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ABSTRACT

State-of-the-art methods for predicting novel
trans RNA-RNA interactions use the so-called
accessibility as key concept. It estimates whether a
region in a given RNA sequence is accessible for
forming trans interactions, using a thermodynamic
model which quantifies its secondary structure
features. RNA-RNA interactions are then predicted
by finding the minimum free energy base-pairing
between the two transcripts, taking into account the
accessibility as energy penalty.

We investigated the underlying assumptions of
this approach using the two methods RNAPLEX and
INTARNA on two datasets, containing SRNA-mRNA
and snoRNA-rRNA interactions, respectively.

We find that (1) known trans RNA-RNA
interactions frequently overlap regions containing
RNA structure features, (2) the estimated
accessibility reflects sRNA structures fairly well, but
often disagrees with structure annotations of longer
transcripts, (3) the prediction performance of RNA-
RNA interaction prediction methods is independent
of the quality of the estimated accessibility profiles,
and (4) one important overall effect of accessibility
profiles is to prevent the thermodynamic model
from predicting too long interactions.

Based on our findings, we conclude that the
accessibility concept to the minimum free energy
approach to predicting novel RNA-RNA interactions
has conceptual limitations and discuss potential
ways of improving the field in the future.

INTRODUCTION

Direct trans RNA-RNA interactions between two transcripts
are key to mediating many biological mechanisms in
diverse living organisms (1, 2L 13, 4, 15). SnRNAs bind
to nascent RNA transcripts to guide splicing into mature
transcripts (1). SnoRNAs play an important role during
ribosome biogenesis, enabling chemical modifications like

methylation and pseudouridylation of bases which are key
to the ribosome’s correct functioning (6} [7). Also the codon-
anticodon recognition of tRNAs is facilitated by RNA-
RNA interactions (8). In eukaryotes, miRNAs regulate gene
expression via RNA interference, by binding to mRNAs and
thereby blocking translation (2). In a similar way, SRNAs can
block translation of bacterial mRNAs (3, 4).

In the following, trans RNA-RNA interactions and frans
base pairs will refer to base pairs formed between two
transcripts, i.e. inter-molecular base pairs, whereas cis RNA-
RNA interactions and cis base pairs will denote intra-
molecular base pairs within the same transcript, i.e. features
of the transcript’s RNA secondary structure.

There is a plethora of published tools for the target
prediction of specific query molecules, like miRNA (9} 10} 11,
1201301141 115,116} 117) and sRNA (18,19} 20} 21}, 122), but also
for target prediction of C/D box snoRNA (23), H/ACA box
snoRNAs (24), siRNAs (25) and piRNAs (26)). In order to be
able to discover novel classes of trans RNA-RNA interactions,
however, we require computational methods that are able to
discover entirely new biological types of interactions whose
details, i.e. cis and trans base pairs, are not yet known.

For predicting these novel biological classes of trans
RNA-RNA interactions, there exist dedicated computational
methods, for the most recent reviews see (27, [28).
These so-called ab initio methods can be subdivided into
three broad classes. First, non-comparative methods that
take only the two transcripts of interest as input, e.g.
INTARNA (29, 30), RNAPLEX (31), RNADUPLEX (32),
RISEARCH (33), RNAUP (34) and RNACOFOLD (35).
Second, comparative methods that utilise two multiple
sequence alignments (MSAs) as input (one MSA for each
transcript of interest), e.g. RNAPLEX (31), PETCOFOLD (36)
and RNAALIDUPLEX (32). And, third, alignment-free,
comparative methods which take two sets of unaligned,
orthologous sequences as input (one set for each transcript of
interest) e.g. IRBIS (37).

Many transcripts that are known to interact in vivo with
another transcript in frans may also exhibit RNA structure, i.e.
cis RNA-RNA interactions, at the same or a different time of
their cellular life. In H/ACA snoRNA-rRNA interactions, for
example, a distinct snoRNA secondary structure is required
for the trans RNA-RNA interaction to form so the rRNA can
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be correctly pseudouridylated. The rRNA, however, is also
known to exhibit a very distinct RNA secondary structure at
a different stage of its cellular life, namely while being part of
the mature ribosome (38},[39)). Another example illustrating the
complexities of cis and trans interactions during a transcript’s
life in vivo is the trans interaction between the SRNA OxyS
and the mRNA fhlIA in E. coli where both transcripts on
their own exhibit distinct secondary structure features in direct
proximity to the known frans interaction site (3)).

Right now, the state-of-the-art in terms of prediction
accuracy for novel trans RNA-RNA interactions is obtained
by computational methods that work in a non-comparative
way. These consider as input only the sequences of the
two transcripts of interest and assume that frans RNA-
RNA interactions are more likely to form in regions of
the transcript that are devoid of RNA structure features. To
this end, they estimate the so-called accessibility along each
input sequence using a minimum free energy (MFE) strategy.
For this, the entire input sequence (i.e. the transcript of
interest) is considered to be in thermodynamic equilibrium
in solution without any trans interaction partners and all
potential, pseudo-knot-free RNA secondary structures are
approximately estimated to quantify which regions along the
sequence are more devoid of RNA structure features than
others.

RNAUP (34), AcciessFoLD (40), and RIBLAST (41)
calculate the partition function of secondary structure features
for the entire input sequence, while RIBLAST uses an
additional parameter to limit the maximum base pair span. To
keep the calculation computationally tractable, RNAPLFOLD
uses both a constraint on the maximum base pair span
and a window of length W (shorter or equal the sequence
length), which is moved along the sequence, and local
RNA structure features are calculated for the sub-sequence
inside the window. Based on the free energy of these
RNA structure features, base pairs in these windows are
assigned a probability to be formed in thermodynamic
equilibrium. The global probability for a specific base pair is
then obtained by averaging over all windows containing the
base pair. From this, the probability for each sequence position
(or stretch of positions) to be unpaired is derived, which is its
final *accessibility’ (42, 143)).

Once the accessibilities along both input sequences have
been estimated, the frans RNA-RNA interactions are typically
predicted using a thermodynamic approach which essentially
captures the assumption that the two transcripts are in
thermodynamic equilibrium and that they aim to settle in
the joint configuration with the smallest overall Gibbs free
energy, penalised by the ’opening energies’ derived from the
probability of the two binding regions to be unpaired. In other
words, these methods aim to predict the MFE trans RNA-RNA
configuration between the two input RNA sequences (29, 31).

Even the best state-of-the-art methods, however, have
trouble generating high-quality predictions when the two RNA
sequences are anything but rather short (27, [28).

On the experimental side, a number of novel high-
throughput methods have been recently published, which are
able to capture both cis and frans RNA-RNA interactions
in vivo and on a transcriptome-wide scale, namely PARIS,
SPLASH, and LIGR-SEQ (44, 45| 146). The raw data
generated by these methods comes in terms of so-called

duplexes, where one duplex corresponds to a single pair
of either cis or trans interacting sub-sequences that have
been cross-linked into the same chimeric read as part of
the experimental procedure. These exciting new methods,
however, are still in their infancy as (1) the probing compound
psoralen (or the psoralen derivative AMT in case of LIGR-
SEQ) has biases since it only covalently cross-links stacked
pyrimidines on opposite strands (implying that perfectly stable
helices composed only of {G,C'} base pairs will not be cross-
linked and thus not detected) and (2) the overall probing of the
cis and trans interactome is generally not deep enough due to
several efficiency bottle-necks (47)).

This implies that computational methods for detecting novel
trans RNA-RNA interactions based on transcript sequence
information alone are still very much needed, not only to
explore the universe of potential cis and trans interactions
within many readily available transcriptome datasets, but
particularly to generate hypotheses on potential interactions
partners and corresponding cis and trans features that can then
be experimentally validated in dedicated experiments.

In order to improve the current state-of-the-art in the
field of predicting novel trans RNA-RNA interactions, we
were thus keen to investigate (1) whether the underlying
assumption, namely that regions of potential trans RNA-RNA
interactions have to be devoid of RNA structure features, is
justified and (2) whether the commonly used computational
method RNAPLFOLD is capable of estimating accessibility
correctly. We further analyse how different settings in the
accessibility calculation influence both the accuracy of the
accessibility profiles and the RNA-RNA interaction prediction
performance for the two state-of-the-art programs, INTARNA
and RNAPLEX. Finally, we investigate the differences in
prediction with and without the use of accessibility profiles.

Our results show that (1) contrary to the commonly made
assumption, known trans RNA-RNA interactions frequently
overlap regions that are known to also contain RNA structure
features, (2) the estimated accessibility reflects sRNA
structure annotations fairly well, but often disagrees with
structure annotations of longer transcripts, (3) the prediction
performance of RNA-RNA interactions prediction software
is independent of the quality of the estimated accessibility
profiles, and (4) one important overall effect of considering
accessibility profiles is to prevent the thermodynamic model
from predicting too long interactions.

The manuscript is structured in the following way: in
the section 'DATASETS’, we describe the two datasets
investigated in our study which represent two distinct
biological classes, SRNA-mRNA and snoRNA-rRNA
interactions. In "METHODS’, we describe the full details of
our computational analysis. The "RESULTS’ section is then
structured to support each of the four findings listed above.
Finally, we discuss our findings and conclude.

DATASETS
sRNA - mRNA

This dataset comprises 109 experimentally verified SRNA-
mRNA interactions which have been previously published in
the survey (27). Of those, 64 interactions are from Escherichia
coli str. K-12 substr. MG1655 (E. coli), and 45 from
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Salmonella enterica subsp. enterica serovar Typhimurium str.
LT2 (S. enterica). The average RNA-RNA interaction duplex
length is 21 nt which contain on average of 7.3 unpaired
nucleotides, i.e. nucleotides within bulges or loops. The
characteristic features of this dataset such as the distribution of
interaction lengths and the number of mismatches/bulges per
RNA-RNA interaction are shown in Supplementary Material
Figure SIA-C. All mRNAs contain the 5° untranslated regions
(5’UTRs) extending to the stop codon of the next gene
upstream, or 300 nt if the next gene is at a larger distance.
Compared to (27), we replaced three genes, because the RNA-
RNA interaction is located in the coding sequence of the
next gene upstream, and not in the 5’UTR of the originally
specified gene. Thus, rpoS, ilvE, and yigl. were replaced
by nlpD, ilvM, and pldB, respectively. We also updated the
genomic coordinates of S. enterica to correctly reflect the
reference genome NC_003197.2.

It is worthy to note that there are 5 SRNA-mRNA pairs for
which two interaction sites are known, namely the pairs with
ids 26/27, 43/44, 56/57, T1/72, 73/74. The complete dataset
can be found in the Supplementary Material File sRNA-
mRNA_RRI_RSS.csv. Note that column ’srna_sec_str_source’
(origin of sSRNA structure annotation) contains either 'RFAM’
or the PMID of the corresponding publication.

Structural annotations of sRNAs The structural annotation of
this dataset contains the known RNA secondary structures of
all sSRNAs which either derive from published data (generated
from experimental data, or predicted with comparative or
MEE approaches), or have been predicted ab initio by us.
Structures generated via the comparative approach have been
taken from the RFAM database (48). For two sRNAs, RNA
secondary structures were predicted by us using the program
RNAFOLD from VIENNARNA v.2.4.16, with default settings
(32). This can be justified as this MFE-based method can
be expected to perform well for these rather short sequences
(8. enterica SgrS, 239 nt, S. enterica ChiX, 81 nt).

Structural annotations of mRNAs For 11 (out of 90)
mRNAs, published RNA secondary structures derived
from SHAPE-MaP data covering the full transcript were
available in the Supplemental Material of (49). To obtain
the structures contained in the region of interest, we
excised the relevant sub-structure using RNArools.py
which is part of SUPERFOLD (https://github.com/Weeks-
UNC/Superfold) (50). We considered the conserved motifs
shown in (50) as well as the RNA secondary structures from
the cell-free and the in-cell environment for our analysis,
all structure annotations can be found in the Supplementary
Material File sRNA-mRNA_RRI_RSS.csv, listed under
“alternative’. For 5 mRNAs, other experimental data was
available, as noted in the same file.

Most mRNAs (75 out of 90) in the dataset were missing any
structural annotation and had also no published SHAPE-MaP
data. We annotated those using the same procedure as in (49))
for the prediction of mRNA structures using SHAPE-MaP
data as restraints, but using unknown SHAPE values (set to
”no-data” (nan)). This involved the use of SUPERFOLD v.1.1
together with RNASTRUCTURE v.6.2 (50, 51). Parameters for
SuperFold were: SHAPEslope = 1.8, SHAPEintercept
= -0.6, trimInterior = 300, partitionWindowSize =
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1500, partitionStepSize = 100, foldWindowSize = 3000,
foldStepSize = 300, maxPairingDist = 500.

To summarise, as only few mRNA structures come with
experimental evidence and as most were predicted in silico,
we place only limited trust in the structural annotation of
the mRNAs and thus show the relevant results only in the
Supplementary Material.

snoRNA - rRNA

This dataset comprises 52 verified RNA-RNA interactions
between pairs of snoRNAs and ribosomal RNA (rRNA) from
Saccharomyces cerevisiae S288c (S. cerevisiae), 18 of which
are with the small subunit rRNA 18S and 34 with the large
subunit rRNA 25S. The average length of an RNA-RNA
interaction duplex is 13 nt, with on average 0.54 nucleotides
in bulges or loops. Please refer to Supplementary Material
Figure SID-F for the detailed characteristics of the dataset
such as the distribution of interaction lengths and the number
of mismatches/bulges per RNA-RNA interaction.

It is interesting to note that also in this dataset, there are 5
snoRNA-rRNA pairs for which there are two interaction sites,
namely the pairs with ids 1/2, 5/6, 22/23, 35/36, 43/44. The
complete dataset can be found in Supplementary Material File
snoRNA-rRNA _RRI_RSS.csv.

Structural annotations of rRNAs The secondary structures
of S. cerevisiae 18S and 25S ribosomal subunits have been
obtained from (39).

Structural annotations of snoRNAs The annotation of this
dataset comprises RNA secondary structures for all snoRNAs.
The RNA secondary structures have been taken from
the RFAM database where present (48). RNA secondary
structures missing for 5 snoRNAs in RFAM were predicted by
us using the program RNAFOLD from VIENNARNA v.2.4.16
with default settings (32). It is reasonable to expect this MFE-
based method to perform well for these rather short sequences
(78-98 nt).

Overall, there is almost no experimental evidence for
the annotated RNA secondary structures of the snoRNAs.
The RNA secondary structures of RFAM are based on
evolutionary evidence in terms of covariation from an
underlying multiple sequence alignment (MSA). These
MSAs, however, are fairly heterogeneous in terms of
the number and the pairwise similarity of the underlying
sequences. It is worthy to note that many of the official RFAM
structures have almost no base pairs at all. We therefore place
only limited trust in these snoRNA structures and show the
corresponding figures in the Supplementary Material.

METHODS

In the following, ’query’ refers to the shorter of the two
interacting transcripts, i.e. either SRNA or snoRNA and
’target’ to the longer transcript of the pairwise interaction, i.e.
either an mRNA or rRNA, depending on the dataset.
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Analysis of conflicts between RNA secondary structure
and RNA-RNA interaction

One of our key goals is to investigate the validity of the
accessibility strategy of the state-of-the-art methods. This
strategy assumes that regions involved in trans interactions
should be devoid of RNA secondary structures features. We
thus define a conflict as a situation, where a nucleotide that is
known to form a trans base pair is also known to form a cis
base pair as part of the transcript’s RNA secondary structure.

We analysed conflicts between RNA secondary structure
and trans RNA-RNA interaction base pairs separately for
query and target, using

|CqNTy|
cq=—4 4l 1)
Tyl

|CtﬂTt|
Ct = —— 2
t IT] (2)

Here, C, denotes the set of query nucleotides that are
known to be base-paired in cis (i.e. the nucleotides which
are base-paired in the transcript’s known RNA secondary
structure) and T'; the set of query nucleotides that are known
to be base-paired in trans. This implies that ¢, is the fraction
of trans nucleotides that are also paired in cis in the query. In
a similar way, c; denotes the fraction of trans nucleotides that
are also paired in cis in the target.

In case of multiple known structure annotations for one
transcript (e.g. based on different experimental conditions),
we use c,/y to denote the average value. For the query-
target pairs with two known RNA-RNA interactions each,
Cq/t 1s calculated for the combination of both RNA-RNA
Interactions.

RNA-RNA interaction prediction tools

The two state-of-the-art methods for predicting trans
interactions that we consider, INTARNA and RNAPLEX, both
use RNAPLFOLD from the VIENNARNA package (32) for
estimating the accessibilities along any given RNA sequence.

We employ RNAPLFOLD from VIENNARNA v.2.4.15 with
the following settings to estimate the accessibilities for query
and target sequences: -W W -L L -u u -O. Here, L denotes
the maximum distance of two base-paired nucleotides inside
the sliding window of size W, i.e. L<W. This window is
moved along the sequence to calculate averaged base pairing
probabilities. The values for W and L are specified in the
text. u denotes the maximum length (in nucleotides) of any
region for which unpaired probabilities are calculated and
reported in the output. For u =10, for example, the output of
RNAPLFOLD contains the probabilities for all possible sub-
sequences between 1 and 10 nucleotides length to be unpaired.
We used as default value ©w=60, unless stated otherwise.
”-O” is specified to convert unpaired probabilities to energy
penalties in the output, the output files then have the suffix
’_openen’.

We wuse INTARNA v.3.2.0, with energy penalties
pre-calculated by RNAPLFOLD as specified above,
using the following settings (29, [30): --qAcc E
--qAccFile gname_openen --tAcc E --tAccFile thame_openen

-q gname.fa -t tname.fa --outMode C. This is equivalent
to running INTARNA with --qAccW W --qAccL L
--tAccW W --tAccL L --intLenMax wu, as INTARNA
invokes RNAPLFOLD to calculate the required accessibilities.
This means that for INTARNA, the maximum interaction
length is 60 nucleotides, which theoretically covers all
possible known interactions in our two datasets and is the
recommended setting for SRNA target prediction (52)). Note
that specific recommendations for improved sRNA target
prediction performance have been published recently (52).

As second state-of-the-art program for predicting trans
interactions, we use RNAPLEX from VIENNARNA v.2.4.15
with the following parameters (32)): -q gname.fa -t tname.fa
-a acc -f 2. Here, ’acc’ specifies the name of the folder
containing qname_openen and tname_openen. We use the tag
’-f 2’ (fast approximate energy model with re-computation
of the actual interaction energies) on recommendation of
the authors of RNAPLEX since the default option for the
backtracking (’-f 0”) results in the prediction of non-canonical
base pairs. For RNAPLEX, no maximum interaction length
can be set, since the option ”-1” (maximal length of an
interaction) is ignored by the program.

Measuring the quality of the accessibility estimation

Accessibilities for query and target are calculated using
RNAPLFOLD as above but without ”-O”, yielding unpaired
probabilities per nucleotide as output, instead of opening
energies. Single nucleotide unpaired probabilities (column
"1=1") are used to analyse accessibility. In order to quantify,
how much the estimated accessibility agrees with the known
RNA secondary structure annotation, we define the quality of
an accessibility profile () as follows:

S
Z paired,i — Punpaired,i))2 3)

where S denotes the sequence length in nucleotides, ¢ the
sequence position, dpaired,; (1, if paired, 0, if unpaired) the
pairing status of sequence position 7 according to the known
RNA secondary structure annotation, and Pyypaired,; the
estimated probability of sequence position ¢ being unpaired.
In a nutshell, Q €[0,1] with @ = 1 if the accessibility profile
perfectly reflects the known structural annotation and QQ =0 if
both are in complete disagreement along the entire transcript.

Prediction performance

For both INTARNA and RNAPLEX, we take the MFE
prediction for each query-target pair to judge the prediction
performance. As is common, we measure the prediction
performance in terms of sensitivity (defined as Sens=
TP/(TP+FN)), the positive predicted value (precision,
PPV=TP/(TP+FP)), and the F1 score (F1=2-(Sens-
PPV)/(Sens+PPV)), which is the harmonic mean of
sensitivity and PPV. As usual, T'P (true positives) denotes the
number of correctly predicted base pairs, F'P (false positives)
the number of incorrectly predicted base pairs and F'IN (false
negatives) the number of base pairs present in the reference,
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Figure 1. Overview of the amount of conflicts between known sRNA secondary structure and known trans RNA-RNA interactions with mRNAs. A value of
c=0 implies that there are no conflicting base pairs, whereas a value of c=1 means that all known frans-base pairs are in conflict with known sRNA cis-base

pairs. In the mRNA names, "Ec’ refers to E. coli, and ’Se’ refers to S. enterica.
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Figure 2. RNA secondary structure and RNA-RNA interactions for the
example of SRNA-mRNA pair RprA-csgD. Known base pairs with cis-trans
conflicts are shown in magenta. RNA structures have been trimmed at both
ends for better visibility. A green base color indicates standard Watson-Crick
base pairing. A dashed line indicates that part of the sequence has been
omitted from the figure for visualisation purposes. The arrows indicate 5° to
3’ direction. The star indicates the position of the start codon.

but missing in the prediction. A high sensitivity thus implies
that most known base pairs were correctly predicted, whereas
a high PPV means that there are few predicted base pairs that
do not coincide with known ones.

RESULTS

Known frans RNA-RNA interactions frequently overlap
regions with known RNA structure features

The implicit assumption underlying the accessibility-based
approach to trans RNA-RNA interaction prediction is that
potential binding sites are essentially devoid of RNA structure
features or — in other words — that there are no conflicting cis
and trans base pairs. To test the validity of this assumption,
we first systematically calculated cis/trans conflicts in both of
our datasets and we find that there is a significant amount of
conflicts in both datasets.

Figure [I] shows the degree of conflicts between known
SRNA secondary structures and known sRNA-mRNA
interactions, csgpna. While there are many green squares,
indicating that the trans-interacting region is essentially
unstructured, there are also a considerable number of known
trans RNA-RNA interaction sites which are also known to
be base-paired in cis at some stage of the transcript’s cellular
life. Spf, FnrS, and DsrA sRNAs have the largest overlaps of
67-75%. For mRNAs, there are many more conflicts between
known cis and known frans base pairs, as can be seen from
the large amount of yellow-magenta fields in Supplementary
Material Figure S2. One has to keep in mind that most of
the mRNA structures have been predicted in silico using an
MFE method and we have limited trust in them. Nevertheless,
these transcripts are so long that it can be expected that they
exhibit complex RNA secondary structure features, making
conflicts between cis and trans base pairs likely, regardless
of the exact structure. The amount of conflicts in SRNAs
is not correlated with the prediction performance (Pearson
correlation »=0.02 between conflict score and F1 score for
both INTARNA and RNAPLEX, run with setting "RNAplex’).
The amount of conflicts in mRNAs is slightly negatively
correlated with the performance (r=—0.16 for RNAPLEX,
and r=—0.25 for INTARNA), showing that the prediction
performance is decreasing slightly whith the amount of
conflicting base pairs.

Figure 2] shows the RNA secondary structure of the
SRNA RprA and the mRNA csgD and their interaction as R-
CHIE plot (53). Arcs, i.e. semi-circles, and straight lines in
magenta colour indicate base pairs with cis/trans conflicts.

Figure [3] shows the degree of conflicts between rRNA
secondary structure and snoRNA-rRNA interactions, ¢,RNA -
Both the 18S and 25S ribosomal subunit have well established,
complex RNA structures with many helices. The figure shows
a high degree of cis/trans conflicts in almost all known trans
RNA-RNA interactions. In many cases, more than 50% of
the trans-pairing bases are also known to be cis base-paired
at some stage of the transcript’s cellular life. Supplementary
Material Figure S3 shows the conflicts from the perspective of
the snoRNAs, cgnorNA- There are only a few conflicts here,
owing to the very low amount of base pairs in the snoRNA
structures presented on the RFAM database.
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Figure 3. Overview of the amount of conflicts between known rRNA secondary structure and known trans RNA-RNA interactions with snoRNAs. As before,
c=0 implies that there are no conflicting base pairs, whereas ¢ =1 means that all known trans-base pairs are in conflict with known rRNA cis-base pairs.
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Figure 4. RNA secondary structure and RNA-RNA interactions for the
example of snoRNAs snR63, snR47 and snR76, interacting with helices 68
and 69 of the 25S ribosomal subunit it S. cerevisiae. Known base pairs
with cis-trans conflicts are shown in magenta. Once again, we trimmed the
RNA structures at both ends for better visibility. A green base color indicates
standard Watson-Crick base pairing, whereas a dashed line indicates that part
of the sequence has been omitted from the figure for visualisation purposes.
The arrows indicate 5’ to 3’ direction.

Figure [] shows the RNA secondary structure and RNA-
RNA interaction of three snoRNAs binding to the 25S
ribosomal subunit. Again, magenta-coloured arcs and straight
lines demonstrate the high amount of conflict between cis and
trans base pairs.

The estimated accessibility reflects SRNA structures fairly
well, but often disagrees with structures of longer
transcripts

RNAPLFOLD is used by both RNA-RNA interaction
prediction programs RNAPLEX and INTARNA to estimate
the accessibility profiles along input transcripts, employing a
thermodynamic strategy. A window of W nucleotides width
is moved along the sequence and local RNA structure features
with a maximum base pair span of L (L <W) nucleotides
are predicted for the sub-sequence inside the window. This
window-based approach is primarily employed to reduce the
time and memory requirements of the accessibility estimation,
especially for long input sequences. Based on the free energies
of the RNA structure features, base pairs in these windows are
assigned a probability according to their relative frequency
in the corresponding Boltzmann distribution (of pseudo-
knot free RNA secondary structures for that sequence in
thermodynamic equilibrium). The overall probability for a
specific base pair is then obtained by averaging over all
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Figure 5. Accessibility profile (in terms of unpaired probabilities for each
nucleotide in the transcript) calculated by RNAPLFOLD (magenta) versus
known ’true’ base-paired positions (1: base-paired, 0: unpaired, black). The
difference between (1 —unpaired probability) and true base-paired positions
is shown in green. (A) SRNA DsrA (RNAPLFOLD settings W = L =87), the
overall accessibility quality () =0.85. (B) nucleotides 1-400 of 18S ribosomal
subunit of S. cerevisiae (RNAPLFOLD settings W = L = 120). For the shown
subsequence of 400 nt, Q = 0.54 (for the whole 1800 nt transcript, QQ =0.55).
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Figure 6. Quality @ of the accessibility profiles, as function of the
RNAPLFOLD parameters W and L, with W =L. S denotes the total
sequence length. (A) All 27 sRNAs from the SRNA-mRNA dataset, grouped
by length. (B) 18S and 25S ribosomal subunits, snoRNA-rRNA dataset.

windows with secondary structure features containing that
base pair. From this, the accessibility is derived, which is the
probability that a specific sequence position or subsequence is
unpaired.

We define the quality measure (), as explained in
’Methods’, which quantifies the concordance between the
estimated unpaired probabilities and the base-paired positions
of the known reference RNA secondary structure in the
sequence. Q=1 if both are in perfect agreement, and Q)=
0 if there is complete disagreement. Figure [3] shows two
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Figure 7. (A) Nucleotide classification, TS = transcript. (B) Unpaired
probability ("accessibility’) histograms for all SRNAs, for different classes
according to (A). (C) Unpaired probability histograms for rRNAs, for
different classes according to (A). Accessibility profiles have been generated
with RNAPLFOLD, settings W =240, L =160, as used in (31).

examples of the accessibility profile compared to the known
RNA secondary structure, (A), the rather short transcript
of SRNA DsrA, where the agreement between calculated
accessibility and reference secondary structure is very good
(Q=0.85), and (B), the comparatively long transcript of the
18S ribosomal subunit, where the agreement is mediocre (Q =
0.55).

We systematically calculated () for different values of W
(with L=W), for all four classes of molecules. Figure E]
shows @ as function of W/S, where S is the length of the
sequence, for (A) all SRNAs, and (B) the two ribosomal RNAs.
Figure [6JA shows that for the short SRNAs, the accessibility
calculated with W =5 generally gives the highest @) values,
i.e. agrees best with the reference structure. The green outlier
which starts with a high value of ) and decreases with
increasing W refers to SgrS, for which the reference structure
is limited to two hairpins located at the 3’ end of the
transcript, due to details of the experimental probing. The
rest of the transcript may also be more structured in reality
which is likely the reason that () drops with increasing W.
The average @ for W/S=1 is 0.64 (0.65 without SgrS).
The mRNA accessibility quality with respect to the reference
RNA secondary structure is shown in Supplementary Material
Figure S4B. Interestingly, for mRNAs, () reaches also good
values and generally increases continuously with increasing
W, reaching an average @) for W/S=1 of 0.61 (0.63 without
the outliers which are due to incomplete knowledge of
the RNA structure where only a part of the sequence was
probed, and a large part of the reference structure is without
any base pairs). One has to keep in mind, however, that
all complete mRNA structures have been computationally
derived using a thermodynamic MFE model, and only for
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a few of them experimental SHAPE data were used as
experimental evidence. This means that both the accessibility
profiles and the structural annotation have been predicted
using the same underlying approach, namely an MFE method.
Supplementary Material Figure S4B thus gives us an idea of
how well the accessibility, which is an ensemble quality since
it reflects all possible RNA structure features, can agree with
a single MFE structure of a long transcript such as mRNA.

For rRNAs, whose structures are experimentally well-
defined, the highest value of () is reached at W=L=120
with 0.55 for 18S and at W=L=300 with 0.58 for the
258 ribosomal subunit, respectively, as seen in Figure [6B.

The effect that short SRNA sequences are handled better by
RNAPLFOLD can also be seen in Figure [/| Here, we have
categorised all nucleotides participating in RNA secondary
structure or RNA-RNA interaction into three types: ’only
cis’, ’only trans’, or ’cis & trans’, as shown in Figure .
Figure shows the histogram of accessibilities for all
nucleotides per class, for the whole sSRNA dataset (calculated
with W =240 and L=160, as used in (31)). Only cis’
nucleotides generally have very low accessibility, *only trans’
nucleotides generally have high accessibility, and "cis & trans’
also have generally low accessibilities (even though not as
pronounced as ’only cis’ nucleotides), all in agreement with
the finding that estimated accessibility values agree well with
the reference structure for SRNAs.

For the much longer transcripts of the ribosomal RNAs
18S and 25S sequences, on the other hand, Figure shows
that the accessibility distributions for the different types
of nucleotides are much less pronounced: for ’only cis’
nucleotides, accessibility is mainly low but there are also
many nucleotides with medium or high accessibilities, for
‘only trans’ accessibilities are almost uniform and for ’cis
& trans’ there is only a very slight tendency towards lower
accessibilities.

These findings are in line with early observations
by Morgan & Higgs from 1996 (54) who found that
the MFE RNA secondary structures predicted using the
thermodynamic approach are typically in good agreement
with the known, biologically functional RNA structures for
transcripts shorter than around 200 nt. For longer transcripts,
the agreement typically decreases with increasing transcript
length. RNAPLEX authors discuss this also in their recent
paper (55). Back then, Morgan & Higgs hypothesised that
this disagreement is likely to be due to effects of co-
transcriptional kinetic folding on RNA structure formation
in vivo. We could show in 2013 that a minor modification
of the typical thermodynamic approach to RNA structure
prediction which takes the overall effect of co-transcriptional
folding into account can significantly increase the prediction
accuracy for long sequences (of more than 1000 nucleotides
length) (56,57, 58)).

Is it thus not surprising that the estimation of accessibilities
for sRNAs works fairly well (their sequence length is
mostly below 200, with a maximum at 239), and that there
is no improvement for larger window sizes in the rRNA
accessibility prediction. RNA-RNA interaction prediction
programs take this into account by choosing relatively small
windows and maximum base pair distance as default values
(INTARNA: W =150, L=100, RNAPLEX: W =240, L=
160). To be fair, one has to keep in mind that the accessibility
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profile is an ensemble property based on all possible pseudo-
knot free RNA structure conformations in all windows of size
W, and is thus by construction not supposed to reflect (only)
the MFE structure. Nevertheless, the maximum () which can
be reached for rRNAs (for any value of W) is fairly low and
the unpaired probabilities frequently in disagreement to the
known structure, as seen in FigureE]B.

We conclude that the estimation of accessibilities based
on the thermodynamic model works only reasonably well for
rather short molecules up to ~200.

The performance of RNA-RNA interaction prediction
software is independent of the quality of the estimated
accessibility profiles

We employed INTARNA and RNAPLEX without and with
accessibilities estimated by RNAPLFOLD using different
settings, to investigate if there is a correlation between the
quality of the accessibility estimation @) and the prediction
performance. As both RNA-RNA interaction prediction
programs claim that the notion of accessibility is key to
their superior predictive performance, we would expect better
predictions to be due to more accurate estimation of the
true underlying accessibilities. For this investigation, we used
the accessibility settings given as defaults in the programs
RNAPLFOLD and INTARNA, and those given for RNAPLEX
in (31). Note that capitalised names (RNAPLEX, INTARNA)
refer to the prediction program which was used, while
normal names (RNAplex etc.) refer to the default accessibility
settings suggested to be used with the respective program.
Additionally, we used two different settings ’custom_1" and
’custom_2’ derived from the analysis of ) for all four
classes of molecules. Settings which were used to generate
sRNA/mRNA accessibilities are displayed in Table [T} and
settings used to generate snoRNA/RNA accessibilities are
shown in Table[2l

Figure [§] and Table [3] show the prediction performance
of INTARNA for the sSRNA-mRNA dataset, as F1 score
calculated based on the MFE prediction. What is noticeable
is that without accessibilities, the performance is very bad
(mean F1 0.08). Only in a few cases, the algorithm is able
to identify several correct base pairs. Using accessibility with
a small window length and maximum corresponding base
pair span, W =70 and L=70 in the ’RNAplfold’ setting,
the mean F1 for the SRNA-mRNA dataset increases to 0.36.

Table 1. Accessibility settings for predictions for the SRNA-mRNA dataset. .S
is total sequence length. g is the query sequence (SRNA), ¢ the target sequence
(mRNA). W denotes the width of the sliding window in nucleotides, L is
maximal base pair span.

setting | Wy Lq | Wi L
RNAplfold* 70 70 70 70
IntaRNAP 150 100 150 100
RNAplex® 240 160 240 160
custom_1 S S | 0.255 0.258
custom_2 S S | 0.755 0.758

“Default settings for RNAPLFOLD.
®Default settings for INTARNA (W = accW, L = accL).
Settings from (31).

Table 2. Accessibility settings for predictions for the snoRNA-rRNA dataset.
S is total sequence length. g is the query sequence (snoRNA), targets are 18S
and 258 ribosomal RNA. W is the sliding window size, L the maximal base
pair span.

setting | Wy Lq | Wigs Ligs | Wass  Lass
RNADplfold* 70 70 70 70 70 70
IntaRNA? 150 100 150 100 150 100
RNAplex? 240 160 240 160 240 160
custom_1 10 10 120 120 300 300
custom_2 S S 120 120 300 300

“Default settings for RNAPLFOLD.
Default settings for INTARNA (W = accW, L = accL).
“Settings from (31).

Increasing W and L further ('IntaRNA’ setting) also increases
the mean performance to 0.48. The three settings with the
largest W and L CRNAplex’, ’custom_1’, ’custom_2’) yield
very similar average performance values of 0.51 to 0.55. The
prediction performance of RNAPLEX on the same dataset
with the same accessibility settings is shown in Supplementary
Material Figure S5. Mean F1 values are similar to INTARNA,
only for the settings 'RNAplfold” and *IntaRNA’, it is better
by ~ 0.05.

Table shows the Pearson correlation coefficients r
between the accessibility quality for the SRNAs Qrna and
the sensitivity, PPV and F1 score for the whole dataset,
for each setting. All r values are positive, which we had
expected, assuming that a better estimation of the underlying
accessibility profile, i.e. a higher value of Qrna, yields
better predictions, but have values generally below 0.2.

Table 3. Predictions on SRNA-mRNA dataset, mean F1 values.

software RNAPLEX INTARNA

intLenMax?® - 60 15 15
intLoopMax? - 10 10 0
no acc 0.048 | 0.080 0.182 0.241
RNAplfold 0411 | 0.362 - -
IntaRNA 0.518 | 0.481 - -
RNAplex 0.522 | 0.518 0.517 0.463
custom._1 0.551 | 0.507 - -
custom_2 0.535 | 0.546 - -

* maximum interaction length.
® maximal number of unpaired bases between neighboured interacting bases.

Table 4. Predictions on snoRNA-rRNA dataset, mean F1 values.

software RNAPLEX INTARNA

intLenMax? - 60 15 15
intLoopMax" - 10 10 0
no acc 0.111 | 0.211  0.639 0.704
RNAplfold 0.494 | 0.522 - -
IntaRNA 0.707 | 0.554 - -
RNAplex 0.691 | 0.594 0.761 0.775
custom_1 0.390 NA® - -
custom_2 0.707 | 0.581 - -

* maximum interaction length.

® maximal number of unpaired bases between neighboured interacting bases.

¢ in INTARNA, W has to be > intLenMax (which was 60), so it was not possible to run
it with these settings
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For predictions by INTARNA with settings with large W
(RNAplex, custom_1, custom_2), r is only 0.07.

Figure [9] and Table [ show the prediction performance
of INTARNA for the snoRNA-rRNA dataset. Interestingly,
predictions without accessibility have a relatively high mean
F1 score of 0.21, opposed to 0.08 in the sRNA-mRNA
dataset. Also for the other settings, the prediction performance
is increased, the best setting being 'RNAplex’ with 0.59.
The prediction performance of RNAPLEX on the snoRNA-
rRNA dataset with the same accessibility settings is shown
in Supplementary Material Figure S6. With accessibility
estimations, RNAPLEX performs systematically better than
INTARNA, reaching mean F1 scores of 0.69 to 0.71 for
settings "IntaRNA’, "RNAplex’ and ’custom_2’. It is worth
noting that for setting ’custom_1’, where W = L =10 (derived
from the best @) values for snoRNA in Supplementary Material
Figure S4A), the prediction performance for RNAPLEX is low
(0.39), showing that the assumption of mostly unstructured
snoRNAs is detrimental for the correct prediction of snoRNA-
rRNA interactions. For INTARNA, this setting is prohibitive,
because W is directly coupled to the maximum interaction
length intLenMax, i.e. W > intLenMax, with intLenMax = 60.

Table [@ shows the Pearson correlation coefficients r
between Qrna and sensitivity, PPV and F1 score for
the snoRNA-rRNA dataset, for each setting. Again, the
correlation r is very low in all cases (< 0.18), and even
negative (> -0.18).

To conclude, we find that there is only a negligible
correlation between the quality of the accessibility estimation
@ and the prediction performance of the two programs
INTARNA and RNAPLEX.

Table 5. Predictions on SRNA-mRNA dataset, Pearson correlation coefficient
r for Qsrna and Sens, PPV, F1, respectively.

software — | RNAPLEX | INTARNA

setting | 7Sens® TPPV  TF1 | TSens TPPV  TF1
RNAplfold 0.12 0.12 0.12 0.12 0.12 0.12
IntaRNA 0.12 0.11 0.12 0.14 0.16 0.14
RNAplex 0.12 0.10 0.11 0.11 0.07 0.07
custom_1 0.21 0.16 0.19 0.12 0.04 0.07
custom_2 0.14 0.15 0.15 0.09 0.06 0.07

a
TSens =T'Q,Sens €tC.

Table 6. Predictions on snoRNA-rRNA dataset, Pearson correlation coefficient
r for @QyrNna and Sens, PPV, F1, respectively.

software — | RNAPLEX | INTARNA

setting | Sens® TPPV  TF1 | TSens TPPV  TF1
RNAplfold 0.09 0.07 0.07 -0.16 -0.12  -0.13
IntaRNA 0.11 0.06 0.09 -0.04 -0.02  -0.02
RNAplex 0.07 0.14 0.11 -0.13 -0.11  -0.12
custom_1 -0.18 0.03 -0.03 | NAP NA NA
custom_2 0.18 0.17 0.18 -0.05 -0.05 -0.05

*rSens =TQ,Sens ©tC.
®in INTARNA, W has to be > intLenMax (which was 60), so it was not possible to run
it with W =10.
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One important overall effect of accessibility profiles is to
prevent the thermodynamic model from forming too long
interactions

Despite the shortcomings described above, the intriguing
fact remains that, overall, RNA-RNA interaction prediction
programs work much better when using accessibility profiles
as opposed to not using them. To put it more drastically,
see Figures [8]and 9] without accessibility profiles RNAPLEX
and INTARNA are almost completely incapable of identifying
RNA-RNA interaction correctly. In order to understand the
reasons for this, we looked into the details of the interactions
predicted with and without accessibility estimation. What
becomes apparent is that without accessibility estimation,
both programs tend to predict very long duplexes, i.e.
non-contiguous stretches of base pairs generally frequently
interrupted by bulges or internal loops, which have very low
energies according to the underlying thermodynamic models.
It is important to note that these duplexes generally do not
contain the correct interaction site. Figure [I0C shows as a
typical example the predicted interaction between snR56 and
the 18S ribosomal subunit. It stretches over 57 nucleotides,
close to the maximum interaction length set in INTARNA,
60. When using accessibility profiles, see Figure [I0A, an
elongation of duplexes accross regions with low estimated
accessibility is prevented by large energy penalties, leading
to shorter duplexes altogether, and thus to better predictions,
as seen in Figure [IOB. In Figure [I0D, we show that a
similar effect can be achieved by simply reducing the default
maximum interaction length (intLenMax) in INTARNA to
15, without using accessibility profiles at all. Note that
for RNAPLEX, it was not possible to set the maximum
possible interaction length, so we have no data for RNAPLEX
predictions in this case.

Figure [T1] shows this effect for the complete snoRNA-
rRNA dataset. Setting intLenMax to 15 recovers most of the
correct predictions, without the need for utilising accessibility
profiles. The mean F1 score increases significantly from
0.21 to 0.64, even better than with the best accessibility
setting "RNAplex’ which lead to a mean F1 score of 0.59.
Table [] shows that by further decreasing the number of
bulged/looped-out nucleotides (intLoopMax), this leads to
an additional increase yielding 0.70. Combining accessibility
profiles, intLenMax and intLoopMax leads to a further
increase in performance, to 0.78.

For the sRNA-mRNA dataset, which has different
characteristics regarding interaction length and amount
of bulged/looped-out nucleotides as can bee seen in
Supplementary Material Figure S1, it is not as obvious how to
boost the performance. Table [3] and Supplementary Material
Figure S7 show that the performance without accessibility
improves only slightly when setting intLenMax to 15, and
intLoopMax to 0. When using these settings together with
accessibility profiles, the prediction performance gets even
worse, because many of the known interactions are longer than
15 and can no longer be found.

Overall, we thus conclude that one important overall effect
of estimating accessibility profiles is to limit the length of
duplexes. In biological classes with predominantly short,
highly complementary interactions like the snoRNA-rRNA
interactions, this effect is sufficient to boost the prediction
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performance, and can be mimicked by simply limiting the
maximum permitted interaction length. In biological classes
with more diverse interactions in terms of interaction length,
and number of bulges/internal loops like sRNA-mRNA
interactions, this effect is present, but not as influential for the
performance. Here, a precise estimation of SRNA accessibility
is essential for a good prediction performance.

DISCUSSION

Predicting novel, functionally relevant frans RNA-RNA
interactions de novo, i.e. based on sequence information
only, remains one of the most intriguing open challenges
in computational biology today. The best state-of-the-art
methods today, RNAPLEX and INTARNA, rely on the concept
of accessibility to reach their superior predictive performance.
This concept is based on the assumptions that (1) RNA-RNA
interactions binding sites tend to be devoid of RNA secondary
structure features, (2) before trans binding occurs, the two
interacting transcripts are each in thermodynamic equilibrium
and also not interacting with any other molecules inside
the cell, (3) RNA-RNA interaction formation also follows
the MFE principle, i.e. conflicting RNA secondary structure
base pairs first have to be opened, penalising the RNA-RNA
interaction energy, and (4) the two interacting transcripts are
already fully transcribed at the moment of interaction.

As recent progress in the field of frans RNA-RNA
interaction prediction has been scarce since the publication
of the two state-of-the-art programs RNAPLEX in 2011 and
INTARNA 2008 (version 2 in 2017) and as there is still ample
room for improving the predictive performance in the field, we
have, for the first time, investigated the concept of accessibility
and its underlying assumptions.

We find that known frans RNA-RNA interactions often
overlap RNA structure features, contradicting assumption (1).
This is the case for short sRNAs, even more so for
long ribosomal subunits, and presumably also for mRNA
structures. This is not overly surprising, given that RNA
structure features and trans RNA-RNA interaction may affect
the RNA transcript at different times of its cellular life.
This is especially evident for snoRNA-rRNA interactions,
which happen during ribosome biogenesis, before the mature
ribosomal RNA structure is formed. All cis and trans base-
pairs required throughout each transcript’s life in vivo are
encoded in the respective transcript’s sequence. The two state-
of-the-art programs INTARNA and RNAPLEX, however, have
no way of knowing which of these cis and trans features
are required at the same point of time in vivo. Our results
clearly show that the notion of accessibility for improving
the prediction of trans interactions has to be conceptually
questioned as known frans interacting regions quite often
overlap regions that are also known to interact in cis at some
point of the transcript’s life in vivo.

The amount of conflicts between these cis and trans base
pairs, however, does not have an impact on the prediction
accuracy of the trans RNA-RNA interactions. This can
have two reasons: either, accessibility profiles somehow
intrinsically reflect possible cis-trans conflicts, or, for the
region of interest, the exact accessibility profile is not the
dominant factor to rank the predicted duplexes by their free
energy. For sRNAs, the accessibility of nucleotides with

cis-trans conflicts is generally low, similar to ’only cis’
nucleotides. Also for long rRNAsS, the conflicting nucleotides
tend to have lower accessibilities, even though much less
pronounced than ’only cis’ nucleotides. In other words,
in most cases, the accessibility-based approach disfavours
conflicting nucleotides from being trans base-paired. This is
in agreement with the way accessibility is being calculated,
which is solely based on MFE estimations of RNA structure
features of an isolated RNA molecule in thermodynamic
equilibrium.

We defined a new measure () to quantify the agreement
between the estimated accessibilities and the known reference
RNA secondary structure. RNAPLFOLD does a fairly good
job estimating the accessibility of short sSRNAs, if optimal
parameters are used. For long sequences like the 18S and
25S ribosomal subunits, however, the agreement between
the true structure and the predicted accessibility profile is
mediocre, showing that for long sequences, the MFE-based
strategy is sub-optimal, even when limiting the maximum base
pair span. This discrepancy may be due to in vivo effects
such as co-transcriptional folding or the participation of other
potential frans interaction partners such as proteins, both of
which are being ignored by assumptions (2) and (4). Most
strikingly, we find that performance with which trans RNA-
RNA interactions are predicted does not correlate with the
quality of correctly estimating the respective accessibilities.

Despite these results, both state-of-the-art programs for
predicting trans RNA-RNA interactions perform much better
when using estimated accessibilities, compared to not using
accessibilities. This can be explained by the one important
overall effect that the accessibility profiles have, namely the
prevention of unreasonably long duplexes. The MFE strategy
heavily encourages the prediction of long RNA-RNA
interaction duplexes (until they reach close to the maximum
permitted interaction length). Low accessibility and therefore
high energy penalties at key positions make long duplexes
energetically unfavourable compared to shorter duplexes,
thereby increasing the prediction accuracy. We show that for
the snoRNA-rRNA dataset, reducing the maximum interaction
length (and the number of mismatches/bulges) without using
accessibility estimates leads to a better performance than when
including accessibility estimates. A combination of all three
leads to the best performance for this dataset. For the SRNA-
mRNA dataset, which has more heterogeneous characteristics
in terms of interaction length and mismatches/bulges, this
effect can also be seen, yet to a lower degree. Here, well
estimated accessibility profiles are clearly beneficial.

We conclude that when predicting novel frans RNA-RNA
interactions in a class where no validated interactions exist,
the safest strategy is using accessibility profiles with the
parameters we found to work best. If, however, there is
additional knowledge about the characteristics of the trans
RNA-RNA interaction in a biological class, such as the typical
length or number of mismatches/bulges, this information can
be leveraged to prevent predictions not fitting the criteria.

Without accessibility (and with default maximal interaction
length), the MFE approach to RNA-RNA interaction
prediction employed by INTARNA and RNAPLEX simply
does not work, because by construction the method tries to
increase the duplex length as much as possible. With estimated
accessibility profiles, even if they would perfectly reflect the
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true RNA secondary structure of the two transcripts, even this
RNA-RNA interaction prediction approach would be limited,
because we have shown that conflicting cis-trans base pairs
frequently co-exist. In order to improve the field of trans
RNA-RNA interaction prediction further, we therefore suggest
to focus future research on devising comparative methods for
the prediction of novel frans RNA-RNA interaction.

The existing comparative methods (27, 28)), however,
require a fixed input alignment for each of the two transcripts
of interest and are known to have a prediction performance
which strongly depends on the alignment quality. As
additional challenge, trans base pairs typically do not exhibit
the same level of covariation as RNA structure features and
are thus conceptually harder to detect using the established
computational strategies for predicting RNA secondary
structures in a comparative way. In order to significantly
improve upon the current state-of-the-art in predicting trans
interactions, we will thus not only require comparative
methods that operate in an alignment-free manner, but
also conceptually novel strategies to distinguish between
evolutionarily conserved cis and trans base pairs. Even then,
one remaining conceptual challenge needs to acknowledge the
humbling fact that different biological classes of transcripts
may require different functional RNA structures and trans
RNA-RNA interactions throughout their cellular life in vivo.
We can reasonably expect that some information on these
functionally relevant cis and trans features is encoded in
each transcript in question. Yet, which of these features is
expressed when in vivo, is also determined by the particular
details of the complex in vivo environment at a given point
of time and space. Right now, none of the computational
methods conceptually aim to disentangle the conserved cis and
trans features into self-consistent configurations of mutually
compatible cis and trans features that could be expressed at
different points in time. As we discover more complexities
in vivo, we may thus be required to expand the notion of
alternative RNA structure expression (59) to the notion of
alternative trans RNA-RNA interactions.
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Figure 8. F1 performance score for the SRNA-mRNA dataset for predictions
with INTARNA for different accessibility settings. “no-acc” means no
accessibility profiles where used. All other setting names correspond to
Tablem In the last row, the mean F1 value is given.
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Figure 9. F1 performance score for the snoRNA-mRNA dataset for
predictions with INTARNA for different accessibility settings. “no_acc”
means no accessibility profiles where used. All other setting names
correspond to Table In the last row, the mean F1 value is given.
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Figure 10. (A) (l-unpaired probability) for snR56. (B) Prediction with
INTARNA with accessibility setting 'RNAplex’. (C) Prediction with
INTARNA without accessibility. (D) Prediction with INTARNA without
accessibility, but setting the maximal interaction length to 15. For (B) and
(C), the maximum interaction length is 60. (B) to (D) color code: green: true
positives, magenta: false positives, black: false negatives.
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Figure 11. F1 performance score for the sSRNA-mRNA dataset, predictions
with INTARNA without accessibility estimation (no_acc), without
accessibility estimation, but with maximum interaction length set to 15
(no_acc_ill5), and with accessibility estimation with setting 'RNAplex’.
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