
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(7):3098-3119 | http://dx.doi.org/10.21037/qims-20-1360

Original Article

Continuous diffusion spectrum computation for diffusion-weighted 
magnetic resonance imaging of the kidney tubule system

Joāo S. Periquito1,2,3#^, Thomas Gladytz1#, Jason M. Millward1^, Paula Ramos Delgado1,3^,  
Kathleen Cantow2^, Dirk Grosenick4, Luis Hummel2^, Ariane Anger2, Kaixuan Zhao1^,  
Erdmann Seeliger2^, Andreas Pohlmann1^, Sonia Waiczies1^, Thoralf Niendorf1,3^

1Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; 2Institute 

of Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany; 3Experimental and Clinical Research Center, a Joint 

Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, 

Germany; 4Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany

#These authors contributed equally to this work.

Correspondence to: Prof. Dr. Thoralf Niendorf. Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 

13125 Berlin, Germany. Email: thoralf.niendorf@mdc-berlin.de.

Background: The use of rigid multi-exponential models (with a priori predefined numbers of components) 
is common practice for diffusion-weighted MRI (DWI) analysis of the kidney. This approach may not 
accurately reflect renal microstructure, as the data are forced to conform to the a priori assumptions of 
simplified models. This work examines the feasibility of less constrained, data-driven non-negative least 
squares (NNLS) continuum modelling for DWI of the kidney tubule system in simulations that include 
emulations of pathophysiological conditions.
Methods: Non-linear least squares (LS) fitting was used as reference for the simulations. For performance 
assessment, a threshold of 5% or 10% for the mean absolute percentage error (MAPE) of NNLS and LS 
results was used. As ground truth, a tri-exponential model using defined volume fractions and diffusion 
coefficients for each renal compartment (tubule system: Dtubules, ftubules; renal tissue: Dtissue, ftissue; renal blood: Dblood, 
fblood;) was applied. The impact of: (I) signal-to-noise ratio (SNR) =40–1,000, (II) number of b-values (n=10–50), 
(III) diffusion weighting (b-rangesmall =0–800 up to b-rangelarge =0–2,180 s/mm2), and (IV) fixation of the 
diffusion coefficients Dtissue and Dblood was examined. NNLS was evaluated for baseline and pathophysiological 
conditions, namely increased tubular volume fraction (ITV) and renal fibrosis (10%: grade I, mild) and 30% 
(grade II, moderate).
Results: NNLS showed the same high degree of reliability as the non-linear LS. MAPE of the tubular 
volume fraction (ftubules) decreased with increasing SNR. Increasing the number of b-values was beneficial 
for ftubules precision. Using the b-rangelarge led to a decrease in MAPEftubules compared to b-rangesmall. The use 
of a medium b-value range of b=0–1,380 s/mm2 improved ftubules precision, and further bmax increases beyond 
this range yielded diminishing improvements. Fixing Dblood and Dtissue significantly reduced MAPEftubules and 
provided near perfect distinction between baseline and ITV conditions. Without constraining the number of 
renal compartments in advance, NNLS was able to detect the (fourth) fibrotic compartment, to differentiate 
it from the other three diffusion components, and to distinguish between 10% vs. 30% fibrosis.
Conclusions: This work demonstrates the feasibility of NNLS modelling for DWI of the kidney tubule 
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Introduction

Kidney diseases are a major health issue, with increasing 
incidence and an estimated two million deaths per year 
worldwide due to acute kidney injury (AKI) (1-7). While 
several biomarkers are currently being investigated for 
diagnosis of AKI, to date clinical point-of-care biomarkers 
for AKI are still lacking (8-11). To address this urgent 
unmet clinical need, MRI may provide quantitative 
imaging markers to inform on the different stages of 
pathophysiology, improve prediction and interception of 
disease progression and evaluate treatment of AKI (6,12-20).

The renal tubules are a unique anatomical compartment 
of the kidney, comprising a large fraction of the renal 
volume. The tubular volume fraction can change due to 
(I) changes in the glomerular filtration rate, (II) alterations 
in tubular outflow towards and beyond the renal pelvis, 
(III) modulation of the transmural pressure gradient and 
(IV) changes in tubular fluid resorption (21). The tubular 
volume fraction may develop into a novel marker for 
clinical diagnostics of kidney diseases, for two reasons. First, 
MR-based assessment of the tubular volume fraction could 
serve as a diagnostic tool, for instance to detect glomerular 
hyperfiltration—a hallmark of early-stage diabetic 
nephropathy (22). It may also help in the distinction 
between AKI that is caused by obstructions of the urinary 
tract and AKI of other origins (23). Tubular atrophy and 
interstitial fibrosis play a major role in the microstructural 
changes occurring during kidney pathology e.g., renal 
allograft injury (24). Being able to assess renal fibrosis and 
alterations in the tubular volume fraction with non-invasive 
MRI would be clinically valuable (3,7,22,23,25-28). Second, 
as the renal capsule is comparatively rigid, changes in the 
tubular volume fraction will result in opposite changes 
in the renal blood volume fraction, thereby confounding 
the relationship between renal blood oxygenation level-
dependent (BOLD) T2*, oxygen saturation of hemoglobin, 
and tissue partial pressure of oxygen (21,29). Concomitant 
assessment of the tubular volume fraction will thus help to 

accurately interpret quantitative renal T2* data.
Diffusion-weighted MRI (DWI) probes self-diffusion 

of water in tissue on a microscopic level and reflects 
micro-morphological and (patho)physiological changes in 
renal tissue and renal diseases (30,31). When performing 
DWI of the kidney, the incoherent blood flow in the 
renal microvasculature contributes to pseudo-diffusion 
(32-38) resulting in a fast signal decay component. The 
displacement of water molecules in the renal tissue 
contributes a slow water diffusion component, according 
to the two-compartment model (32-38). Acknowledging 
the morphological and physiological importance of renal 
tubules, recent studies have shown that the intra-tubular 
fluid compartment introduces a third component in the 
renal DWI signal decay. To account for this tubular water 
diffusion component, a rigid tri-exponential model was 
proposed to better decipher diffusion MRI signals from the 
kidney (39,40).

The performance of rigid multi-exponential models is 
often highly dependent on initial values, and on the upper 
and lower boundaries of the optimization parameters (41). 
Fixing some coefficients of the rigid model is common 
practice to increase fit stability and to improve the 
sensitivity to physiological changes. This applies particularly 
to tri-exponential models (with six variables to fit) but 
runs the risk of introducing a bias (40). To address this 
limitation, an unbiased data-driven analysis of the diffusion 
signal decay is required. Non-negative least squares (NNLS) 
continuum modelling provides an alternative to rigid 
model fitting techniques, which does not require a priori 
assumptions of the number of components of the signal 
decay nor starting values (42-44). A predefined basis set 
of more than 500 exponential components spanning the 
entire range of feasible diffusion coefficients can be used 
as input to the NNLS algorithm. As output, the NNLS 
continuum modelling yields a spectrum of the contributions 
of all exponential basis vectors to the signal decay. NNLS 
continuum modelling can be a useful tool to determine the 

system and shows its potential for examining diffusion compartments associated with renal pathophysiology 
including ITV fraction and different degrees of fibrosis.
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number of major diffusion compartments actually present in 
the tissue, and offers a means for their quantification during 
(patho)physiological changes (43). It has been successfully 
employed for multicomponent diffusion analysis of 
microstructural alterations in multicellular tumor spheroids, 
bone marrow, the central nervous system, and liver as 
well as in the parenchyma of healthy organs of the upper 
abdomen (32,45-52).

Notwithstanding this pioneering work, the literature 
does not include reports on a systematic examination of the 
performance of NNLS-based multicomponent diffusion 
analysis of microstructural alterations in the kidney. 
Recognizing the opportunity and challenges of this task, 
this work presents a simulation study focusing on NNLS 
computation for DWI of the kidney tubule system. Such 
simulations are a crucial precursor to in vivo studies, in 
order to establish the optimal selection of experimental 
parameters, and to estimate effect sizes for power analysis 
to ensure appropriate sample sizes of experimental animals. 
Our numerical simulations center on three metrics including 
(I) the signal-to-noise ratio (SNR), (II) the number of data 
points needed for the characterization of the diffusion signal 
decay, and (III) the range of diffusion sensitization (b-value 
range), which are essential for renal DWI applications. To 
meet this objective, detailed numerical simulations were 
conducted with the goal to optimize renal DWI parameters 
in order for the NNLS continuum modelling to provide 
an error of less than 5% and 10%, for the assessment of 
tubular fluid, intrarenal blood, and renal tissue volume 
fractions. As ground truth, a tri-exponential and a four-
exponential function using defined volume fractions and 
diffusion coefficients for each renal compartment were 
applied for baseline renal tissue conditions. To approach a 
pathophysiological scenario, NNLS continuum modelling 
was evaluated for conditions that mimic an increase in 
tubular volume fraction and different degrees of renal 
fibrosis.

Methods

Multi-compartment model

Two-compartment (bi-exponential) models generally 
used for representing DWI data of organs other than 
the kidney were recently shown to be unsuitable for fully 
representing renal DWI data, as they neglect the impact 
of the tubular volume fraction (39,40). Therefore, a three-
compartment model of the kidney was used, implementing 

a tri-exponential decay function with defined parameters 
according to the following equation:

   tissue tubules bloodb D b D b D
tissue tubules bloodSI f e f e f e− − −= + +  [1]

where SI is the normalized signal intensity as a function of 
b (b-value), ftissue the signal fraction of the tissue component, 
Dtissue the diffusion coefficient of restricted water diffusion 
in renal tissue, ftubules the signal fraction of the tubular 
component, Dtubules the pseudo-diffusion coefficient of the 
tubular fluid component, fblood the signal fraction of the 
blood component, and Dblood the pseudo-diffusion coefficient 
of the blood component.

Since the number of compartments might change in 
pathophysiological conditions of the kidney including the 
development of fibrosis, a fourth compartment was applied.
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where ffibrosis is the signal fraction of the fibrotic component, 
Dfibrosis the diffusion coefficient of restricted water diffusion 
in fibrotic tissue.

The sum of the fractions equals 1 in all  multi-
compartment models used.

NNLS continuum modelling

A multi-exponential  analysis based on the NNLS 
algorithm of Lawson and Hanson (53) was used. The 
NNLS MATLAB (The Mathworks Inc., Natick, USA) 
implementation was adapted from the open-source software 
AnalyzeNNLS from Bjarnason and Mitchell (43).

The diffusion signal decay yi can be expressed as a sum of 
exponential functions:

1 , 1, 2, ,i jb DM
i j jy s e i N−

== =∑   [3]

where sj is the relative amplitude for each partitioned 
D-value Dj, bi is the b-value that governs the diffusion 
sensitization for each data point in the signal decay, M is the 
number of logarithmically spaced D values (300 values were 
used), and N represents the total number of data points.

The NNLS algorithm is used to minimize:
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Eq. [4] includes a regularization term with a weighting 
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factor µ, found using generalized cross validation (54). The 
regularization term acts as a smoothing constraint that 
minimizes the curvature of the NNLS spectrum to provide 
a robust fit in the presence of noise. Another equally valid 
regularization paradigm used in the literature is L1-norm 
or sparsity regularization. The curvature regularization 
approach was chosen because of its analytic solvability, its 
justifiable assumption on the resulting spectrum and its 
successful use in the literature (32,45-52).

The output of NNLS is a diffusion coefficient 
distribution with distinct log-normal-like peaks. Each peak 
corresponds to a major (pseudo-)diffusion compartment. 
These peaks can be characterized by (I) area under the 
spectral curve fraction on the predefined logarithmic scale, 
and (II) geometric mean D coefficient. The number of 
peaks was not constrained a priori.

Numerical simulations

All numerical simulations were implemented in MATLAB 
using the open-source tool AnalyzeNNLS (43). The ground 
truth signal was created assuming a three-compartment or 
a four-compartment model {Eq. [1] and Eq. [2]} using three 
sets of parameters:
 The first parameter set was used to represent baseline 

conditions;
 The second parameter set was used to represent 

pathophysiological conditions of increased tubular 
volume fraction (ITV) (ftubules);

 The third parameter set was used to represent 
pathophysiological conditions of two degrees of 
renal fibrosis (ffibrosis).

Figure 1 describes the workflow from simulation of 
these parameters to visualization and mean absolute 
percentage error (MAPE) assessment. All parameters used 
for (I) baseline, (II) increased ftubules and (III) fibrosis (55-57)  
conditions are presented in Table 1. These parameters 
were obtained from the literature (39) and provide a fair 
approximation. The volume fractions ffibrosis of 10% and 30% 
represent grade I (mild) and a low grade II (moderate) of 
renal fibrosis, respectively, according to grading schemes 
used in human patients (grade I <25%, grade II >25–
50%, grade III >50% area) (56). Effects of experimental 
parameters such as the echo time and the diffusion time 
were not considered explicitly, but rather implicitly through 
varying SNR and the b-value range.

For each b-value, Rician noise was added to the 
signal. The signal SI was then fitted using the NNLS 

implementation and the common non-linear least squares 
(LS) fitting routine using a trust region growing algorithm 
[fastnnls routine, N-way toolbox for MATLAB (58)]. This 
procedure was repeated n=500 times for each (patho)
physiological condition (baseline, increased ftubules, two 
fibrotic conditions). Five hundred repetitions lead to 
error estimates with an uncertainty below 5% of the error 
magnitude. By using the same 500 realizations of noise 
for all cases we were able to reduce the impact of random 
fluctuation on our comparisons even further resulting in 
robust and interpretable results.

Non-linear least square fitting

The created tri-exponential function was also fitted with 
the common LS method using a trust region growing 
algorithm. For this purpose, starting values and parameter 
ranges were established (40) as summarized in Table 2 with 
the starting values for each fraction being balanced between 
the conditions at baseline and ITV.

SNR

Diffusion decays were simulated at different SNR conditions 
to explore the impact of the noise for the NNLS and LS 
approach. For this purpose, Rician noise was added to the 
synthetic multi-exponential signal decay. SNR was defined 
as the signal intensity of the first b-value (b=0 s/mm2),  
divided by the standard deviation of the noise added. The 
first b-value was used as an SNR reference, since acquiring 
b=0 s/mm2 scans is standard procedure in DWI studies and 
therefore facilitates comparisons with other studies (30). In 
order to keep the comparison between different SNR-levels 
and simulated scenarios free from statistical fluctuations, the 
same set of noise realizations (n=500) was used for all SNR-
levels and scenarios. An SNR range from 40 to 1,000 (SNR 
=40, 80, 120, 160, 200, 280, 360, 440, 520, 640, 760, 880, 
1,000) was chosen to cover the SNR of typical raw images 
as well as the SNR derived from restoration of DWI data 
using noise filtering (59-61). The SNR range also covers 
SNRs obtained from averaging over regions of interest 
(ROI) where the averaged SNRROI is proportional to the 
square root of the number of the pixels included.

Diffusion sensitization

To study the impact of the number of b-values, this 
parameter was varied from 10 to 50 b-values in increments 
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Figure 1 Workflow used for LS and NNLS computation for DWI of the kidney tubule. Numerical simulations were performed and 
analysed using NNLS continuum modelling. For the ground truth a tri-exponential function using defined volume fractions and diffusion 
coefficients for each renal compartment were applied. For NNLS and LS computations (patho)physiological conditions (baseline and ITV), 
range of b-values (from small b-value range: b=0–800 s/mm2 to large value range: b=0–2,180 s/mm2) and parameter fixation (Dblood and Dtissue 
fixed vs. Dblood and Dtissue not-fixed) were applied. MAPE was calculated (average n=500) using the ground truth as a reference. The results 
were displayed using a MAPE heat map showing the difference between the ground truth and the data obtained from NNLS or LS for each 
condition. From the MAPE heat map the percentage of combinations (SNR/number of b-values) with a difference between the ground 
truth and the NNLS data or the LS data of less than 5% or less than 10% were quantified and plotted in an error proportion plot. LS, 
least squares; NNLS, non-negative least squares; DWI, diffusion-weighted MRI; MAPE, mean absolute percentage error; SNR, signal-to-
noise ratio; fblood, volume fraction of blood; ftubules, volume fraction of tubules; ftissue, volume fraction of tissue; ffibrosis, volume fraction of fibrosis; 
Dblood, diffusion coefficient of blood; Dtubules, diffusion coefficient of tubules; Dtissue, diffusion coefficient of tissue; Dfibrosis, diffusion coefficient of 
fibrosis; b-value, diffusion weighting.

STEP 1 

STEP 2 

STEP 3 

STEP 4 

STEP 5
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of 5. We hypothesized that a larger number of b-values 
would result in a lower error for both fitting methods. 
However, increasing the number of b-values prolongs 
examination times and imaging protocols, which is not 
always feasible for in vivo experiments.

To investigate the impact of the range of b-values, 10 
sets of diffusion sensitization ranges were examined. For 
the first set, a b-value range of b=0 to 800 s/mm2 (small 
b-value range) was obtained from consensus-based technical 
recommendations for clinical translation of renal DWI (30). 
Figure 2A describes the decomposition of the 1st derivative 
of the diffusion decay together with the 1st derivative of the 
decay of individual components of a tri-exponential model 
including intrarenal blood, tubules and renal tissue. For the 
tubule system the full width half maximum (FWHM) of the 1st 
derivative encompasses a b-value range of b=40 to 460 s/mm2.  
The 1st derivative of the tissue signal component is dominant 
for b≥250 s/mm². For quantification of Dtissue and ftissue 
sampling of this b-range is important to obtain SI(b) and the 

1st derivative of SI(b). However, if Dtissue is known a priori the 
focus remains on b≤800 s/mm2 where most of the tubular 
signal component is decayed. For comparison diffusion 
sensitization was extended to b=0–1,110 s/mm2 (10 b-values), 
b=0–1,380 s/mm² (15 b-values, designated as medium b-value 
range), b=0–1,570 s/mm2 (20 b-values), b=0–1,710 s/mm2  
(25 b-values), b=0–1,840 s/mm2 (30 b-values), b=0–1,940 (35 
b-values), b=0–2,030 s/mm2 (40 b-values), b=0–2,110 s/mm2  
(45 b-values) and b=0–2,180 s/mm2 (50 b-values, designated 
as large b-value range). For each b-value range the largest 
b-value was set so that the expected relative signal intensity 
is equal to (1/number b-values) for the largest b-value 
(Figure 2B). In order to create an unbiased b-scale that 
does not favor any one component at the expense of any 
other, each b-value was distributed over the b-value range 
to yield a constant signal intensity decrement (1/number 
of b-values) from one b-value to another as outlined in 
Figure 2B, assuming the ground truth values outlined in 
Table 1. Maintaining the signal intensity decay constant 

Table 1 Summary of multi-exponential parameters used for the generation of the synthetic diffusion decay data

Parameters Baseline (39)
Increase of tubular 

volume fraction
Fibrotic conditions 

10%
Fibrotic conditions 

30%

Fraction blood (fblood) 0.10 0.05 0.10 0.10

Fraction tubules (ftubules) 0.30 0.50 0.30 0.30

Fraction tissue (ftissue) 0.60 0.45 0.50 0.30

Fraction fibrotic tissue (ffibrosis) 0.00 0.00 0.10 (56) 0.30 (56)

Diffusion blood (Dblood) 180.0×10–3 mm2/s

Diffusion tubules (Dtubules) 5.80×10–3 mm2/s

Diffusion tissue (Dtissue) 1.50×10–3 mm2/s 

Diffusion fibrotic tissue (Dfibrosis) 8×10–5 mm2/s (55,57)

fblood, volume fraction of blood; ftubules, volume fraction of tubules; ftissue, volume fraction of tissue; ffibrosis, volume fraction of fibrosis; Dblood, 
diffusion coefficient of blood; Dtubules, diffusion coefficient of tubules; Dtissue, diffusion coefficient of tissue; Dfibrosis, diffusion coefficient of 
fibrosis.

Table 2 Summary of LS fitting parameters

Compartment
Fraction (f) Diffusion (D)

Starting values Range Starting values (mm2/s) (40) Range (mm2/s) (40)

Blood (fblood) 0.075 [0.001; 0.999] (Dblood) 551×10–3 [9; 1,000]×10–3

Tubules (ftubules) 0.400 [0.001; 0.999] (Dtubules) 9.7×10–3 [2; 50]×10–3

Tissue (ftissue) 0.525 [0.001; 0.999] (Dtissue) 1.9×10–3 [0.01; 7]×10–3 

LS, least squares; fblood, volume fraction of blood; ftubules, volume fraction of tubules; ftissue, volume fraction of tissue; Dblood, diffusion 
coefficient of blood; Dtubules, diffusion coefficient of tubules; Dtissue, diffusion coefficient of tissue.
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from one b-value to the next ensures independence of 
the individual measurements of the signal decay, and is 
therefore a reasonable approach for quantification of the 
individual exponential contributions. The equidistant 
intensity drop from one b-value to the next was computed 
by interpolating on a fine evaluation of the tri-exponential 
decay with exponential weights in between the baseline and 
the increased tubular fraction case (fblood =0.075; ftubules =0.4; 
ftissue =0.525).

Under physiological conditions and upon changes in the 
tubular volume fraction, the physicochemical properties 
of renal tissue and intrarenal blood are recognized to be 
essentially invariable (62). It is therefore reasonable to 
study the effect of fixing the diffusion coefficients Dtissue and 
Dblood for these compartments. Fixing fitting parameters to 
improve the robustness of the fit is common practice (40), 
especially when dealing with multi-exponential functions, 
where at least six parameters are needed. We tested the 
effect of fixing diffusion coefficients on NNLS continuum 
modelling by setting the diffusion parameter to a predefined 
value for the slowest and fastest components. A similar 
simplification was applied for the NNLS continuum 
modelling by restricting the diffusion-coefficient-basis to 
the range of the intermediate component between 3×10–3 
and 33×10–3 mm2/s, and two single exponentials with known 
diffusion coefficients for the fast and slow components. 
The two fixed NNLS-basis-vectors were excluded from 

curvature regularization. Areas under the continuous 
diffusion spectrum were determined using the MATLAB 
function SUM between two adjacent minima in the spectra. 
Relative areas were obtained by dividing each peak by the 
total area obtained for all peaks.

MATLAB Code Availability Statement: The MATLAB 
code will be made openly available in GitHub at https://github.
com/JoaoPeriquito/NNLS_computation_of_renal_DWI.

Statistics

For the simulations the MAPE was used to show the 
percentage difference between the calculated value and the 
true value, for the 9×13 matrix of b-values and SNR values 
(Figure 1). MAPE is defined as:

100
x x

MAPE
x
−

⋅
′

=  [5]

where x’ is the calculated parameter and x the true-value. 
The Shapiro-Wilk test was used to assess for Gaussian 
distribution. MAPE values did not conform to a Gaussian 
distribution, thus non-parametric statistical tests were used 
including the paired Wilcoxon signed-rank test, the Kruskal-
Wallis test and Dunn’s post-hoc procedure. Differences 
in MAPE obtained for fixing vs. not-fixing the Dblood and 
Dtissue diffusion parameters, for the b-value ranges used 
(brange_small =0–800 mm2/s up to brange_large =0–2,180 mm2/s),  

Figure 2 Diffusion sensitization considerations. (A) The 1st derivative of the diffusion decay (purple) together with the 1st derivative of the 
individual components of a tri-exponential model: blood (red), tubules (orange) and tissue (green). For the tubules system the FWHM of the 
1st derivative encompasses a b-value range of b=40–460 s/mm2. The cyan line marks b=800 s/mm2. (B) Diffusion decay using a logarithmic 
scale. The number of b-values (n=20) was set so that the relative signal intensity is equal to (1/number of b-values) for the largest b-value. 
This approach yields a constant signal intensity decrement (1/number of b-values) from one b-value to the next, to ensure that individual 
measurements are independent of the signal decay. FWHM, full width half maximum; b-value, diffusion weighting.
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and for the physiological state (baseline vs. ITV) were tested 
independently using the paired Wilcoxon signed-rank test. 
Differences in MAPE among the 23 permutations of the 
independent variables volume fraction, b-value and fixation 
state—with each variable having two levels—were assessed 
with the Kruskal-Wallis non-parametric ANOVA test. 
To determine which specific pair-wise comparisons were 
different, Dunn’s post-hoc test was performed for selected 
pairwise comparisons with Holm’s correction for multiple 
comparisons. The accuracy to discriminate between baseline 
and the pathophysiological conditions of an ITV or renal 
fibrosis was evaluated using signal intensity-based receiver-
operating characteristic (ROC) curves. The area under the 
curve (AUC) was calculated and compared with DeLong’s 
test (63), using the R packages pROC (64), plotROC (65) and 
cutpointr (66). The Kruskal-Wallis test was used to compare 
the AUC of the fibrotic compartment between the simulated 
conditions of 30%, 10% and no fibrosis. Data analysis was 
done using the statistical computing environment R (v.3.3.4) 
(https://www.R-project.org).

Results

NNLS continuum modelling

Analysis of the simulated data with the NNLS continuum 
modelling resulted in a distribution of diffusion coefficients 
covering the full range expected for the three components. 
Figure 3 demonstrates that it is possible to ascribe each of 
the three peaks along the diffusion coefficient spectrum to a 
diffusion decay component. The left peak can be attributed to 
the slow-decay component of tissue (Dtissue: ~1.50×10–3 mm2/s),  
the middle peak to the intermediate-decay component from 
tubules (Dtubules: ~5.80×10–3 mm2/s) and the right peak to 
the fast-decaying component associated with blood (Dblood: 
~180.00×10–3 mm2/s). The graph shows 1,000 NNLS 
spectra produced from simulations of baseline conditions 
(n=500) and of ITV conditions (n=500). The change of 
the intensity ratio of the two slower component peaks is 
clearly visible when transitioning from baseline conditions 
to ITV conditions. Similar datasets were acquired for 
all combinations of SNR, b-value number and b-value 

Figure 3 Example of an NNLS spectrum for baseline and for the (patho)physiological condition of an ITV. The spectra were obtained for 
a signal intensity decay covering 25 b-values using a SNR =360 for b=0 s/mm2. The three peaks along the diffusion coefficient direction 
represent three diffusion decay components: a slow-decay component for renal tissue (left peak), an intermediate-decay component for 
tubules (middle peak) and a fast-decay component for intrarenal blood (right peak). The (patho)physiological condition of ITV decreased 
the areas under the left and right peaks and increased the area under the middle peak. NNLS, non-negative least squares; ITV, increased 
tubular volume fraction; SNR, signal-to-noise ratio; b-value, diffusion weighting.

Diffusion coefficients (mm2/s)

Increased tubular 

volume fraction

A
m

pl
itu

de
 (A

.U
.)

0.05

0.04

0.03

0.02

0.01

0

500
400

300
200

100
0

10–3

10–2

10–1
Baseline

500
400

300
200

100
0

Renal tissue
Renal bloodTubule

https://www.R-project.org


3106 Periquito et al. Diffusion spectrum computation for DWI-MRI of kidney tubules

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(7):3098-3119 | http://dx.doi.org/10.21037/qims-20-1360

range. To process this large amount of data, peak areas and 
geometric mean positions were first extracted from the 
spectra and then compared to the ground truth by using the 
MAPE.

MAPE of tubular volume fraction, blood and renal tissue

MAPE was used as a metric to assess which combination 
of SNR/number of b-values provides less than 5% or 10% 
error from the true value. Figure 4A shows heat maps 
of the individual MAPE of the tubular volume fraction. 
As expected, the error decreases with increasing SNR. 
Increasing the number of b-values is also beneficial for 
tubular volume fraction quantification. Correspondingly, 
using 10 b-values at SNR =80 provides similar MAPE as 
using 40 b-values at SNR =40 (Figure 4A). Furthermore, 
the benefit of additional b-values diminishes with each 

subsequent addition. From 25 b-values onwards, the benefit 
becomes less apparent. A pronounced increase in the 
precision is also discernible when the range of b-values is 
increased (small range, b=0–800 s/mm2 vs. large range, b=0–
2,180 s/mm²). In all cases MAPE is substantially improved 
when reducing the number of determined parameters from 
6 to 4 by fixing the (pseudo-)diffusion coefficients of blood 
and tissue.

Figure 4B highlights the combinations of SNR/number 
of b-values that provide a MAPE below 5% (light gray) 
or 10% (dark gray) for the tubular volume fraction. The 
percentage of these successful combinations was extracted 
from each of the MAPE heat maps as the quantitative 
description of the method’s precision for further 
consideration. The number of combinations with an error 
below 10% with no fixation used was 0% for baseline-small 
b-value range, 3% for baseline-large b-value range, 10% 

Figure 4 MAPE heat maps for tubular volume fraction for all simulations. (A) MAPE heat maps related to the tubular fraction for all 
continuum modelling NNLS simulations. Left column: no fixation of Dblood and Dtissue, right column: fixation of Dblood and Dtissue. (B) Highlight 
of the MAPE heat maps related to the tubular fraction for all NNLS continuum modelling simulations with MAPE <5%, <10% and >10%. 
Left column: no fixation of Dblood and Dtissue, right column: fixation of Dblood and Dtissue. MAPE, mean absolute percentage error; NNLS, non-
negative least squares; SNR, signal-to-noise ratio; Dblood, diffusion coefficient of blood; Dtissue, diffusion coefficient of tissue; b-value, diffusion 
weighting.
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for increased tubular fraction-small b-value range, and 58% 
for increased tubular fraction-large b-value range. In non-
fixed cases, an error below 5% was only found for increased 
tubular fraction-large b-value range (44% of combinations). 
The fraction of combinations below 10% error when 
fixation of Dblood and Dtissue was used was 91% for baseline 
and 97% for increased tubular fraction (for both small and 
large range). An error below 5% was observed in 68% of 
baseline-small b-value range, 75% of baseline-large b-value 
range, 81% of ITV-small b-value range, and 86% of ITV-
large b-value range combinations.

Figure 5 shows the percentages of excellent (MAPE 
<5%), good (MAPE <10%) and unsuitable (MAPE >10%) 
simulation results for each of the eight combination 
of parameters for the renal blood, tubules and tissue 
compartments.  Here we compare LS with NNLS 
continuum modelling with respect to different MAPE 
stratifications for each simulated permutation. By fixing the 
value of blood diffusion coefficient Dblood and tissue diffusion 
coefficient Dtissue, more than 60% of all combinations yielded 
an error below 10% for all parameters and more than 40% 
provided an error below 5% for all parameters using NNLS 
continuum modelling. For LS the use of fixation yielded for 
more than 70% of all combinations an error below 10% for 
all parameters. More than 50% of the combinations showed 
an error below 5% for all parameters.

In addition to improving the proportion of combinations 
with good and excellent error levels, fixing the blood 
(Dblood) and tissue diffusion (Dtissue) coefficients significantly 
reduced the absolute value of the MAPE of the tubular 
volume fraction (P=2.13×10–78 fixed vs. not-fixed, Wilcoxon 
signed-rank test). Similarly, using a large range of b-values 
significantly reduced the MAPE in the tubular volume 
fraction (P=2.78×10–77 smallest vs. largest b-value range, 
Wilcoxon signed-rank test).

Pathophysiological condition of ITV

For the first pathophysiological condition, we studied the 
impact of an increase in the tubular volume fraction. This 
condition does not alter the number of compartments. 
Increasing tubular volume fraction significantly reduced 
the MAPE in this compartment, compared to baseline 
(P=2.15×10–78,  Wilcoxon signed-rank test) .  When 
considering differences among all permutations of the 
three simulation conditions (i.e., baseline vs. ITV, smallest 
vs. largest b-value range, fixation of Dblood and Dtissue vs. no 

fixation—three conditions with two levels each, 23=8), the 
error values differed significantly (Kruskal-Wallis statistic 
=621.1, eta2 effect size =0.662, which was independent 
of the number of simulations, P=7.07×10–130) (Figure 6).  
Pairwise post-hoc comparisons corrected for selected 
multiple comparisons are shown in Table 3.

We then proceeded to evaluate the accuracy to 
discriminate between baseline and increased tubular volume 
conditions based on the signal intensity. When diffusion 
coefficients were not fixed, and the b-value range was kept 
constant at a small value (b=0–800 s/mm2) increasing the 
number of b-values significantly improved discrimination 
accuracy, with the AUC increasing from 0.63 to 0.74 (10 
vs. 50 b-values, P<2.2×10–16, DeLong’s test, Figure 7A). The 
optimal cut-off values, sensitivity and specificity for all ROC 
curves are listed in Table 4. Increasing to a larger range of 
b-values had a greater impact on discrimination accuracy. 
Maintaining 10 b-values while increasing the range to b=0–
1,100 s/mm2 improved the AUC to 0.83. Using a medium 
b-value range of b=0–1,380 s/mm2 (with 15 b-values) 
improved the AUC to >0.90, and further increases beyond 
this range yielded diminishing improvements, although 
these were statistically significant (AUC =0.91 vs. 0.96, 
medium b-value range 0–1,380 vs. maximum b-value range 
0–2,180 s/mm2, P<2.2×10–16, DeLong’s test, Figure 7B,  
Table 4). Based on our empirical testing illustrated in  
Figure 7A,B and Figure 4A, we conclude that a minimum 
number of 10 b-values is right at the limit of yielding 
an appropriate description of the tri-exponential decay. 
When Dblood and Dtissue were not fixed, SNR had a more 
profound impact on discrimination accuracy. At SNR 
=40, the discrimination between baseline and ITV was 
rather poor, with an AUC of 0.66 for the ROC curve. 
This performance increased steadily with increasing SNR, 
achieving a maximum discrimination accuracy of 0.94 
at a maximum SNR of 1,000. However, the magnitude 
of this improvement diminished at higher SNR values. 
While the increase in discrimination accuracy from SNR 
880 to SNR 1,000 was significant, the improvement was 
nevertheless marginal (AUC =0.93 vs. 0.94, P=1.1×10–5, 
DeLong’s test, Figure 7C, Table 4). Fixing the diffusion 
coefficients for blood and renal tissue had a profound effect 
on discrimination accuracy. Considering all numbers of 
b-values, b-value ranges and SNR levels, the AUC was 0.83. 
When Dblood and Dtissue were fixed, the discrimination accuracy 
was near perfect, with AUC of 0.99 (not fixed vs. fixed, 
P<2.2×10–16, DeLong’s test, Figure 7D, Table 4).
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Figure 5 Survey of the results obtained from error analysis. The error proportion plots show the percentage of combinations with the 
MAPE below 5% or below 10% using non-linear LS fitting (left column) and NNLS continuum modelling (right column) for all kidney 
fractions: intrarenal blood, tubule and renal tissue. MAPE, mean absolute percentage error; LS, least squares; NNLS, non-negative least 
squares; ITV, increased tubular volume fraction; Dblood, diffusion coefficient of blood; Dtissue, diffusion coefficient of tissue; b-value, diffusion 
weighting.
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Pathophysiological condition of fibrosis

Next, we simulated pathophysiological conditions that 
mimic grade I (mild, 10%) and low grade II (moderate, 
30%) interstitial renal fibrosis, thereby adding another 
component that may be considered as an additional renal 
compartment (ffibrosis). Using data with the maximum b-value 
range of 0–2,180 s/mm2 (50 b-values), NNLS continuum 
modelling was able to detect the diffusion component of the 
fibrotic compartment, to differentiate it from the other three 
diffusion components, and to distinguish 10% from 30% 
fibrosis (Figure 8A). Furthermore, this was also the case when 
the medium b-value range of 0–1,380 s/mm2 (15 b-values) 
was used (Figure 8B). For both the large and the medium 
b-value ranges, the AUC (signal intensity) of the fibrotic 

compartment was significantly greater under both the 
simulated conditions of grade I and grade II fibrosis (affecting 
10% and 30% of the renal area, respectively) compared to 
the fibrosis-free condition. The signal intensities obtained 
for grade II were significantly higher than for grade I. This 
distinction improved with increasing SNR (Figure 8A,B, 
P<2.2×10–16, Kruskal-Wallis non-parametric ANOVA, 
followed by Dunn’s procedure with Holm’s correction for 
multiple comparisons). Discrimination between either 30% 
or 10% fibrosis or non-fibrosis based on the signal intensity 
of the fibrotic compartment was near perfect. The ROC 
curves show AUC =0.98, 1.00 (medium b-value range), and 
0.99, 0.99 (large b-value range), for 30% and 10% fibrosis, 
respectively (Table 4).

Figure 6 Statistical comparison of the effects of (I) fixation of Dblood and Dtissue (not-fixed vs. fixed), (II) of the (patho)physiological condition 
(baseline vs. increased tubular volume) and (III) of the b-value range (small vs. large b-value range). MAPE analysis of the tubular volume 
fraction from NNLS continuum modelling was compared between all permutations of the simulation conditions: fixation of Dblood and Dtissue 
(fixed or not-fixed), (patho)physiological condition (baseline vs. increase in tubular volume) and range of b-values (small b-value range over 
large b-value range). Each of these three factors had significant effects on the error values when considered independently. Comparing 
among the permutations showed significant differences in MAPE (P=7.07×10–130, Kruskal-Wallis non-parametric ANOVA, followed by 
Dunn’s procedure with Holm’s correction for multiple comparisons). Selected pairwise comparisons are summarized in Table 3. MAPE, 
mean absolute percentage error; NNLS, non-negative least squares; ITV, increased tubular volume fraction; Dblood, diffusion coefficient of 
blood; Dtissue, diffusion coefficient of tissue; b-value, diffusion weighting.
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Discussion

This study is the first report on a systematic examination of 
NNLS computation for DWI of the kidney tubule system. 
Our results demonstrate the feasibility of NNLS continuum 
modelling for renal DWI as a less constrained, data-driven 
alternative for monitoring changes in the tubular volume 
fraction and the degree of tissue fibrosis. Our numerical 
simulations demonstrate the impact of SNR, the number of 
b-values needed for characterization of the diffusion signal 

decay and the range of diffusion sensitization on NNLS 
continuum modelling-based renal DWI applications. We 
show that while the error inherent to the NNLS continuum 
modelling is not superior to conventional fitting approaches 
using rigid multi-exponential models per se, it strongly 
depends on the specific parameter combinations applied 
during renal DWI. Our simulations present DWI-MRI 
parameters that ensure an error of less than 10% and 5%, 
respectively, for NNLS continuum modelling of the tubular 

Table 3 Pairwise post-hoc comparisons of the MAPE

Effect of
Fixation of Dblood and 

Dtissue

B-value range
(Patho)physiological 

conditiona Adjusted P valueb Significance

Fixation of Dblood and 
Dtissue

Not-fixed Small Baseline 3.2×10–38 ****

Fixed

Not-fixed Small ITV conditiona 4.9×10–36 ****

Fixed

Not-fixed Large Baseline 4.5×10–31 ****

Fixed

Not-fixed Large ITV condition 1.4×10–9 ****

Fixed

B-value range Not-fixed Small Baseline 5.8×10–2 NS

Large

Not-fixed Small ITV condition 3.7×10–13 ****

Large

Fixed Small Baseline 7.3×10–1 NS

Large

Fixed Small ITV condition 7.3×10–1 NS

Large

(Patho)physio-
logical condition

Not-fixed Small Baseline 5.8×10–2 NS

ITV condition

Not-fixed Large Baseline 3.1×10–13 ****

ITV condition

Fixed Small Baseline 1.3×10–1 NS

ITV condition

Fixed Large Baseline 1.3×10–1 NS

ITV condition
a, ITV condition refers to an increase in the tubular volume fraction; b, Dunn’s post-hoc test with Holm correction for multiple comparisons; 
****, P<0.00001. MAPE, mean absolute percentage error; Dblood, diffusion coefficient of blood; Dtissue, diffusion coefficient of tissue; b-value, 
diffusion weighting.
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volume fraction when compared to the ground truth given 
by the tri-exponential model.

Most renal DWI studies report two compartments: 
pseudo-diffusion related to incoherent water motion in the 
microvasculature, and true diffusion attributed to restricted 
diffusion in the tissue. Analysis of DWI using this approach, 
along with tracking of pathological changes, requires a 

priori assumptions in conjunction with rigid bi-exponential 
models. The fitting routine forces the data to conform 
to a bi-exponential behavior, and consequently, linear 
segmentation is frequently performed based on a given 
b-value threshold, assuming a bi-exponential behavior. 
Alternatively, parameters used for data acquisition may be 
customized by designing the diffusion sensitization with a 

Figure 7 Effects of number of b-values, range of b-values, SNR and fixation of Dblood and Dtissue (fixed vs. not-fixed) on accuracy to 
discriminate baseline and ITV. ROC curves show the accuracy of discriminating between baseline renal tubular volume conditions and 
pathophysiological conditions that mimic an ITV, based on signal intensity. (A) When diffusion coefficients were not fixed, and the b-value 
range was kept constant at a small value (b=0–800 s/mm2) increasing the number of b-values significantly improved discrimination accuracy, 
with the AUC increasing from 0.63 to 0.74 (10 vs. 50 b-values, P<2.2×10–16, DeLong’s test). (B) Increasing to a larger range of b-values had 
a greater impact on discrimination accuracy. Maintaining 10 b-values while increasing the range to b=0–1,100 s/mm2 improved the AUC 
to 0.83. Using a medium b-value range of b=0–1,380 s/mm2 improved the AUC to >0.90, and further increases beyond this range yielded 
diminishing improvements (AUC =0.91 vs. 0.96, maximum b-value range 1,380 vs. 2,180 s/mm2, P<2.2×10–16, DeLong’s test). (C) When Dblood 
and Dtissue were not fixed, SNR had a pronounced impact of discrimination accuracy: At low SNR of 40 the AUC was 0.664, increasing to 0.942 
at the highest SNR of 1,000 (P<2.2×10–16, DeLong’s test). (D) Fixing the diffusion coefficients for blood and renal tissue had a profound 
effect on discrimination accuracy. Considering all numbers of b-values, b-value ranges and SNR levels, the AUC was 0.83. When Dblood and 
Dtissue were fixed, the discrimination accuracy was near perfect, with AUC of 0.99 (not fixed vs. fixed, P<2.2×10–16, DeLong’s test). All values 
for AUC, optimal cut-off, sensitivity and specificity are listed in Table 4. SNR, signal-to-noise ratio; ITV, increased tubular volume fraction; 
ROC, receiver-operating characteristic; AUC, area under the curve; b-value: diffusion weighting.
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Table 4 Summary of ROC curve comparisons

Condition typea Condition value Area under curve Optimal cut-offb Sensitivity Specificity

Small b-value rangec 
(number of b-values/
maximum b-value)

10/800d 0.63 0.33 0.40 0.84

15/800 0.68 0.33 0.53 0.84

20/800 0.70 0.34 0.54 0.86

25/800 0.70 0.34 0.58 0.86

30/800 0.71 0.34 0.58 0.87

35/800 0.73 0.35 0.60 0.90

40/800 0.72 0.33 0.62 0.86

45/800 0.73 0.34 0.63 0.87

50/800 0.74 0.34 0.65 0.88

Large b-value rangec 
(number of b-values/
maximum b-value)

10/800d 0.63 0.33 0.40 0.84

10/1,110 0.83 0.32 0.77 0.89

15/1,380 0.91 0.34 0.88 0.93

20/1,570 0.93 0.34 0.91 0.93

25/1,710 0.94 0.34 0.92 0.94

30/1,840 0.95 0.35 0.92 0.95

35/1,940 0.96 0.36 0.94 0.96

40/2,030 0.96 0.34 0.95 0.95

45/2,110 0.96 0.35 0.95 0.96

50/2,180 0.96 0.36 0.95 0.96

SNRc 40 0.66 0.34 0.88 0.38

80 0.72 0.37 0.91 0.52

120 0.78 0.40 0.92 0.64

160 0.81 0.40 0.94 0.72

200 0.84 0.41 0.96 0.77

280 0.86 0.42 0.97 0.82

360 0.88 0.42 0.99 0.86

440 0.90 0.43 0.99 0.88

520 0.90 0.43 0.99 0.90

640 0.92 0.41 1.00 0.91

760 0.93 0.40 1.00 0.92

880 0.94 0.38 1.00 0.93

1,000 0.94 0.38 1.00 0.94

Dblood and Dtissue not fixed – 0.83 0.40 0.96 0.79

Dblood and Dtissue fixed – 0.99 0.40 0.99 1.00

Fibrosis (%)e/maximum 
b-value range

10/2,180d 0.99 0.02 0.96 0.96

30/2,180 0.99 0.08 1.00 0.94

10/1,380 0.98 0.01 0.96 0.93

30/1,380 1.00 0.11 1.00 1.00
a, accuracy to discriminate baseline and ITV based on signal intensity; b, optimum cut-off determined by maximize metric; c, ROC curves 
calculated on data without parameter fixation; d, mm/s2; e accuracy to discriminate fibrosis component vs. no fibrosis based on signal 
intensity. ROC, receiver-operating characteristic; Dblood, diffusion coefficient of blood; Dtissue, diffusion coefficient of tissue; b-value, diffusion 
weighting; SNR, signal-to-noise ratio; ITV, increased tubular volume fraction.
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Figure 8 NNLS detection of simulated fibrosis component. The simulations included baseline (no fibrosis) and a pathophysiological 
condition to mimic fibrosis, thus adding a fourth renal compartment. (A) NNLS could readily detect this additional compartment, when 
using a large b-value range of 0–2,180 s/mm2. (B) This result was also true when a medium b-value range of 0–1,380 s/mm2 was used. For 
both the large and medium b-value ranges, the AUC (signal intensity) of the fibrotic compartment was significantly greater under both the 
simulated conditions of grade I (mild) and grade II (moderate) fibrosis (affecting 10% and 30% of the renal area, respectively) compared to 
the non-fibrosis condition. The signal intensities obtained for grade II were significantly higher than for grade I. This distinction improved 
with increasing SNR (P<2.2×10–16, Kruskal-Wallis non-parametric ANOVA, followed by Dunn’s procedure with Holm’s correction for 
multiple comparisons; whiskers denote ±1.5× interquartile range). NNLS, non-negative least squares; AUC, area under the curve; AUC, 
area under the curve; SNR, signal-to-noise ratio.
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specific number and magnitude of b-values (32-38).
Recently it was shown that a three-compartment model 

is more appropriate for representation of the diffusion 
properties of the kidney assuming that incoherent renal 
water motion is linked to three sources: (I) tissue water 
diffusion, (II) incoherent blood motion, and (III) incoherent 
tubular fluid motion (39,40). The rigid bi-exponential and 
tri-exponential models share a common limitation: they 
may not accurately reflect the complex nature of renal 
water diffusion, because the data are forced to conform to 
simplified models. This limitation could introduce a bias 
that runs the risk of obscuring (patho)physiological changes 
inherent to incoherent water motion probed with renal 
DWI. NNLS continuum modelling does not suffer from 
this limitation. Because NNLS continuum modelling does 
not presume that only three compartments or sources are 
associated with renal incoherent water motion, it allows for 
the detection of additional sources such as lesions, tumors, 
or fibrosis. This advantage is particularly relevant for DWI-
MRI of the kidney, as the number of compartments or 
sources cannot necessarily be known in advance, and might 
change during the progression, interception or therapeutic 
treatment of renal disease. An alternative framework for 
determining co-existing diffusion compartments without 
prior assumptions on their number has been recently 
demonstrated for DWI of the brain and is conceptually 
appealing for renal DWI (67).

Our data indicate that increasing the b-value range alone 
is not sufficient to ensure reliable measurements of the 
tubular volume fraction. However, even modest increases 
above the lowest b-value range of 0–800 s/mm2 resulted in 
substantial improvements in discrimination accuracy. While 
we simulated a series of b-value ranges extending up to 
0–2,180 s/mm2, we observed that a medium b-value range of 
0–1,380 s/mm2 yielded the majority of the benefits, and that 
further increases in b-value range had diminishing returns. 
Using the large b-value range resulted in a clear distinction 
between mild and moderate fibrosis. Furthermore, the 
medium b-value range was also sufficient to discriminate 
between mild and moderate fibrosis with a high degree 
of accuracy. This medium b-value range is achievable 
on clinical grade MRI systems, where the progress in 
gradient coil technology has triggered the implementation  
of high performance whole body gradients offering  
Gmax_combined =100 mT/m (68) or Gmax =113 mT/m (69). In 
addition, the SNR had a pronounced effect. At low SNR, 
the accuracy to discriminate between baseline and ITV 
was poor but improved steadily with increasing SNR. 

Our data suggest that a minimum number of 10 b-values 
is at the limit for reliable and robust diffusion coefficient 
fitting with NNLS under baseline conditions and with 
pathological changes. The use of 15 b-values significantly 
improved the fitting results and can be considered as an 
appropriate minimum number of b-values for reliable and 
robust diffusion coefficient fitting with NNLS. Increasing 
the number of b-values further would prolong the scan 
time, with diminishing benefits. Arguably, this extra scan 
time burden can be compensated by using acceleration 
techniques such as parallel imaging or compressed sensing 
approaches (70,71). Our simulations used an SNR range of 
40–1,000 for b=0 s/mm2 which meets the minimum SNR 
levels suggested for advanced renal DWI (30). Using the 
SNR obtained for higher b-values or for the largest b-value 
presents a viable alternative.

Beyond the effects of SNR and b-value numbers and 
ranges, we investigated the effects of fixing the blood 
diffusion coefficient Dblood and the tissue diffusion coefficient 
Dtissue. With this approach we obtained superior results, 
compared to the non-fixed value approach. Acceptable 
errors levels (<10%) were achieved in the majority of the 
combinations studied (>89%). Data superiority (errors 
levels <5%) was achieved in more than 60% of the 
SNR/number of b-values combinations, in both (patho)
physiological conditions and when using small and 
large b-value ranges. The fixation of the two diffusion 
coefficients did not prevent the appearance of multiple 
peaks in the continuous region, where the curvature 
regularization was kept active. Fixing these coefficients led 
to near perfect sensitivity and specificity to discriminate 
between the baseline and increased tubular volume 
conditions based on signal intensity. The approach to fix 
the diffusion coefficients of blood and tissue is advisable in 
situations where one can presume that (patho)physiological 
conditions or interventions do not dramatically change the 
physicochemical properties of blood and tissue.

The common non-linear LS fitting method using the 
trust region growing algorithm is considered the gold 
standard for fitting the DWI decay. After fixing Dblood and 
Dtissue, NNLS continuum modelling showed a similar 
degree of reliability as the non-linear LS with some 
slight differences in the case of tubules and tissue. 89% 
of combinations had acceptable error levels <10%, and 
more than 50% of SNR/b-values had errors below 5% for 
all parameters, compared to 40% on NNLS continuum 
modelling. While both approaches showed a similar degree 
of error, rigid models like LS can introduce a bias in the 
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analysis, since the number of compartments (number of 
exponential decays), must be specified a priori. Furthermore, 
starting values are crucial, and each additional exponential 
(additional compartment) included in the model requires 
two additional variables. Multi-exponential models with too 
many variables suffer from poor fit stability (40). NNLS 
continuum modelling is less constrained than LS. NNLS 
can delineate the complex nature of water diffusion and 
possible (patho)physiological changes with far fewer a 
priori assumptions. NNLS continuum modelling yields a 
distribution of diffusion coefficients rather than a unique 
value, which has the potential to better reflect the complex 
characteristics of biological tissues. This potential is 
underscored by the demonstration that the NNLS approach 
could detect simulated renal fibrosis. By not constraining 
the number of renal compartments in advance, NNLS 
could detect a fourth fibrosis compartment when this was 
introduced. Moreover, NNLS proved capable to distinguish 
between simulated 10% vs. 30% fibrosis.

This work lays the foundation for preclinical studies 
aimed at further elucidating the pathophysiology of various 
kidney diseases, as well as studies that aim to establish MR 
markers for diagnostics of those disorders. Renal tissue 
hypoxia is generally regarded as an early pivotal element 
in the pathophysiology of AKI, the possible progression 
of AKI to chronic kidney disease (CKD), and diabetic 
nephropathy. In virtually all of these disorders, the 
tubular volume fraction is altered, either due to changes 
in glomerular filtration rate, the tubular outflow towards 
the renal pelvis and beyond, in the transmural pressure 
gradient, or in tubular fluid resorption (3,7,22,23,25).

Because changes in the tubular volume fraction likely 
change the blood volume fraction, they result in changes 
in renal T2* independent of changes in blood oxygenation. 
Indeed, the tubular volume fraction is a confounding factor 
influencing the relationship between renal T2* mapping, 
oxygen saturation of hemoglobin, and tissue oxygen tension 
(21,29). Hence, DWI-based assessments of changes in the 
tubular volume fraction are highly relevant for elucidating 
the mechanisms of renal pathophysiology. Concomitant 
DWI-based measurements of the tubular volume fraction 
will help to accurately determine the pathophysiological role 
of changes in renal oxygenation as assessed by renal T2*.

This  work also provides potentia l  insights  for 
translational research into MR-based diagnostic tools, as 
changes in the tubular volume fraction are present in a 
multitude of kidney disorders. Such changes are prominent 

in AKI as induced by disturbed systemic hemodynamics, 
by intravascular administration of X-ray contrast media, 
and by obstructions of the urinary tract and diabetic 
nephropathy (3,7,22,23). CKD of most origins is marked by 
fibrosis in addition to reduced glomerular filtration, which 
contributes to a decrease in the tubular volume fraction (46).  
In addition to pathological changes in the tubular 
volume, our simulations revealed that NNLS continuum 
modelling for renal DWI may also be useful for detection 
and treatment monitoring of renal fibrosis, which is an 
important biomarker of CKD and a powerful predictor of 
renal outcome (26,28). These same considerations likely 
apply to pathologies such as kidney lesions, polycystic 
kidney disease, or tumors.

A relevant caveat of this study is that the effect of kurtosis 
at high b-values (b>1,000 s/mm2) was not considered. At 
high b-values, the probability distribution of the diffusion 
displacement deviates from a Gaussian distribution. This is 
considered to be a consequence of the restrictions on water 
molecule displacement imposed by microstructures (72).  
However, the main focus of this work was to assess the 
kidney tubule system, where the absence of organelles and 
cell boundaries that might hinder diffusion renders the 
kurtosis effect less relevant (73,74).

The use of deep learning neural networks could 
potentially achieve the same or even better accuracy in 
disentangling the different DWI decay components at 
low SNR regimes with a low number of b-values. Neural 
networks could be trained to extract the water diffusion-
related components of the tubules from the DWI decay 
directly, without complex pre- and post-processing 
methods. However, neural networks depend heavily on 
having a large body of ground truth training data, covering 
the entire range of biological variability and potential 
pathophysiological conditions.

The present study relies on numerical simulations, as a 
prelude to the acquisition of in vivo data. In the interests 
of time, resources, and adherence to the 3Rs principles 
to minimize the use of experimental animals, we consider 
that such in silico studies are a necessary precursor before 
proceeding to in vivo experiments, and that the results of 
these simulations must be disseminated to the community. 
The insights gained from the current study regarding 
the appropriate selection of experimental parameters will 
enhance the robustness and reproducibility of subsequent 
in vivo studies, which are the logical next step for future 
investigations of renal diffusion properties.
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Conclusions

In conclusion, our results demonstrate the implications 
of using NNLS continuum modelling with specific DWI 
acquisition and data processing protocols to provide 
assessment of the kidney tubule volume fraction with less 
than 5% or 10% error, and to offer the potential to detect 
diffusion compartments associated with renal pathology.
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