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Abstract Complexity and limited knowledge render it impractical to write down the equations describing
a cellular system completely. Cellular biophysics uses hypotheses-based modelling instead. How can we
set up models with predictive power beyond the experimental examples used to develop them? The two
textbook systems of cellular biophysics, Ca2+ signalling and neuronal membrane potential dynamics, both
face this question. Both systems also have a non-equilibrium feature in common: on different time scales
and for different observables, they exhibit stochastic spiking, i.e., sequences of stereotypical events that
are separated by statistically distributed intervals, the interspike intervals (ISI). Here we review recent
progress on the description of Ca2+ spikes in terms of blips, puffs and cellular Ca2+ spikes and focus on
stochastic models that can explain the statistics of the single ISIs, in particular its mean and variance
and the cell-to-cell variability of these statistics. We also review models of the stochastic integrate-and-fire
type and measures like the spike-train power spectrum or the serial correlation coefficient that are used
to describe neuronal spike trains. These concepts from computational neuroscience might be applicable
for understanding long-term memory effects in Ca2+ spiking that extend beyond a single ISI, such as
cumulative refractoriness.

1 Introduction

The program of theoretical physics for understanding
a given system is to specify first principles to it and
to solve the resulting equations. That program has
been extremely successful and defined our idea of an
exact and quantitative science. The predictive power of
the first principles originates from the astonishing cor-
respondence between experimental objects and math-
ematical structures. The mechanics of macroscopic
objects corresponds to variational principles and differ-
ential equations, the behaviour of microscopic objects
corresponds to operator theory in Hilbert spaces.

The biophysics and biochemistry of cells obey the
first principles, too. But cells consist of many com-
ponents and interactions. Specifying the fundamental
equations of physics to a living cell is close to impracti-
cable. The approach of theoretical biophysics is conse-
quently what usually is called mathematical modelling.
Instead of a derivation from first principles, a hypothe-
sis on the components and interactions assumed to be
most relevant for a specific process of interest defines
the model equations. The assumptions need to be ver-
ified retrospectively by contrasting model predictions
with experimental results. Modelling has to find the
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balance between capturing all relevant components,
manageable complexity and the purpose of the model.
Within this balance and in particular since modelling
lacks the certainty of first principles, it is fundamental
to start the formulation of the model equations within
the mathematical structures to which the system to be
modelled corresponds to gain predictive power. Oth-
erwise a model might capture the experiment used to
develop it, but very likely fails in predictions beyond
this specific setting.

Only a few cellular dynamical systems are currently
characterized well enough for identifying the mathe-
matical structure corresponding to them. Intracellu-
lar Ca2+ dynamics is one of them. The Ca2+ path-
way translates extracellular signals into intracellular
responses by increasing the cytosolic Ca2+ concentra-
tion in a stimulus dependent pattern [7,32,94]. The con-
centration increase can be caused either by Ca2+ entry
from the extracellular medium through plasma mem-
brane channels, or by Ca2+ release from internal storage
compartments. In the following, we will focus on inosi-
tol 1,4,5-trisphosphate (IP3)-induced Ca2+ release from
the endoplasmic reticulum (ER), which is the predom-
inant Ca2+ release mechanism in many cell types. IP3

sensitizes Ca2+ channels (IP3Rs) on the ER membrane
for Ca2+ binding, such that Ca2+ released from the ER
through one channel increases the open probability of
neighboring channels. This positive feedback of Ca2+ on
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its own release channel is called Ca2+-induced-Ca2+-
release (CICR). Opening of an IP3R triggers a Ca2+

flux into the cytosol due to the large concentration dif-
ferences between the two compartments. CICR some-
times strongly multiplies channel opening to a global
release and concentration spike. The released Ca2+ is
removed from the cytosol either by sarco-endoplasmic
reticulum Ca2+ ATPases (SERCAs) into the ER or by
plasma membrane Ca2+ ATPases into the extracellular
space.

IP3Rs are spatially organized into clusters of up to
about fifteen channels within an area with a diameter of
100–500 nm. These clusters are scattered across the ER
membrane with distances of 1–7 µm[10,53,59,85,92,
93]. CICR and Ca2+ diffusion couple the state dynam-
ics of the channels. Given that the diffusion length of
free Ca2+ is less than 2 µm due to the presence of Ca2+

binding molecules in the cytoplasm and SERCAs, the
coupling between channels in a cluster is much stronger
than the coupling between adjacent clusters [96]. The
structural hierarchy of IP3Rs from the single channel to
clusters and cluster arrays on cell level shown in Fig. 1 is
also reflected in the dynamic responses of the intracellu-
lar Ca2+ concentration as revealed through fluorescence
microscopy and simulations [10,62,97,108]. Openings of
single IP3Rs (blips) may trigger collective openings of
IP3Rs within a cluster (puffs). Ca2+ diffusing from a
puff site can then activate neighboring clusters, even-
tually leading to a global, i.e., cell wide, Ca2+ spike
[35,53,62,63]. Repetitive sequences of these Ca2+ spikes
encode information that is used to regulate many pro-
cesses in various cell types [7,55,73].

Ca2+ exerts also a negative feedback on the chan-
nel open probability, which acts on a slower time scale
than the positive feedback, and has a higher Ca2+ half
maximum value than CICR [10,50,63,67,99,108]. This
Ca2+-dependent negative feedback helps terminating
puffs. Therefore, the puff probability immediately after
a puff is smaller than the stationary value but typi-
cally not 0. Channel clusters recover within a few sec-
onds to the stationary puff probability from this Ca2+-
dependent inhibition [10,50,63,67,99,108].

The negative feedback terminating global release
spikes causes an absolute refractory period Tmin as part
of the interspike intervals (ISIs) lasting tens of seconds
[71,100,107]. The molecular mechanism of this feed-
back is pathway and cell type specific and not always
known. A negative feedback on the IP3 concentration
might be involved [5,69]. Hence, the negative feedback
that determines the time scale of interspike intervals
is different from the feedback contributing to interpuff
intervals. It requires global (whole cell) release events.

Modelling of Ca2+ signalling has relied heavily on
ordinary differential equations in the last decades,
established as the rate equations for the average frac-
tions of IP3Rs in states corresponding to IP3R state
schemes and spatially averaged Ca2+, IP3 and buffer
concentrations [86–88,104]. This approach neglects noise
and fluctuations [89]. However, the experimental evi-
dence both on puffs and sequences of global spikes

Fig. 1 Hierarchical organization of IP3 induced Ca2+ sig-
nalling with concentration signals of the corresponding
structural level. The elementary building block is the IP3R
channel (bottom). It opens and closes stochastically. An
open channel entails Ca2+ release into the cytosol due to
the large concentration difference between the ER and the
cytosol. Since channels are clustered, opening of a single
channel, which is called a blip, leads to activation of other
channels in the cluster, i.e., a puff (middle). The cluster
corresponds to a region with Ca2+ release with a radius Rcl

that is fixed by the number of open channels. The stochastic
local events are orchestrated by diffusion and CICR into cell
wide Ca2+ waves, which form the spikes on cell level (top).
(Figure from ref. [83].)

demonstrated random behavior and, therefore, the rel-
evance of higher moments. Additionally, most models
do not distinguish between local and global processes
and feedbacks. That entailed in the end dependencies
of system characteristics like, e.g., the average inter-
spike interval (period) on measurable parameter val-
ues which deviate from experimental observations or
require parameter values not supported by measure-
ments [88,104]. The purpose of most models is to sim-
ulate cellular behavior, and ordinary differential equa-
tions are very convenient to that end. Their derivation,
however, has to take the large fluctuations into account,
i.e., has to start from stochastic theory as the mathe-
matical structure corresponding to Ca2+ dynamics. We
will illustrate with the Siekmann IP3R model, how this
might be done.

An alternative to simulating cellular behavior by dif-
ferential equations is to determine the distribution of
cellular properties generated by the noise inherent to
the system [38,54]. Such an approach would correspond
more to the noisy character of cell dynamics, but will
only take hold, if the analysis of experimental results
engages into such a view on cellular behavior and mea-
sures distributions and/or their moments [54]. We will
discuss a concept for calculating the first two moments
of the interspike interval distribution.
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Ca2+ spikes and their statistical measures have also
some similarity with sequences of neural action poten-
tials, the famous neural spike trains. We will also briefly
discuss how concepts from computational neuroscience,
such as multidimensional integrate-and-fire models and
spike train power spectra could be useful to model and
analyze Ca2+ spiking.

2 Experimental results defining modelling
concepts

2.1 Puffs are the local dynamics of Ca2+ signalling

2.1.1 Puff properties

Increasingly advanced experimental methods have pro-
vided a rich set of data that may guide modelling
approaches [45,59,60,79,81,100,102,106]. Single IP3R
channels within a cluster stochastically bind and unbind
IP3 and Ca2+. In a state with high open probability,
the channels open and close on a millisecond time scale
in patch clamp experiments [43]. That time scale does
not show up on opening/closing steps of cellular puff
measurements probably due to filtering by the involved
reaction-diffusion processes of dye-based recordings.

Due to CICR, a single IP3R opening can increase
the open probability of neighbouring channels until the
complete cluster opens and releases Ca2+, creating a
puff. But gating of IP3Rs is biphasically dependent on
[Ca2+] at intermediate [IP3]. Up until a few µM the
open probability increases with increasing [Ca2+], while
even higher [Ca2+] inhibits the IP3Rs, represented by a
bell-shaped open probability curve [8]. [Ca2+] around or
in clusters becomes very large fast during puffs, easily
reaching tens of µM or more, Fig. 2 [6]. These are con-
centrations in the inhibitory regime (s. microdomains),
such that Ca2+ release also has a fast negative feedback
component on clusters.

Recent experiments on puff behavior of all three iso-
forms of the IP3R shed light on their local dynamics
in form of puff frequency, puff amplitudes, open chan-
nels per puff, rise and fall times, and duration [59]. The
average puff duration (full duration at half-maximum,
FDHM) is about 41 ms ± 3 ms for wild-type IP3Rs.
While the opening of clusters is explained by CICR
within clusters, possible closing mechanisms of single
IP3Rs and clusters are still being discussed. Among pos-
sible puff termination mechanisms are stochastic attri-
tion (there is always a probability for many channels to
spontaneously close together within a short time win-
dow), local ER-depletion (the ER becomes devoid of
Ca2+ locally, not able to support local cluster Ca2+

efflux), luminal activation (regulation by Ca2+ or other
molecule species on the ER-side of the IP3R), or cou-
pled gating (single closing may trigger closing of the
cluster due to coupled channel dynamics) [90]. High
[Ca2+] together with the biphasic Ca2+ dependency is

also assumed to be at least a contributing factor of puff
termination [106].

Various single channel behaviours in the course of a
puff have been measured in experiments. While a steep
increase of the fluorescence signal measured directly
at puff sites as a quick opening of coupled channels
is common, the termination of puffs can be realized in
numerous ways. Smooth decay, step-wise decay, or clos-
ing with infrequent re-opening or bursting re-openings
are among the most occurring channel closing scenar-
ios or puff shapes, respectively [106]. Sometimes mul-
tiple IP3Rs within one cluster close almost in near-
synchrony in experiment on some occasions, yielding
the seldom occurring block puff [106]. This occurred
more often compared to expectations based on sets of
independently closing channels (stochastic attrition).
Observation of neighbouring open IP3Rs within clus-
ters with either one or two open channels confirmed
deviations from the behavior of pairs of independent
channels. This overall behaviour cannot be explained
by inhibitory fast high Ca2+ (biphasic open probabil-
ity) or local ER-depletion, suggesting an important but
yet unknown channel coupling mechanism leading to
coupled gating that renders puff duration and channel-
coupled puff termination robust.

While regulation of IP3Rs by luminal Ca2+ content
or other molecules inside the ER has been a seem-
ingly intractable question for decades, recent exper-
imental studies have found further support for the
hypothesis of luminal control. IP3Rs have been reported
to be regulated by luminal [Ca2+]ER and likely the
widely-expressed luminal Ca2+ buffer protein annexin
A1 (ANXA1) which together inhibit IP3Rs at high
[Ca2+]ER [102].

New findings suggest that IP3Rs have two distinct
modes of Ca2+ release. A punctate liberation mode dur-
ing the rise of the Ca2+ transient which is then followed
by a diffuse mode that sustains global Ca2+ release. The
punctate mode is terminated before reaching the peak,
likely through an yet unknown mechanism regulated
by [Ca2+]ER. These two modes could also target dif-
ferent effector species, regulating different downstream
elements of the IP3 induced Ca2+ signalling pathway.
[60]

2.1.2 The dynamic regime of the local dynamics

Intracellular Ca2+ dynamics is a reaction diffusion sys-
tem. The reactions comprise release of Ca2+ from the
ER, pumping by SERCAs, buffering and the bind-
ing/unbinding with other Ca2+ binding sites. The reac-
tion dynamics is local, diffusion provides the spatial
coupling. The dynamic regime (excitable, bistable or
oscillatory) of a reaction diffusion system is dominated
by the the dynamic regime of the local dynamics. From
a structural point of view, the local dynamics are the
cluster dynamics.

[Ca2+] profiles in the vicinity of single IP3Rs and
within clusters cannot be measured directly, but can
be simulated [96] or calculated analytically in good
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Fig. 2 Ca2+ concentration profile around a IP3R (cluster).
While [Ca2+] peaks at the cluster located at r=0 µm, [Ca2+]
distanced from the cluster will be one to two orders of mag-
nitude smaller. Since IP3R dynamics are subject to [Ca2+]
in very close proximity to them, this makes meaningful cell
wide spatial averaging difficult at best [6]

approximation [6,96]. The [Ca2+] at the cluster loca-
tions is about one or two orders of magnitude larger
than spatially averaged concentration values, and
decreases steeply with increasing distance from the
channel, Fig. 2. This leads to the existence of micro-
domains of large [Ca2+] at clusters with open channels,
which are only weakly coupled to neighboring clusters
by steep concentrations gradients. It is the local Ca2+

dynamics that affects cluster dynamics the most.
The Ca2+ concentration at closed clusters is the rest-

ing concentration in the range of ≤ 100 nM. Concentra-
tions at open channels are >20 µM [6,96]. The dynamic
range of the regulatory binding sites for both the
positive and negative feedback of Ca2+ to the open
probability extends from a few hundred nM to micro-
molar values below 10 µM[43,49,95]. Oscillatory dynam-
ics require concentration values in the dynamic range.
However, with these large concentration changes, the
system essentially never is in this dynamic range and
the regime of the deterministic limit of the cluster
dynamics is either excitable or bistable (except tiny
parameter ranges) [97].

This conclusion is supported by an investigation into
the time scales on cluster level. Typical interpuff inter-
vals last a few seconds [25,26,53,99], interspike inter-
vals are in the range from about 20 s to a few minutes.
If the local dynamics were oscillatory and caused the
sequence of spikes, the time scale of the ISI should be
detectable as a temporal modulation of properties of the
puff sequence at a given site. That has not been found
[99]. A modulation of puff sequences on the ISI time
scale could not be detected and no evidence of an oscil-
latory regime of the local dynamics has been observed
[99]. The ISI time scale has only been observed on cell
level.

Replacing local Ca2+ concentrations with globally
averaged [Ca2+] values as the input for IP3Rs, even
though their values differ by orders of magnitude, leads
to misleading IP3R and Ca2+ dynamics [97]. Averaged

global concentrations during spikes are in the dynamic
range of the IP3R regulatory binding sites thus allowing
for cluster-cluster coupling. Using them in mathemat-
ical models as the Ca2+ concentration experienced by
the IP3R entailed oscillatory dynamics. However, that
dynamic regime shrinks to negligible parameter ranges,
high frequency and tiny global amplitudes with realis-
tic local concentrations [97] and could not be verified by
local measurements [99]. Thus IP3R Ca2+ dissociation
constants guarantee spatial coupling but do not allow
oscillatory local dynamics.

2.2 The cellular global dynamics of Ca2+ signalling

2.2.1 Interspike intervals of global spikes are random

Once a cluster of IP3Rs opens to create a puff, the
released Ca2+ diffuses within the cell. If it reaches
neighbouring clusters there is a probability of trigger-
ing follow up puffs. This can then become a self ampli-
fying process, until a critical number of open clusters
is reached, resulting in a cell-wide Ca2+ release event,
called a Ca2+ spike [61]. These global spikes can be
measured similar to measuring local puffs and can be
described with the same quantities, like interspike inter-
val (ISI), duration, or amplitude. Measuring a sequence
of Ca2+ spikes over a few minutes to hours yields a spike
train from which we obtain the sequence of interspike
intervals, Fig. 3. Just like blibs and puffs, spike times
are inherently random, the ISI as a property of sub-
sequent spike times is random as well. A global Ca2+

spike has an inhibitory effect on subsequent puff events.
The recovery form that inhibition takes tens of seconds,
i.e., it is negative feedback on long time scales. It cre-
ates an absolute refractory period Tmin during which
no puffs occur.

We can quantify how random spike timing of a given
spike train is by the relation between the standard devi-
ation σ of ISIs and the average ISI, Tav. We see in Fig. 3
that they are linearly related like

σ = α (Tav − Tmin) . (1)

Such a linear relation has been found for all cases
investigated (8 cell types and 10 conditions [17,28,
31,81,100], see also [68]). The coefficient of variation
of the stochastic part Tav − Tmin of the ISIs is CV
= σ/(Tav − Tmin) = α. The larger the CV, the more
stochastic is the output of a given process. A CV value
equal to 1 indicates a Poisson process, which is maxi-
mally random. A vanishing CV indicates a determinis-
tic process.

We determined the CV or α resp. as the slope of the
linear approximation to population data as in Fig. 3,
and from 2 experimental conditions with an individ-
ual cell. We found both values to agree [80,82] turn-
ing α into an observable not subject to cell variability
(which is different from the results with puff sites in this
respect [99]). Additionally, the value of α turned out to
be robust against changes of buffering conditions [81],
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Fig. 3 A–D Fluorescence signals of Ca2+ spike trains
(upper panels) and extracted ISI sequences (lower panels)
from four different cell types. ISI are irregular. F–G The
standard deviation of ISIs against their average, each dot

represents the data of one experiment, i.e., measured spike
train of a cell. The wide spread indicates large cell-to-cell
variability, but there is a functional σ-Tav moment relation
visible as a linear fit. Plots from [81]

stimulation strength and three pharmacological pertur-
bations of the Ca2+ signalling system. That surprising
robustness turns Eq. (1) into one of the equations defin-
ing Ca2+ signalling from the perspective of quantitative
approaches. The value of α is set by the time scale of
recovery from global negative feedback terminating the
release spikes [98].

2.2.2 The relation between average interspike interval
and stimulation

Cells are stimulated by extracellular agonists [A] bind-
ing to receptors in the cell membrane. The strength of
stimulation controls the intracellular concentration of
IP3. In general, we observe only puffs at low stimula-
tion, spikes at intermediate agonist concentration and
maintained high Ca2+ concentration in some cell types
and with some pathways at very strong stimulation.
Within the spiking regime, cells respond to an increase
of agonist concentration with a decrease of the average
ISI, Tav [36,100]. It was found for all pathways tested
that the population averaged response could be well fit
to a single exponential function which depends on the
strength of the stimulus, given by the extracellular ago-
nist concentration [A], Fig. 4, that is

Tpop = Tref e−β([A]−[Aref ]) − Tmin. (2)

Here Tmin is the smallest ISI reached at strong stim-
ulation, i.e., the absolute refractory period plus spike
duration, and Tref the reference ISI at a reference ago-
nist concentration [Aref ]. β is a constant for a given
cell type and signalling pathway. We also found β to
be the same for all individual cells. Hence, it is another
observable defining Ca2+ signalling from the perspec-

A B

C D

V

HEK 293

P

Hepatocytes

Hepatocytes Salivary gland

Fig. 4 Relation between ISI population average Tpop and
and agonist concentration stimulating the cells for three cell
types and four pathways. The lines are fits to Eq. (2). Figure
from [100]

tive of quantitative approaches. A third observable not
subject to cell variability is Tmin.

All the cell-to-cell variability is represented by Tref

eβ [Aref ]. [Aref ] determines the position of the concentra-
tion response relation on the [A]-axis. It can be chosen
to be the agonist concentration at the onset of spiking.

That exponential dependency on stimulation in Eq. (2)
follows from paired stimuli experiments, i.e., runs much
deeper than a simple direct fit of an ansatz to experi-
mental data. The change of the average stochastic part
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of the ISI ΔTav due to an agonist concentration step is
proportional to the average stochastic part Tav1 − Tmin

at the lower agonist concentration Tav1 [100]:

ΔTav = βs (Tav1 − Tmin) . (3)

In general, βs depends on the agonist concentration [A]
and the concentration step Δ[A]. Experiments showed
∂βs/∂[A] = 0 and ∂βs/∂Δ[A] = const = β, which
entails the exponential relation Eq. (2) with the same
β for all individual cells [100].

2.2.3 Long time scales from slow global processes and
small spike probabilities

With some cell types, individual cells or experimental
situations, Tav is much longer than any time scale that
is relevant for the state dynamics of clusters or even
global cellular dynamics. From a dynamical systems
point of view applying to deterministic models, this
should not be possible, since each time scale requires
a process setting it. However, long time scales might
result simply from small probabilities and not from a
slow process. Decay of a single radioactive atom for
example happens at a random moment in time. If the
atom is rather stable, decay is unlikely and it takes a
long time on average to happen. But there is no pro-
cess leading to the decay event. The state of the atom
is stationary up to the time of the event. That may
also apply to spike generation with the cell in the role
of the atom and generation of a spike corresponding to
the decay event. If the spike generation probability is
small, we may observe long average ISIs and the state
of the cell before the spikes is essentially stationary.
There is no process setting the long time scale in that
case.

Alternatively, there might be a slow process setting a
long average ISI. The recovery from the negative feed-
back, which terminates spikes, is a prime candidate for
such a slow process. The negative feedback might for
example decrease [IP3] [5], which then needs to recover
before the next spike can occur. The inhibitory effect
is a substantial decrease of the puff probability, which
entails an absolute refractory period.

We can use the CV or α to assess the relative weight
of small probability vs slow process in setting Tav. If
the CV is equal to 1, the ISIs follow an exponential dis-
tribution and are maximally random. There is no slow
process setting the long time scale in that case, very
similar to nuclear radioactive decay of an atom. A CV
of 0 would indicate a purely deterministic and noise-
free process with vanishing deviation. If the CV value
is between 0 (deterministic) and 1 (pure randomness), a
slow process changes the spike probability without ren-
dering spike generation deterministic. Note, the average
ISI is not simply the inverse of the recovery rate in that
regime [39]. Measured CVs are between 0.2 (e.g., stim-
ulated hepatocytes) and 0.98 (e.g., spontaneous spiking
in microglia).

3 Open problems

We consider as open problems what is lacking for a
theory able to derive the cellular signals from molecu-
lar properties. The large cell-to-cell variability defines
here what is meaningful to be described by theory. An
intuitive explanation for cell variability among many
other possibilities might be the differences in the rela-
tive cluster positions. However, also this question has
not been exhausted yet.

The puff property distributions for amplitude, dura-
tion and IPI have been simulated or described by
ansatzes by a variety of groups [14–16], but have not
been analytically derived yet. We cannot expect ana-
lytic expressions using realistic channel models (see
below), but the distributions have not been written
down even for strongly simplified models. Lock et al.
recently demonstrated that all three IP3R isoforms gen-
erate similar puff property distributions sampled from
many puff sites [59]. Hence, the distributions cannot
depend on detailed molecular properties and a simplify-
ing approach as common ground would make sense and
would be a starting point providing conceptual under-
standing.

The situation with respect to global signals is similar.
The interspike interval distribution for ISI sequences
normalized by the average has been measured for HEK
cells and spontaneously spiking astrocytes [84] and sim-
ulated [37], but it has not been derived yet. The robust-
ness of the coefficient of variation CV has been very well
confirmed experimentally [81,98,100] and has been sim-
ulated [72,82,83,98], but has neither been derived in
some analytical work.

The concentration response curve of the average ISI
shows an exponential dependency on the extracellular
agonist concentration stimulating the cell [100]. The
agonist sensitivity in the exponent is cell type and path-
way specific [100]. The pre-factor of the exponent picks
up all the cell variability. This detailed knowledge on
the concentration response curve also awaits its theo-
retical explanation.

Open problems with respect to methods mainly con-
cern the role of fluctuations. The large values of coef-
ficients of variation on all structural levels demon-
strates that fluctuation are not negligible. Their poten-
tial role becomes more tangible by considering intra-
cellular Ca2+ signalling as a deterministic reaction-
diffusion system. The dynamic regime is then fixed by
the local dynamics. We have no experimental evidence
for an oscillatory local dynamics of intracellular Ca2+

signalling [99], and the whole literature on puffs sug-
gests the local dynamics to exhibit only time scales
of a few seconds. The experimental results are com-
patible with an excitable regime of the local dynamics.
Consequently, spikes are due to fluctuations. Concepts
taking fluctuations along in systems of ordinary differ-
ential equations (ODEs) exist [109], but have not been
applied to the system, yet. We will discuss them also
below.
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4 Modelling concepts from molecular
properties to global dynamics including
fluctuations and noise

The essence of the Ca2+ signalling system is defined by
its general properties, which are also the basic require-
ments models should meet:

– The sequence of dynamic regimes with increas-
ing stimulation: puffs, spikes, permanently elevated
Ca2+. Pathway dependent also a bursting regime
may follow or replace the spiking regime.

– The dynamics of individual clusters are not oscilla-
tory on the time scale of ISI.

– Cell-to-cell variability of average ISI is large.
– The spiking regime obeys Eqs. (1), (2) and (3) with

Tmin, α and γ being cell type and pathway specific
but not subjected to cell variability.

– ISIs depend sensitively on parameters of spatial cou-
pling.

These general properties apply to all cells. Cells
exhibit variability with respect to concentrations of the
functional proteins, geometry of clusters and the cell-
wide cluster array, ER luminal Ca2+ content etc. The
general properties of Ca2+ signalling cannot depend on
the details of these highly variable cellular character-
istics, which calls for models as simple as possible but
meeting the above requirements.

Puff models should start from the molecular proper-
ties of the IP3R. Its random state changes are the source
of noise. We will use one of the most recent models
of the IP3R to describe concepts, the Siekmann model
[79], which is a Markov model based on single-channel
data. We will discuss in that context, how fluctuations
might enter ODE-focused modelling approaches.

Puff property distributions form the basis for mod-
elling of global dynamics. We will discuss concepts for
calculating moments of ISI distributions. Most current
models adapt molecular rate constants to global time
scales to reproduce measured average ISI values. How-
ever, the origin of the time scales on global level are
global processes. We will sketch how to introduce these
global processes into the coupling between the puff
dynamics and global dynamics which allows for using
realistic molecular parameters.

4.1 IP3R clusters as ensembles of receptors
described by the Siekmann model

Several channels (up to fifteen) form a cluster. The
opening of one receptor channel within a cluster (’blib’)
increases the open probability of the other channels in
the cluster due to strong channel coupling by Ca2+ dif-
fusion, which may cause a puff. We consider a cluster
consisting of a stochastic ensemble of N channels.

We denote the number of channels in state i accord-
ing to Fig. 5 as ni ≥ 0 with N =

∑
i ni, effectively

removing one degree of freedom due to this require-

Fig. 5 State scheme of the Siekmann IP3R model. Ci rep-
resent closed and Oi open states; q’s are transition rates con-
necting two adjacent states and indicating how fast an IP3R
switches between the two states. The entire structure com-
prises two parts: one is the high-activity part or drive mode,
containing three closed states C1, C2, C3, and one open state
O6. The other is the low-activity part or park mode, which
includes one closed state C4 and one open state O5. Only
the rates connecting these two modes are Ca2+ dependent
[40,79]

ment. A puff occurs if some critical number of channels
is in the open state, motivating to study the expecta-
tion value to be in a state i, 〈ni〉.

The total change in probability for a set {ni} =
{n1, n2, ..., n6} = {n1, n2, ..., n5, N − n1 − · · · − n5} is
given by the probability fluxes for each single channel
transition from state j to state k, resulting in a change
of {ni} like

nj → nj − 1 ∩ nk → nk + 1.

We write the Master equation for the probability
P ({ni}, t) = P (n1, n2, ..., n6, t) to be in state {ni} at
time [t, t + dt] as

Ṗ ({ni}, t) = q12(n1 + 1) P (n1 + 1, n2 − 1, ..., t)
+ q21(n2 + 1) P (n1 − 1, n2 + 1, ..., t)
+ q62(n6 + 1) P (..., n2 − 1, ..., n6 + 1, t)
+ q26(n2 + 1) P (..., n2 + 1, ..., n6 − 1, t)
+ q32(n3 + 1) P (..., n2 − 1, n3 + 1, ..., t)
+ q23(n2 + 1) P (..., n2 + 1, n3 − 1, ..., t)
+ q42(n4 + 1) P (..., n2 − 1, ..., n4 + 1, ..., t)
+ q24(n2 + 1) P (..., n2 + 1, ..., n4 − 1, ..., t)
+ q45(n4 + 1) P (..., n4 + 1, n5 − 1, ..., t)
+ q54(n5 + 1) P (..., n4 − 1, n5 + 1, ..., t)
− (q12 n1 + q21 n2 + q62 n6 + q26 n2

+ q32 n3 + q23 n2 + q42(n5, n6) n4

+q24(n5, n6) n2 + q45 n4 + q54 n5) P ({ni}, t)
(4)
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Coupling by diffusion within the cluster happens on
a time scale below 1 ms, i.e., it is fast compared to
the time scale of Ca2+-dependent state changes of the
Siekmann model of a few ms. Hence, the concentra-
tion profile reaches is stationary state on the channel
state dynamics time scale and we can assume the local
Ca2+ concentration to depend on the number of open
channels n5 and n6 but not additionally on time. That
renders the Ca2+-dependent rates functions of n5 and
n6: q42(n5, n6), q24(n5, n6). These rates can then not be
taken out of the sum when calculating the moment’s
dynamics.

All existing ODE models for the IP3R state dynam-
ics are rate equations for the first moment of the state
probabilities [33,34]. They are derived from

d
dt

〈ni〉 =
∑

{ni}
niṖ ({ni}, t). (5)

Only edges connected to state i, as shown in Fig. 5,
contribute terms to the moment dynamics of ni. We
find

d
dt

〈n1〉 = − q12 〈n1〉 + q21 〈n2〉
d
dt

〈n2〉 = − (q21 + q26 + q23) 〈n2〉 + q12 〈n1〉
+ q62 〈n6〉 + q32 〈n3〉 − 〈n2q24〉 + 〈n4q42〉

d
dt

〈n3〉 = − q32 〈n3〉 + q23 〈n2〉
d
dt

〈n4〉 = − q45 〈n4〉 + q54 〈n5〉 − 〈n4q42〉 + 〈n2q24〉
d
dt

〈n5〉 = − q54 〈n5〉 + q45 〈n4〉
d
dt

〈n6〉 = − q62 〈n6〉 + q26 〈n2〉. (6)

With the state number dependence in the ligand depen-
dent rates q42(n5, n6) and q24(n5, n6) showing up in the
dynamics for 〈n2〉 and 〈n4〉 we see that second moments
contribute to the dynamics of the first moments. Hence,
we need to determine their dynamics also. Using the
the master equation Eq. (4) for both higher moments
we find

d
dt

〈n4 q42〉 = −〈n4 q242〉 + 〈n2 q24 q42〉
+ q62 (−〈n4 n6 q42〉 + 〈n4 (n6 − 1) q42(n6 − 1)〉
+〈n4 q42(n6 − 1)〉)
+ q26 (−〈n2 n4 q42〉 + 〈n2 n4 q42(n6 − 1)〉)
+ q45

(−〈n2
4 q42〉 + 〈n2

4 q42(n5 + 1)〉
−〈n4 q42(n5 + 1)〉)
+ q54 (−〈n4 n5 q42〉 + 〈n4 (n5 − 1) q42(n5 − 1)〉
+ 〈n4 q42(n5 − 1)〉
−〈(n5 − 1) q42(n5 − 1)〉 − 〈q42(n5 − 1)〉) (7)

d
dt

〈n2 q24〉 = −q21〈n2 q24〉 + q12〈n1 q24〉
+ q62 (−〈n2 n6 q24〉 + 〈n2 (n6 − 1) q24(n6 − 1)〉
+ 〈n2 q24(n6 − 1)〉
+〈(n6 − 1) q24(n6 − 1)〉 + 〈q24(n6 − 1)〉)
+ q26

(−〈n2
2 q24〉 + 〈n2

2 q24(n6 + 1)〉
−〈(n6 + 1) q24(n6 + 1)〉 + 〈q24(n6 + 1)〉)
+ q32〈n3 q24〉 − q23〈n2 q24〉
+ 〈n4 q24 q42〉 − 〈n2 q224〉
+ q45 (−〈n2 n4 q24〉 + 〈n2 n4 q24(n5 + 1)〉)
+ q54 (−〈n2 n5 q24〉 + 〈n2 (n5 − 1) q24(n5 − 1)〉
+〈n2 q24(n5 − 1)〉) (8)

The occurrence of third moments here illustrates the
hierarchy of moment equations, where the first moment’s
dynamics depend on a combination of first and second
moments (n2 and n4 dynamics in Eq. (6)), while the
second moments depend on the combination of second
and third moments (Eq. (7)), and so on.

Measured CV values for IPIs above 0.4 strongly sug-
gest higher moments not to be negligible. Hence, we
do not learn from experiments, where we can cut off
higher moments to get a finite number of ODEs. How-
ever, higher moments might destabilize stable station-
ary states of the first moment [109] and thus drive
the concentration dynamics. Hence, they are worth to
be studied. All existing ODE models of IP3R state
dynamics approximate higher moments by products of
first moments and averages of functions by functions
of averages like 〈n2q42(n5, n6)〉 = 〈n4〉q42(〈n5〉, 〈n6〉),
〈n4q24(n5, n6)〉 = 〈n2〉q24(〈n5〉, 〈n6〉). That allows for
cutting the hierarchy of moment equations after the
first moment. That neglects fluctuations.

We suggest to study whether higher moments may
drive puff dynamics and where the hierarchy of moment
equations can be cut off. This might lead to a set of
ODEs as Ca2+ signalling model with realistic param-
eter values, which establishes the ability to simulate
time courses with all the computational comfort ODEs
provide.

5 Spike generation as first passage process
with time dependent transition probabilities

We would like to present a concept calculating the
moments of the ISI distribution in this section as it
naturally corresponds to the random spike timing. We
also suggest a method to invoke global processes mod-
ulating the local dynamics.

The stochastic element of such a formulation of spike
generation is a single cluster described by its IPI,
puff duration and amplitude distributions. Such an
approach dispenses with detailed intracluster concen-
tration dynamics [98]. A model in the same spirit set
up to simulate time courses has been developed by Cal-
abrese et al. [14]. Clusters open sequentially. Once a
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Fig. 6 Starting from zero puffs, any IP3R cluster may start
the first puff randomly, increasing Ca2+ locally (orange iso
surfaces). This means going from state 0 to state 1. From
there on there are many different ways to reach the criti-
cal nucleus with Ncr open clusters at which a global Ca2+

spike occurs. Averaging over all Npaths paths from 0 to Ncr

open cluster leads to a linear chain of states indexed by
the number of open clusters and connected by transitions
characterized by waiting time distributions Ψi,i±1

critical number Ncr of open clusters has been reached,
the remaining ones will open with almost certainty due
to coupling by Ca2+ diffusion and the positive feed-
back by CICR. There are many (Npaths) paths from all
clusters closed to this critical number (see Fig. 6). The
ISI distribution is the distribution of first passage times
from 0 to Ncr open clusters with this approach.

The negative feedback terminating spikes entails a
very small cluster open probability just after a global
spike, from which all clusters slowly recover. Thus, slow
time scales from global processes enter as a slow time
dependence of the cluster IPI, puff duration and ampli-
tude distributions.

5.1 Linear chain of states

We suggest to radically simplify the problem to reach a
system which describes general properties not depend-
ing on assumptions restricting the validity of results
too much and to reach possibly analytically tractable
equations. We obtain a linear chain of states by averag-
ing over all possible paths from 0 to Ncr open clusters.
That chain of states is indexed by the number of open
clusters. The states are connected either by transition
rate functions fi,i±1(t, γ) or waiting time distributions
Ψi,i±1(t, t − t′, γ) that both result from puff properties.

The transition probabilities pick up slow time scales
by their dependence on the time t since the last global
spike. The probability to leave the initial state 0 and
go further up at early times after a global spike is
very small, such that no puffs occur early. One can
almost only move to the left in the linear chain. Fig-
ure 8 shows exemplary waiting time distributions with

recovery from global negative feedback for initial and
later times.

Recovery from global negative feedback is described
by a transient with rate γ. For the case of transition
rates, we have

fi,i+1(t) = λi,i+1 (1 − e−γt), fi,i−1 = λi,i−1.

After about tr = 5γ−1 the inhibitory effect vanishes
and the system has recovered globally, i.e., fi,i+1(t >
tr) ≈ λi,i+1.

The description with transition rates uses asymp-
totically markovian rates that are asymmetric in the
sense of the recovery from global negative feedback only
affecting the up rates. This is the case, because nega-
tive feedback influences the probability of clusters open-
ing, not closing. For the case using waiting time dis-
tributions, they are the probability distributions from
which a time value is drawn that determines when to
jump to the next state, i.e., the time to the next open-
ing or closing of a cluster. They depend on the time
t since the last global spike, the relative time spent in
a state Δt = t − t′, where t′ is the time of entering
the current state, and the current and target state i
and i ± 1, respectively. The direction of the jump is
drawn from the splitting probabilities, which are the
relative weights, i.e., time integrals over Ψi,i±1 at t,
of possible outgoing transitions, and add up to one.
This allows evaluating the system when using double
exponentially distributed waiting times. The first time
reaching the critical nucleus Ncr is equivalent to gen-
erating a cell wide spike. We are, therefore, interested
in the moments of the first passage time probability
distribution to reach Ncr.

Experiments show that puff times often do not
strictly follow an exponential distribution, but rather a
double exponential in some cases, Fig. 7. This requires
using waiting time distributions instead of rate func-
tions and to use the general master equation, which
is formulated more generally in terms of probability
fluxes.

Apart from choosing the state variables of the state
scheme, the Ψ ’s or f ’s contain all the physics. This
includes effects of stimulation, and positive and nega-
tive feedback from CICR on short time scales, but also
recovery from global negative feedback on long time
scales.

Positive feedback by CICR means the more clusters
are open the larger is the open probability of the closed
clusters. In mathematical terms, the λi,i+1 are increas-
ing functions of i. One possible choice is

λi,i+1 = λ0([IP3]) (NT − i)(1 + i)k, (9)

where stimulation strength is included via the IP3 sen-
sitive puff frequency λ0 [26], NT is the total number
of clusters, and k ∈ {1, 2, 3} some model parameter
to quantify the strength of the positive feedback. Left-
going rates in their most simple form account for the
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Fig. 7 Interpuff interval
distributions for SH-SY5Y
and HEK cells at resting
[Ca2+] with double
exponential fits [99]
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Fig. 8 A Ψi,i+1 to go a state up vanishes at early times
t′ (dotted) for early times t − t′. The global inhibitory
effect only allows fast upwards transitions only after enough
time has passed (straight line). B Ψi,i−1, downwards transi-
tions are not immediately affected by global negative feed-
back, but they change due to the normalization condition∫ ∞
t′ dt (Ψi,i+1(t, t − t′) + Ψi,i−1(t, t − t′)) = 1. Future mod-

elling has to adapt waiting time distributions of this type
to IPI and puff duration distributions

number of open clusters like

λi,i−1 = i λ−. (10)

with a single cluster closing rate λ−. The first and sec-
ond moments of the first passage time distribution from
0 to Ncr open clusters can be calculated for very gen-
eral fi,i±1 or Ψi,i±1 with the method described in Fal-
cke and Friedhoff [39]. The only requirement is that
the fi,i±1 or Ψi,i±1 can be Laplace transformed. This
is possible for the Ψi,i±1 despite their dependency on
t and t − t′ if the t-dependency is exponential like
Ψi,i±1 ∝ ψi,i±1(t − t′)e−γt [39]. Therefore, this method
provides a basis for investigating a large variety of
positive feedbacks by the choice of i-dependency of
rates and waiting times, puff duration properties by the
choice of left-going rates and t−t′-dependency, pathway
properties by the choice of [IP3]-dependency, etc.

5.2 Calculating the CV

The state scheme presented in Fig. 6 and its transi-
tion rate functions (or waiting time distributions) define
a (generalized) master equation, which can be solved
using Laplace transforms to determine the moments of
the first passage time distribution to reach state Ncr

[39]. The only requirement towards the waiting time
distributions is that their Laplace transform exists. In
case of transition rate functions, solving the master
equation yields the Laplace transform (denoted by a

tilde) of the probability vector P̃i(s) for a process that
started in state i at t = 0 as

P̃i(s) = [1s − E]−1 ri +
∞∑

k=1

k−1∏

j=0

B̃(s + jγ)
[
1(s + kγ)− E

]−1
ri.

(11)

Solving the generalized master equation including
the waiting time distributions gives as a solution the
Laplace transforms of the probability flux vector,

Ĩ(s) =
[
1 − G̃(s)

]−1
q̃(s) +

∞∑

k=1

k−1∏

j=0

Ã(s + jγ)

× [
1 − G̃(s + kγ)

]−1
q̃(s + kγ) (12)

where A, B, E, and G are matrices that depend on
the length of the chain of states N and the transition
rates or waiting time distributions, fi,i±1 and Ψi,i±1,
respectively, and ri and q̃ contain the initial conditions,
as explained in [39].

Application of this theory to a chain with state inde-
pendent transitions, as it might result from a random
walk, found that the CV has a minimum for a cer-
tain resonant length N̄ . For a given set of parameters,
CV(N), and therefore, the value of N̄ can be controlled
by varying the rate of recovery from negative feedback
γ. The stochastic process to reach state N̄ for the first
time is, therefore, more precise than reaching smaller
or larger values of N for the first time. This is interest-
ing in its own and for the general theory of stochastic
physics, but does not resemble the robustness of the
CV against changes in Ncr found in Ca2+ signalling.
Here the CV is constant and independent of the var-
ious number of IP3R clusters per cell found in exper-
iments, due to cell-to-cell variability. Hence, while the
approach described in ref. [39] provides the tools it has
not solved the problem, yet. Future modelling of Ca2+

signalling, therefore, needs to properly define the tran-
sition rate functions fi,i±1 or the waiting time distribu-
tions Ψi,i±1 to reproduce the measured properties of the
CV, in particular its robustness against cell variability
and variable conditions.

CICR and spatial coupling of clusters have to be
reflected by the transitions probabilities to model Ca2+

spike generation. The probabilities for opening of more
clusters, derived from Ψi,i+1(t, t − t′, γ) or fi,i+1(t),
increases with the Ca2+ concentration due to CICR,
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i.e., it increases with the number of open clusters. Due
to spatial coupling by Ca2+ diffusion, it also increases
with the number of closed neighbors of open clusters
and thus could pick up geometrical or spatial aspects.
Ca2+ binding molecules in the cytosol decreasing Ca2+

diffusion would decrease the probability of opening
more clusters. However, this still has to be worked out.

6 Similarities and differences to neural
spiking

It is interesting and potentially useful to discuss in
which respects Ca2+-spiking resembles or differs from
the spiking activity of neurons, a biological problem
that has been quantitatively explored by mathematical
modeling to an impressive extent [48,52]. This concerns
the single neuron’s spontaneous activity and its char-
acterization by interspike interval (ISI) histograms, ISI
correlation coefficients, and spike train power spectra,
the autonomous activity of many neurons in recurrent
networks, and the encoding of time-dependent stimuli.

Obvious differences between the two forms of spik-
ing are (i) the physical quantity that undergoes spiking
(Ca2+ concentration vs trans-membrane voltage), (ii)
the time-scales and typical mean ISIs (several sec to
minutes for Ca2+-spikes vs several to hundreds of ms
for neurons), and (iii) the constancy of the spike form
(the shape of Ca2+ spikes is more variable than that
of neural action potentials). A technical but important
difference is the typical length of experimental record-
ings: neural spike trains may contain many thousands of
spike pulses in a quasi-stationary setting, whereas Cal-
cium spike trains are mostly limited to less than a hun-
dred spikes. This poses a severe limitation for the deter-
mination of certain higher order statistics, such as inter-
spike interval correlations. Related to this, for many
sensory neurons, researchers can systematically explore
the information transmission by presenting well-defined
sensory (eg. acoustic, visual or electric) stimuli in the
form of harmonic or broadband signals. This allows
to study whether neurons preferentially encode infor-
mation about slow, intermediate or fast stimulus com-
ponents (see, for instance, [9,27,77]). In Ca2+ experi-
ments, one is mostly concerned with presenting a cer-
tain amount of signaling molecules in a step-like man-
ner, which resembles the first experiments in neuro-
science, see e.g. the famous work of Lord Adrian [1]).
This, however, seems to be only a consequence of the
current technical limitation and the question how the
sequence of Ca2+ spikes encode truly time-dependent
signals may come into focus once more spikes can be
recorded in experiment and stimuli can be better con-
trolled.

Biophysically, it is interesting that both spiking phe-
nomena rely on the opening and closing of ionic chan-
nels and the positive and negative feedback loops
are mediated by the Ca2+ or voltage-dependence of
the opening and closing rates of these channels. The

main players in the neural dynamics are the Na+ and
K+-selective voltage-dependent ion channels. This is
described in the framework of the famous Hodgkin-
Huxley model for the voltage across the neuron mem-
brane V (t) (see standard textbooks on the topic, e.g.,
[24,52])

C
dV

dt
= IExt − IK − INa − IL, (13)

IK = gKn4(t)(V − EK), INa = gNam
3(t)h(t)(V − ENa),

IL = gL(V − EL), (14)

where C is the membrane capacitance and IExt is an
external current that can serve as an stimulus. The vari-
ables IK, INa, IL describe ionic potassium, sodium and
leak currents, respectively. The parameters gK, gNa, gL
and EK, ENa, EL are the corresponding maximal con-
ductances and reversal potentials. The remaining vari-
ables m(t), n(t) and h(t) are the gating variables that
are of particular importance for the generation of an
action potential. They are described by

τx(V )
dx

dt
= x∞(V ) − x (15)

where x can be substituted by n,m or h. Much like
in early modeling of CIRC by Ca2+ channels the vari-
ables m and n describe two fast binding processes that
activate certain channels, while h describes a slow pro-
cess that inactivates the sodium-selective channels after
a depolarization of the membrane. In a Ca2+ channel
model this would correspond to the fast activation due
to the binding of activating Ca2+ and IP3 and the slow
inactivation due the binding of inhibitory Ca2+.

The positive feedback loop that is essential to under-
stand the upstroke of the action potential is the sodium
dynamics: sodium is in excess outside the cell, the open-
ing probability of the Na+ selective channels increases
upon depolarization. A small depolarization will thus
lead to the opening of some channels, which causes Na+

ions to rush into the cell, which depolarizes the mem-
brane further, leading to more channel openings and
so forth. This positive feedback loop can be compared
to the puff generation via Ca2+-induced Ca2+ release
(CIRC) but also to the accelerated puff generation via
the global Ca2+ concentration prior to a cell-wide Ca2+-
spike.

Inactivation of Na+ channels and activation of K+-
selective channels (with potassium being in excess
inside the cell) leads to the termination of the action
potential. Put in mathematical terms, negative feed-
back loops on a somewhat slower timescale explain the
second half of the neural spike—this again is very sim-
ilar on a mathematical level to the mechanism at work
in Ca2+ spiking.

There are features in the neural membrane dynamics
that are sensitive to time-dependent input currents and
there are features which are not. Among the latter is
the exact shape of the action potential—once the volt-
age is sufficiently depolarized, a largely stereotypical
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action potential is generated. To simplify the descrip-
tion, one may cut out this stereotypical part of the
dynamic response as it cannot contribute to the signal
transmission property of a neuron and focus on what is
really the signal-dependent part. This is what is done
in an Integrate-and-Fire (IF) model:

τV
dV

dt
= f(V ) + s(t), if V (t) ≥ VT → V (t) = VR

(16)

where the more involved dynamics of the different ion
channels and corresponding currents are subsumed in
a simplified function f(V ) that describes the currents
up to some threshold VT. Interestingly, the particular
shape of f(V ) can be obtained experimentally [3,4].
Brette [11] argues that the positive Na+ feedback that
sets in after a particular voltage is crossed is so abrupt
that a simple linear model f(V ) = μ−V with constant
parameter μ, i.e., the famous leaky Integrate-and-Fire
(LIF) model, describes the sub-threshold dynamics of
a real neuron best.

The function s(t) could be a time-dependent sig-
nal or a stochastic processes accounting for intrinsic
and/or external noise. Indeed, especially the generation
of the action potential is a stochastic process due to
the presence of multiple sources of noise. This includes
channel noise, quasi random input from other neurons
(network noise) and the unreliability of synapses [101].
Many of these noise sources can be approximated by a
Gaussian stochastic process, and often the simplifying
assumption of strictly uncorrelated (white) Gaussian
noise is made and so will we do in the remainder of
this paper. We would like to mention the limitations
of this assumption. Some sorts of channel noise [42,75]
and very often for network noise [30,103], fluctuations
display significant correlations. Furthermore, for strong
synaptic connections, the shot-noise character of neural
network noise invalidates the Gaussian approximation
in some cases [70].

Hence, when we want to mimic spontaneous stochas-
tic spiking, a simple choice for the driving current is to
set s(t) =

√
2Dξ(t), i.e., to use a white Gaussian noise

of intensity D with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t+τ)〉 = δ(τ).
For concreteness, we state again the standard stochas-
tic model, the leaky integrate-and-fire model with white
Gaussian noise:

τV
dV

dt
= −V + μ +

√
2Dξ(t), if V (t) ≥ VT → V (t) = VR

(17)

Note that the spike is not explicitly modelled, instead
if V (t) reaches the threshold a spike is said to be emitted
at time ti = t and the voltage variable is reset to the
reset value VR. The abstract spikes are described by
delta-functions δ(t − ti) and form the spike-train, i.e.,
the sum of all spikes: δ(t − ti)

x(t) =
∑

δ(t − ti) (18)

The spike train is the essential output of an IF model
and its different statistics under the influence of noisy
stimulation currents has been the subject of many stud-
ies (see [13,44,51,101] for reviews of stochastic IF mod-
els). We note that the reset after a spike may occur
instantaneously or with some refractory period τref that
accounts for the temporal extent of the action potential
in a conductance-based model.

Several statistics of neural spike trains are also
routinely studied for Ca2+ spikes. The stationary
spike rate is given by an ensemble average, r0 =
〈x(t)〉 but can be also determined via a time aver-
age, r0 = limT→∞ 1/T

∫ T

0
dt x(t) = limT→∞ N(T )/T

(where N(T ) is the number of spikes in the time interval
T ). Statistics of the interspike interval Ii = ti−ti−1 (the
time between to consecutive spikes) have been already
discussed for Ca2+ spikes: the mean interval 〈I〉 = 1/r0,
the coefficient of variation CV = 〈(I − 〈I〉)2〉/〈I〉, and,
of course the most complete description of the single
interval, the full ISI probability density function (PDF)
ρ(I). There are, however, also a number of statistics
that are not as common in the study of Ca2+ spikes
but well established in the computational neuroscience
community. These include (i) count statistics, especially
the Fano factor F (T ) = 〈(N(T ) − 〈N(T )〉)2〉/〈N(T )〉
that compares the growth of the spike count’s variance
to its mean (see, e.g., [21,105] for studies that high-
light the importance of the Fano factor and [84] for a
study that investigates the Fano factor in the context
of Ca2+ spiking), (ii) the spike-train correlation func-
tion C(τ) = 〈x(t)x(t + τ)〉 − 〈x(t)〉2 that describes the
probability to find a spike at time ti + τ if a reference
spike occurred at time ti. This statistics bears informa-
tion of the spike generation process, for instance experi-
mentally and theoretically obtained spike-train correla-
tion functions usually have a decreased firing probabil-
ity right after a spike has occurred reflecting refractory
processes similar to what is observed in Ca2+ puffs.
Often, oscillatory activity is better characterized in the
Fourier domain by the spike-train power spectrum:

S(f) = lim
T→∞

〈x̃(f)x̃(f)∗〉
T

=
∫ ∞

−∞
dτ ei2πfτC(τ) with

x̃(f) =
∫ T

0

dt x(t)ei2πft. (19)

According to the first defining equation, the power spec-
trum is given by the variance of the Fourier coeffi-
cients x̃(f) of the spike train in a time window T . How-
ever, according to the second equation and the Wiener–
Khinchine theorem [46], it is also given by the Fourier
transform of the autocorrelation function. Turning back
to the interspike intervals, we mention finally the serial
correlation coefficient (SCC):

ρk =
〈(Ii − 〈Ii〉)(Ii+k − 〈Ii+k)〉〉

〈(Ii − 〈Ii〉)2〉 (20)
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Fig. 9 Power spectrum of an LIF model with strong input
v̇ = μ − v +

√
2Dξ(t). The high frequency limit reflects

the mean firing rate r0, while the low frequency limit bears
information about the variability of the spike train. In the
considered case of strong mean input μ � vT the interspike
interval PDF can be approximated by an inverse Gaussian
distribution that is fully characterized by r0 and CV . Param-
eters: μ = 10, D = 1, vR = 0 and vT = 1

that puts the covariance between two ISIs that are
lagged by an integer k in relation to the variance of
the single interval providing a number between −1 and
1. Correlations among ISIs may reflect slower processes
that are at work in the driving input or in the intrin-
sic dynamics of the neuron. For instance, a negative
SCC of adjacent intervals indicates that an ISI longer
than the mean is on average followed by an interval
shorter than the mean and/or the other way around.
Such correlations have been found in many neurons (see
[2,41] for reviews) and may lead to an improved infor-
mation transmission [18,19]. Many of these statistics
are related, as it can be easily demonstrated by means
of the power spectrum.

We have already pointed out the relation between
spike-train correlation function and spike-train power
spectrum via the Wiener-Khinchine theorem. The power
spectrum, however, also contains information on the
interval statistics (see [22]). In the high-frequency limit
of a stationary stochastic spike train, the spectrum sat-
urates at the firing rate (the inverse of the mean ISI),
limf→∞ S(f) = r0 = 1/〈I〉. If intervals are indepen-
dent, i.e., if we deal with a renewal spike train, the spec-
trum attains also a simple form in the opposite limit of
vanishing frequency:

lim
f→0

S(f) = r0CV 2, (21)

which means that by comparing the high- and low-
frequency limits we can read off how regular the renewal
spike train is. More generally, the full spike-train power
spectrum of a renewal point process can be obtained
from the knowledge of the interspike interval proba-
bility density, more specifically, its one-sided Fourier

transform, ρ̃(f), via the expression [91]

S(f) = r0
1 − |ρ̃(f)|2
|1 − ρ̃(f)|2 . (22)

The spectrum can thus be calculated for the leaky IF
model driven by white Gaussian noise [57] (using much
earlier results for the Laplace transform of the first-
passage-time density of an Ornstein–Uhlenbeck process
[23]), because in this model, the reset of the voltage
erases any memory about previous ISIs and the driv-
ing noise is uncorrelated and thus does not carry mem-
ory either. Since the exact result for the power spec-
trum uses higher mathematical functions (the parabolic
cylinder functions), it is instructive to look for a further
simplification, which can be achieved if the system is in
the strongly mean-driven regime μ � VT − VR. In this
case, the statistics of the LIF model is close to that
of a perfect IF model with f(V ) = μ (omitting the
leak term on the right hand side of Eq. (17)). For this
model the ISI density is an inverse Gaussian probability
density [47] the Fourier transform of which is a simple
exponential function:

ρ(I) =
|VT − VR|√

4πDI3
· exp

[

− (VT − VR − μI)2

4DI

]

, (23)

ρ̃(f) = exp

{
μ

2D
(VT − VR)

(

1 −
√

1 − i
8πfD

μ2

)}

(24)

In Fig. 9, we display a simulated spike-train power
spectrum for an LIF model with strong mean input
(μ = 10 � VT − VR = 1) and highlight the limit cases,
from which both the firing rate r0 and coefficient of vari-
ation CV can be readily obtained. The simulation is also
compared to Eq. (22), using as an approximate descrip-
tion ρ̃(f) from Eq. (24); the approximation agrees very
well for this example, because the constant drift μ is
dominating the subthreshold dynamics so strongly that
the LIF dynamics is close to that of a perfect IF model.
Comparable power spectra have indeed been reported
in Ca2+ spiking [82].

Many extensions of the simple one-dimensional IF
model have been studied analytically, such as models
with time-dependent threshold [56] or models with col-
ored [12,64,74] or non-Gaussian noise [29,65,70]. In
higher-dimensional stochastic IF models we can also
reproduce non-renewal behavior observed in many neu-
rons in the form of a non-vanishing serial correlation
coefficient, ρk = 0 for k > 0. As in Ca2+ spiking,
also in neural spiking there are often slower processes
at work that steer the pulse-generating process—either
as a simple external control or as a feedback of the
spike train onto the spike generator. This can be easily
incorporated into the Integrate-and-fire framework by
adding a slow variable. Consider the following example,
where the membrane potential is affected by an addi-
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Fig. 10 Power spectrum S(f) (left) and serial correlation
coefficients ρk (right) of an adaptive LIF model with μ = 10,
D = 1.0, τm = 1, τa = 2, Δ = 3. Power spectrum (blue
line on the left) and SCCs (blue symbols on the right)
are obtained form the original spike train of the adapting
neuron; orange line (left) and symbols (right) are obtained
from a shuffled version of the same spike train (ISIs in
the sequence are randomly shuffled, which removes inter-

val correlations and leads to a renewal spike train). Accord-
ingly the low frequency limit for the power spectrum of the
renewal spike train has a higher power compared to the non-
renewal case. Generally, a decreased power at low frequency
may improve the signal to noise ratio for potential low fre-
quency signals, hence, improving the information transmis-
sion properties of the neuron

tional negative adaptation current a(t):

τv
dV

dt
= μ − V − a +

√
2Dξ(t), (25)

τa
da

dt
= −a

If V (t) > VT then V (t) → VR and a → a + Δ
(26)

In the last line, we complemented the usual reset rule
for the voltage by an incrementation rule for the adap-
tation variable a(t): it is increased by a value Δ when
a spike occurs. In between spikes, according to Eq. (26)
the adaptation variable will decay exponentially with
the time constant τa that is typically larger than the
membrane time constant or the mean interspike inter-
val and ranges between 50ms and several seconds. A
sequence of spikes occurring in rapid succession (as we
for instance observe when the neuron is subject to a
depolarizing current step) leads to a large value of the
adaptation variable which has an inhibiting effect on
the voltage dynamics in Eq. (25)—the response to the
current step will be initially a rapid increase that is
followed by an adaptation to a much lower value.

The IF model endowed with an adaptation current
is conveniently termed adaptive IF models and can be
thought of as a simplification of a conductance-based
model with a Ca2+ gated K+ current. Since the adap-
tation current is not reset to a fixed value but increased
upon spiking it carries information of past ISIs and may
lead to ISI correlations. Indeed the model and some
related ones as for instance the IF model with dynami-
cal threshold have been shown to generate nonrenewal
spike trains and, specifically, negative interspike inter-
val correlations [20,58]; analytical methods to calculate

these correlations have been worked out over the last
years [76,78].

As a consequence of the nonrenewal character of the
spike train, the power spectrum is not described any-
more by Eq. (22) but by a more complex expression
involving higher order interval distributions (see, e.g.,
[51]). While the high-frequency limit of the spectrum
is still given by the firing rate (black dashed line in
Abb. 10), the zero-frequency limit now involves also the
serial correlation coefficients:

lim
f→0

S(f) = r0CV 2

(

1 + 2
∞∑

k=1

ρk

)

, (27)

which in the renewal case reduces to Eq. (21). The effect
of the negative ISI correlations is thus to reduce power
at low frequencies, which can be clearly seen by compar-
ing the original spectrum to the power spectrum of the
shuffled spike train. This effect is especially important
for the transmission of slow stimuli (so far not included
in the model Eqs. (25), (26)): the power spectrum of
the spontaneous state is a good approximation for the
noise background in the case of a time-dependent signal
(e.g., a cosine signal with low frequency) being present.
If noise power is reduced at low frequencies, this can
increase the signal-to-noise ratio [18,19].

It is conceivable that some of the concepts reviewed
here for neural spike trains may become relevant and
applicable to Ca spike trains once longer recordings
and better temporal control of stimuli become possible.
Since in particular slower processes are at work in the
intracellular Ca2+ dynamics, models like the adaptive
integrate-and-fire model that we discussed may serve as
an inspiration to capture the cumulative refractoriness
of Ca2+ spikes.
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7 Conclusion

Modelling of Ca2+ signalling has taken place in the
tradeoff between models accounting for the randomness
of puffs and spikes, cell variability and measured param-
eter dependencies on one side and rate equation models
convenient to simulate time courses on the other side in
recent years. Rate equation models need further devel-
opment to reproduce measured parameter dependen-
cies. We suggest to include higher moment’s dynamics
derived from the Master equation to account for spike
generation by fluctuations. Alternatively, approaches
like spike generation as first passage of a random walk
on a linear chain of states as presented in Sects. 5 and
5.1 might be used.

Stochastic theory of neuronal spiking might serve as
a role model for what can be achieved with stochas-
tic theory of Ca2+ spiking. The main challenges ahead
are to go beyond simple renewal approaches for spike
generation towards ISI correlations, cumulative refrac-
toriness and other phenomena comprising several ISI,
explanation of the concentration response relation of
the ISI and the robustness properties of the moment
relation.

The task of mechanistic mathematical modelling in
cell biology is to identify mechanisms on the basis of
formulating them as hypothesis in mathematical mod-
els. Here, the agreement with experimental data serves
as part of the hypothesis verification. Rate equation
models fail here with respect to the agonist concentra-
tion response relation of the average interspike inter-
val, the sensitive dependence of the average interspike
interval on parameters of spatial coupling (diffusion,
buffers, geometry) and of course the moment relation
as a defining property of Ca2+ spiking. Stochastic mod-
els still have to be developed to address these prob-
lems.

Such a model development may lead to answers to
obvious questions in the field. Frequency encoding is
one of the generally accepted and experimentally sup-
ported concepts providing meaning to Ca2+ signals [66].
However, spike timing is random. The spectrum of a
spike train with exponentially distributed ISI is flat.
The absolute refractory period introduces frequencies
with moderately larger power in the spectrum than the
average power [82], but essentially there is no typical
frequency in many IP3 induced Ca2+ spike sequences.
Taking the large cell-to-cell variability at a given ago-
nist concentration into account, there is no defined rela-
tion between agonist concentration and Ca2+ spike fre-
quency applying to all cells of a given type, but each cell
has its own relation. How can frequency encoding work
with these properties of spiking? What are the reasons
for the large cell variability and what does it mean?
Addressing these questions requires models that faith-
fully reproduce the properties of spike sequences includ-
ing their fluctuations but also have predictive power,

e.g., by telling us how the spike statistics will vary if
biophysical parameters are changed.
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