing step was performed with 1ml, inverting the tube 5 times

and then centrifuging for 1 min at 2000g to pellet the beads. Washed beads were resuspended in 80ml

ureabuffer (2M urea, 50mM Tris pH7.5, 1mM DTT) supplemented with 5mg/ml trypsin (sequencing grade,

Promega) and incubated 1 h at RT on a tubeshaker at 1000rpm. The supernatant was transferred into a

fresh tube, the beads washed twice with 60ml 2M urea/50mM Tris pH7.5 and the supernatant combined

with the supernatant from the previous step. Residual beads were removed by an additional centrifuga-

tion (1 min, 5000g) and sample transfer step. Eluted proteins were reduced with 4mM DTT for 30 min on a

tubeshaker (RT, 1000 rpm). Proteins were alkylated with 10mM 2-Iodoacetamide in the dark for 45 min (RT,
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1000 rpm) and digested over night with 0.5mg trypsin at RT on a thermoshaker at 700 rpm. For an

AspN digest, 0.5 mg of trypsin and 0.5 mg sequencing grade endoproteinase AspN (Promega) were added

to the sample. Following overnight digestion, samples were acidified by adding TFA and desalted with

stage tips.

Targeted MS analysis of R142 methylation

Synthetic heavy peptide standards with the sequence DGRLEPLEYER and DGR[me]LEPLEYER labeled at

the C-terminus with heavy arginine [Arg10] were custom synthesized by JPT Peptide Technologies(Ger-

many). CEBPA BioID pulldowns were digested with AspN and trypsin and desalted as described. Samples

were resuspended inMS sample buffer containing 100 fmol/ml of synthetic heavy peptides. Parallel reaction

monitoring (PRM) measurements were acquired on a Q exactive HF-X mass spectrometer coupled to an

Easy-nLCTM 1200 HPLC system. Peptides were separated on a 60 min gradient ramping from 2% to 76%

acetonitrile. Data acquisition mode cycled between a Top1 MS/data dependent MS2 and data indepen-

dent measurement of an inclusion list that included the m/z of the synthetic heavy peptides as well as their

light counterparts coming from the sample. Resolution of MS2 for data independent acquisition was 60000

with an AGC target of 1e6, 200 ms maximum IT, 0.7 m/z isolation window and NCE of 27. PRM data was

analyzed with Skyline (Pino et al., 2020). Identity of peptides was verified by comparison with the elution

profile and fragmentation spectrum of heavy peptide standards.

Raw data processing with MaxQuant

Mass spectrometry raw files were processed with MaxQuant (version 1.5.2.8) (Cox and Mann, 2008) search-

ing against a human protein database containing isoforms downloaded from UniProt (June 2017) and a

database including common contaminants. Fixed modifications were set to carbamidomethylation of cys-

teines and variable modifications were set to methionine oxidation and N-terminal acetylation. For BioID

experiments, lysine biotinylation was added as an additional variable modification. Depending on diges-

tionmode (trypsin or LysC only), enzyme specificity was selected with amaximum of 2missed cleavages per

peptide. The initial allowedmass deviation of the precursor ion was up to 6 ppm and 20 ppm for fragments.

False-discovery rate was set to 1% on protein and peptide level. For SILAC measurements, the requantify

option was enabled and minimum ratio count was set to 2. For LFQ analysis, the match between run and

fast LFQ options was used with default settings.

Data analysis of mass spec data

Statistical analysis of the dataset was performed using R-statistical software package (version 3.4.1). The

protein group’s output file from MaxQuant was filtered for contaminants, reverse hits and proteins only

identified by site. Minimum peptide count for SILAC and LFQ data was at least 2 peptides per protein

group. For LFQ datasets, proteins were filtered by detection in at least 3 replicates of the same sample

and missing values were imputed from a distribution at the detection limit of the mass spectrometer.

For this purpose, a normal distribution was created for each run, with a mean 1.8 standard deviations

away from the observed mean and a standard deviation of 0.3 x the observed standard deviation. LFQ

data was analysed with a two-sample moderated t-test (Limma package) and p-values were corrected

for multiple testing with the Benjamini-Hochberg procedure. The significance cutoff of CEBPA interactors

was enrichment against both controls (BirA* only and cells not treated with doxycycline) with an FDR <0.05.

For isoform and tR>L mutant specific interactors, threshold was enrichment against both controls with an

FDR <0.05 and FDR <0.1 in the pairwise comparison of isoforms and mutants. Interactors overlapping be-

tween PRISMA and BioID or BioID and literature (STRING and BioGrid database, Grebien et al., Giambruno

et al.) were visualized with the STRING app built into cytoscape (v3.71) (Shannon et al., 2003). Known inter-

action (experimentally validated or deposited in databases with a score >0.5) were visualized as edges.

Interactors not connected by any edges were removed from Figure 2C (12 proteins). GO term analysis

of interactors was performed with DAVID functional annotation tool (version 6.8) (Huang et al., 2009).

PRISMA data was analysed with a two-sample moderated t-test (Limma package), creating a specific con-

trol group for each peptide that contained all other peptides excluding peptides with a sequence overlap

R50%. P-values were corrected for multiple testing with Benjamini-Hochberg procedure, significance cut

off was <0.1 FDR. To obtain binding profiles of interactors, LFQ intensities of significant proteins were

normalized between 0 and 1 across all PRISMA peptides.
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Microarray

Cells were harvested at exponential growth phase and seeded at 0.5 x 106 cells/ml in RPMI supplemented

with or without 1mg/ml doxycycline as independent biological triplicates. After 24 hr, cells were harvested

via centrifugation (1200 g, 5 min, 4�C) and washed once with 1x icecold PBS. Total RNA was extracted with

the RNeasy Mini Kit (Qiagen) following manufacturer’s instructions. DNAwas removed with the DNaseMax

Kit (Qiagen) following manufacturer’s instructions. RNA integrity was assessed using a Fragment Analyzer

system and a standard sensitivity RNA kit. All RQN scores were above 9.1. RNA expression analysis was per-

formed with Affymetrix Human ClariomS�microarray using the WT Plus Reagent kit (ThermoFisher Scien-

tific). As starting material, 100ng of total RNA was used and RNA was prepared for hybridization with the

GeneChip�Whole Transcript (WT) PLUS Reagent Kit (ThermoFisher Scientific) following manufactures in-

structions. CEL files were processed using the standard TranscriptomeAnalysis Console (TAC 4.0) software.

Expression values were automatically normalized and summarized using SST-RMA method. Only mRNAs

with log2 expression above 6 in at least one sample were considered for further analysis. Statistical analysis

was performed using LIMMA package of R/Bioconductor and p-values were adjusted using Benjamini-

Hochberg’s FDR.

GSEA of microarray data

Gene expression changes induced by CEBPA isoforms were calculated by comparing microarray data from

NB4 cells expressing CEBPA (P42 or P30) against BirA* expressing cells. Averaged log2 fold changes were

used as input for the single sample gene set enrichment analysis (ssGSEA) analysis tool (Barbie et al., 2009)

implemented in R (https://github.com/broadinstitute/ssGSEA2.0) using standard parameters. Data was

analyzed employing immunologic and transcription factor target gene sets from the molecular signature

database (Subramanian et al., 2005). The running score displayed in Figure 4 was calculated with Kolmo-

gorov-Smirnov running sum statistics.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses of the data were performed using the R-statistical software package (version 3.4.1). The

type of statistical tests used is annotated in figure legends and described in detail in the method details

sections. Statistical parameters (n, mean, significance level) are reported in the figures and legends or in

corresponding supplemental tables.
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