Histamine triggers microglial responses indirectly via astrocytes and purinergic signaling

Pengfei Xia1,2 | Francesca Logiacco1,3 | Yimin Huang1,2 | Helmut Kettenmann1,4 | Marcus Semtner1

1Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
2Charité-Universitätsmedizin, Berlin, Germany
3Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
4Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

Correspondence
Marcus Semtner, Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
Email: marcus.semtner@mdc-berlin.de

Funding information
Einstein-Stiftung; Helmholtz-Gemeinschaft, Zukunftsthema "Immunology and Inflammation", Grant/Award Number: ZT-0027

Abstract
Histamine is a monoaminergic neurotransmitter which is released within the entire brain from ascending axons originating in the tuberomammillary nucleus in a sleep state-dependent fashion. Besides the modulation of neuronal firing patterns, brain histamine levels are also thought to modulate functions of glial cells. Microglia are the innate immune cells and professional phagocytes of the central nervous system, and histamine was previously shown to have multiple effects on microglial functions in health and disease. Isolated microglia respond only to agonists of the Hrh2 subtype of histamine receptors (Hrh), and the expression of that isoform is confirmed by a metadata analysis of microglia transcriptomes. When we studied the effect of the histamine receptor isoforms in cortical and thalamic microglia by in situ live cell Ca2+ imaging using a novel, microglia-specific indicator mouse line, microglial cells respond to external histamine application mainly in a Hrh1-, and to a lower extent also in a Hrh2-dependent manner. The Hrh1 response was sensitive to blockers of purinergic P2ry12 receptors, and since Hrh1 expression was predominantly found in astrocytes, we suggest that the Hrh1 response in microglia is mediated by astrocyte ATP release and activation of P2ry12 receptors in microglia. Histamine also stimulates microglial phagocytic activity via Hrh1- and P2ry12-mediated signaling. Taken together, we provide evidence that histamine acts indirectly on microglial Ca2+ levels and phagocytic activity via astrocyte histamine receptor-controlled purinergic signaling.

KEYWORDS
astrocyte, calcium, histamine, Hrh, microglia, phagocytosis

1 | INTRODUCTION

Histamine is a bioactive amine known to regulate many physiological processes in the periphery, such as allergic reactions, gastric acid secretion, and itch sensation (Thangam et al. (2018). In the central nervous system (CNS), histamine is synthesized by L-histidine decarboxylase (HDC)-expressing neurons which are localized in the tuberomammillary nucleus (TMN) from where they send axonal projections towards essentially all brain (Haas & Panula, 2003; Panula & Nuutinen, 2013). Histamine neurons are pacemakers that display...
regular spontaneous firing patterns at low frequency which are correlated to sleep/wake rhythm with upregulation of histamine release during wakefulness (Vitrac & Benoit-Marand, 2017). Abnormalities in brain histamine release are increasingly appreciated as potential contributors to brain pathologies like Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, narcolepsy, and drug addiction (Panula & Nuutila, 2013).

Histamine action is mediated by signaling downstream of the four mammalian histamine receptor isoforms (Hrh1-Hrh4) which are Gαq (Hrh1), Gαi (Hrh2), or Gqi (Hrh3 and Hrh4) protein-coupled receptors. Recent transcriptomic and proteomic approaches suggest that there is—if at all—only bare expression of Hrh4 in the central nervous system (Zhang et al., 2014). The predominant isoform in the brain is Hrh3 which is mainly expressed by neurons and modulates the release of various neurotransmitters, including GABA and acetylcholine (Passani et al., 2000). Consistent with its abundance and strong impact on neurotransmitter release, Hrh3 is involved in diverse brain functions, such as memory, cognition, appetite, and arousal. Hrh1 and Hrh2 are also expressed by neurons at low levels, however, previous gene expression studies and functional observations suggest that these subunits rather serve as modulators of glial functions. Particularly, Hrh1, which is the most abundant Hrh isoform in astrocytes, modulates various physiological and pathological activities of astrocytes upon brain histamine level changes including energy metabolism, neurotransmitter clearance, neurotrophic activity, and immune responses (Jurić et al., 2016).

Microglia are the resident immune cells of the CNS. Their physiological role is to protect the brain from infection and damage, to promote tissue repair and regeneration, and to modulate neurons and other glial cells by secretion of growth factors, cytokines, and other signal molecules (Wolf et al., 2017). In the healthy postnatal brain, microglia are characterized by a ramified morphology, that is, they have a relatively small soma (~10 μm) with cellular processes that branch off and arborize further more distantly from the soma within a defined territory, and they constantly scan their environment for potential insults (Kettenmann et al., 2011). Microglia are the professional phagocytes of the brain being able to eliminate entire cells or cellular substructures. Microglia recognize cells that undergo programmed cell death and they migrate to different regions of the CNS, usually right before or during the peak of programmed cell death (Wolf et al., 2017). The first report on histamine action on microglia was from Bader et al. (1994) who demonstrated via life cell Ca2+ imaging that only a subpopulation of primary cultured rat microglia is responsive to histamine application, a notion that was confirmed in a more recent study on freshly isolated and primary cultured mouse microglia (Pannell et al., 2014). Interestingly, the percentage of histamine-responding microglia dramatically increases upon LPS challenge, indicating that microglia can dynamically adjust their sensitivity to histamine, and suggesting that histamine action on microglia might be heterogeneous with regard to certain physiological and pathophysiological conditions. There are various controversial results of microglial Hrh expression and its functional impact. Indeed, histamine was reported to stimulate microglial phagocytic activity in vitro and in situ in a Hrh1-dependent manner (Rocha et al., 2016). Another study demonstrated an inhibitory effect of histamine on microglial phagocytosis in vitro via Hrh3 (Iida et al., 2015). Further controversy is about microglial migration which was shown to be accelerated by histamine in a Hrh4-dependent fashion and in another study inhibited by Hrh1 and Hrh2 (Apolloni et al., 2017). In the present study, we used a novel microglia-specific Ca2+ indicator mouse model to investigate microglial Ca2+ elevations upon histamine and Hrh-specific agonists in cortex and thalamus. We provide evidence for functional Hrh2, but not Hrh1, Hrh3, or Hrh4 expression on microglia and demonstrate that Hrh1 in astrocytes and microglial P2ry12 are involved in histamine action on microglia in situ.

2 | MATERIALS AND METHODS

2.1 | Animals

This study was carried out at the Max Delbrück Center for Molecular Medicine (MDC) in strict accordance with the guidelines of the European Communities Council Directive for care of laboratory animals (86/609/EEC) and of the State of Berlin’s Office for Health and Social Affairs (Landesamt für Gesundheit und Soziales, LaGeSo), as well as internal MDC guidelines. Experimental protocols were approved under license (X9005/18, X9023/12, A0376/17). Animals were bred and maintained at the MDC animal facility in a temperature- and humidity-controlled environment with a 12 h light–dark cycle and ad libitum access to food and water. The mouse strains Csf1R-2A-GCaMP6m and Csf1R-2A-mCherry-2A-GCaMP6m are novel, microglia-specific calcium indicator lines which are described in another paper from our lab (Logiacco et al., in press). hGFAP-mRFP transgenic mice express the red fluorescent protein (mRFP) in astrocytes under control of the promotor for human glial fibrillary acidic protein (GFAP) (Hirrlinger et al., 2005). We pooled male and female mice in all experiments.

2.2 | Chemicals

The following substances were used in the present study: histamine dihydrochloride (Sigma-Aldrich; 100 μM), 2-pyridylethylamine dihydrochlorid (2-PEA; R&D Systems; 100 μM), amphetamine (Enzo; 10 μM), α-methylhistamine (αMH; Biomol; 1 μM), VUF 10460 (Biomol; 10 μM), cetirizine (Sigma-Aldrich; 10 μM), Tiotidine (R&D Systems; 10 μM), carmine (Sigma-Aldrich; 10 μM), AR-C69931 tetrasodium salt (Tocris, Bio-Techne GmbH, Wiesbaden-Nordenstadt; 1 μM). All chemicals were obtained as powder and initially stock-diluted at a 1,000 fold concentration in DMSO or H2O.

2.3 | Acute brain slice preparation

Acute cortical brain slices from adult male and female C57BL/6, Csf1R-2A-GCaMP6m or Csf1R-2A-mCherry-2A-GCaMP6m mice
(P40–P90) were prepared as previously described (Boucsein et al., 2003). In brief, adult mice were killed by cervical dislocation. After the brain was extracted, the cerebellum and the olfactory bulbs were gently removed and transferred to ice-cold slicing solution (230 mM sucrose, 26 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 10 mM MgSO4, 0.5 mM CaCl2, 10 mM D-glucose; pH 7.4; saturated with carbogen: 95% O2, 5% CO2) to generate 140 μm (phagocytosis assay) or 250 μm (Ca2+ imaging) thick coronal slices using a vibratome (HM650V, Thermo Scientific). Slices were immediately transferred into artificial cerebrospinal fluid (ACSF): 134 mM NaCl, 26 mM NaHCO3, 2.5 mM KCl, 1.26 mM KH2PO4, 1.3 mM MgCl2, 2 mM CaCl2, 10 mM D-glucose; pH 7.4 which was saturated with carbogen (95% O2, 5% CO2) at room temperature. The brain slices were kept in ACSF at least 1 h until further treatment.

2.4 | Preparation of freshly isolated microglia

Microglia from adult C57BL/6 mice (P49–P90) were acutely isolated and purified for calcium imaging using magnetic-activated cell sorting (MACS) as described previously (Nikodemova & Watters, 2012). Briefly, adult mice were sacrificed by transcardial perfusion with ice-cold phosphate-buffered solution (PBS) under deep anesthesia to remove the blood. The brain was removed and only the cortex was cold phosphate-buffered solution (PBS) under deep anesthesia to

2.5 | Calcium imaging

Acutely isolated microglial cells were plated on glass coverslips. After 2 h, adhered microglia were incubated for 40 min with 5 μM Fluo-4/AM (Invitrogen) in standard extracellular solution (150 mM NaCl, 5.4 mM KCl, 0.98 mM MgCl2, 1.97 mM CaCl2, 10 mM HEPES, and 10 mM glucose; pH 7.4) at room temperature. Acute brain slices from Csf1R-2A-GCaMP6m mice were only maintained in carbogenized ACSF at RT, while slices (250 μm) from C57/B6 mice were generated and loaded with 10 μM Fluo4/AM for 1 h at 37°C to stain astrocytes.

Coverslips or brain slices were transferred into a recording chamber constantly perfused with standard extracellular solution (isolated microglia) or carbogenized ACSF (brain slices). The perfusion system was equipped with a perfusion pencil which allowed instant and local application of the test substances, as well as 1 mM ATP (Adenosine-Triphosphate) applied at the end of every recording as control. The flow of the perfusion system was adjusted to 0.5–0.6 ml/min. Before live cell Ca2+ imaging, each brain slice/cover slip was first examined using a SX objective and bright field illumination. For Ca2+ recordings, we used a ×20 objective (Carl Zeiss Microscopy GmbH), a Zyla 5.5 camera (Oxford Instruments), a light-emitting diode illuminator (PE-4,000, CoolLED, Andover, UK) and a standard EGFP filter set. An EPC9 amplifier (HEKA) and TIDA 5.25 software (HEKA) were used to trigger fluorescence excitation and image acquisition. To monitor Ca2+ level changes over time, images were taken at a rate of 1 frame per second and an exposure time of 100 ms. For experiments at 37°C, we used an inline heater (Warner Instruments Corp.).

For 2-Photon imaging, we used a custom-built 2-photon microscope consisting of an BX61WI microscope stage (Olympus) equipped with a ×40 water immersion objective placed on a PD7224CA piezo drive (Physik Instrumente), a Chameleon Ultra II laser (Coherent) and GaAsP photomultipliers (Thorlabs). The GCaMP6m protein was excited at a wavelength of 940 nm. Movies were acquired at a sampling rate of one 3D image per second, whereas each 3D image covered seven fields of 160 × 160 μm with a z distance of 2 μm (i.e., total z distance: 40 μm). ThorImage 8.0 was used to drive the image acquisition during calcium imaging experiments. For offline analysis, each 3D image was subjected to a maximum intensity projection to obtain a 2D movie by using a custom-built procedure in IGOR Pro 6.37 (WaveMetrics). Calcium imaging movies were analyzed using a home-made algorithm in Igor Pro 6.37 (WaveMetrics). For analysis, cell somata which were visible in the presence of ATP at the end of each experiment were selected as ROIs, and the mean relative fluorescence intensity for each ROI and frame was determined to display changes in Ca2+ levels over time for each cell. This means that only ATP-responding microglia/astrocytes were taken into the subsequent analysis. Intracellular Ca2+ elevations were counted as “responsive” upon application of a substance when the Ca2+ response amplitude exceeded a level three times (microglia) or five times (astrocytes) the SD from the baseline that was obtained in the 60 s immediately before application. We averaged the cellular response rates from each slice to obtain one “n” for the subsequent statistical analysis. Recordings with less than five microglia in the view field were excluded from analysis. For the analysis of amplitudes and kinetics of microglial Ca2+ responses as well as for averaging histamine responses in the figures (stated as “responding”), we used only “responding” events and excluded non-responders.

2.6 | In situ phagocytosis assay

Phagocytosis assay in acute cortical or thalamic brain slices was conducted as previously described (Wendt et al., 2017). Briefly, coronal brain slices from C57/B6 mice were generated and maintained for
We applied the Kruskal-Wallis followed by a Dunn’s multiple comparison test to calculate significance levels between data sets. Data are given as median ± 25%/75% percentile. Statistical significance levels are represented as n.s.: p > .05; *: p < .05; **: p < .01; ***: p < .001.

3 | RESULTS

3.1 | Microglial histamine responses are mediated by Hrh2 receptors

Microglia were previously shown in vitro to functionally express histamine receptors that mediate downstream cytosolic Ca^{2+} elevations (Pannell et al., 2014). We revisited these findings and determined histamine responses in freshly isolated cortical microglia from C57/B16 mice which were loaded with Fluo4/AM to indicate intracellular Ca^{2+} level changes (Figure 1a,b). ATP (1 mM) was applied at the end of each recording and only ATP-responding cells were considered for the subsequent analysis. As microglia are known to display spontaneous Ca^{2+} elevations (Korvers et al., 2016), we first determined the probability of spontaneous events within a minute before histamine application which was observed in 1.13 ± 0.34% of the cells (n = 3,028 isolated cells, 54 recordings, 11 mice). In accordance with our published data set, a subpopulation (5.88 ± 2.98/8.00%; n = 502 cells, 15 recordings, 4 mice) of these microglial cells responded to histamine which was a significantly higher rate than spontaneous Ca^{2+} elevations before histamine application (p = .0021). Microglial Ca^{2+} responses to histamine had a peak of 0.72 ± 0.16 relative to the responses upon ATP; they were transient and completely reversed to background levels upon wash out.

In the mammalian genome, there are four known histamine receptor isoforms (Hrh1-4; Passani et al., 2000). In an attempt to identify the receptor isoform responsible for microglial histamine responses, we used Hrh isoform-specific agonists. As shown in Figure 1c,d, freshly isolated microglia selectively responded to the Hrh2-specific agonist amphetamine (10 μM). 4.17 ± 2.38/11.83% of the ATP-responding isolated microglia displayed amphetamine-evoked Ca^{2+} elevations (n = 1,345 cells, 25 recordings, 7 mice) which was similar to the histamine-responding population (5.88 ± 2.98/8.00%; p = .9999) and significantly more than the level of spontaneously active cells (p = .0016). Hrh1 activation by 2-pyridylethylamine dihydrochlid (2-PEA; 100 μM) did, however, not stimulate Ca^{2+} elevations in freshly isolated microglia as the response rate was similar to basal activity (2 ± 0.37/3.75%; n = 962 cells, 15 recordings, 5 mice; p = .9999). There was also no response to Hrh3 and Hrh4 activation by α-Methylhistamine (α-MH; 1 μM) and VUF 10460 (VUF; 10 μM), respectively (Figure 1d). We therefore conclude that microglia express Hrh2 receptors which mediate intracellular Ca^{2+} elevations upon histamine application. This conclusion is strongly supported by previously published transcriptomic expression profiles of microglia and other brain cell types. A meta-analysis of several data sets (Figure S1) revealed that indeed hrh2 is the predominant isoform in microglia whereas hrh1 is mainly expressed by astrocytes and hrh3 by neurons (Zhang et al., 2014). Specific expression of hrh2 in microglial...
cells was also confirmed in many other transcriptomic data sets including the one provided by Grabert et al. (2016); Figure S1B), the Tabula Muris Consortium (2018); Figure S1C), Bowman et al. (2016)) and Sala Frigerio et al. (2019)). Taken together, both transcriptomic analysis and live cell investigation of isolated microglia support the notion that \(\text{Hrh2} \) is the only histamine receptor isoform expressed intrinsically in microglial cells and mediates microglial \(\text{Ca}^{2+} \) responses upon histamine stimulation.

3.2 A subpopulation of microglia responds to histamine in different brain regions

We applied our novel transgenic \(\text{Ca}^{2+} \) indicator mouse model (Logiacco et al., in press), Csf1R-2A-GCaMP6m to test for microglial histamine responses in situ. In this mouse model, a transgenic \(\text{gcampm6} \) cassette preceded by a 2A sequence is introduced right before the stop codon of the endogenous \(\text{Csf1r} \) gene, leading to the expression of the \(\text{Ca}^{2+} \) indicator protein GCaMP6m specifically in microglia. Acute cortical brain slices were generated from adult (P40–P90) male and female indicator mice to monitor microglial intracellular \(\text{Ca}^{2+} \) responses upon bath application of histamine (100 \(\mu \text{M} \)) using live-cell imaging (Figure 2a). In accordance to our observations in Logiacco et al. (in press), the intensity of the GCaMP6m fluorescence under basal conditions was very low in this mouse model, and the fluorescence within microglia was nearly indistinguishable from background fluorescence. Microglial cells undergoing intracellular \(\text{Ca}^{2+} \) elevations, however, display strong enhancements in GCaMP6m fluorescence (see Figure 1a). Like in vitro experiments (see Figure 1),
Figure 2. Cortical microglia in situ respond to histamine via <i>Hrh1</i> and <i>Hrh2</i>. (a) Top, representative microglial cells during live cell recordings from adult cortical brain slices in the presence of histamine (left) and ATP (right). Images were generated by subtraction of the movie frames before substance application from frames in the presence. Histamine-responding microglia are indicated with a yellow arrow, non-responding microglia with a white arrow. Bottom, overlay of intracellular Ca²⁺ responses to histamine from cortical microglia. The black trace is the average response of all responding cells (gray). (b) Summary of the percentage of histamine-responding microglia in situ (left). Average amplitudes of microglial histamine responses normalized to the amplitude of ATP responses (right). (c) Representative microglial cell during a 2-photon live-cell recording from an adult cortical brain slice in the presence of histamine (left) and ATP (right). Images were generated by subtraction of the movie frames before substance application from frames in the presence. Note that only proximal processes responded to ATP and histamine. (d) Intracellular Ca²⁺ responses from cortical histamine-responding microglia. Regions of interest of the traces are indicated by arrows in (c). (e) Overlay of intracellular Ca²⁺ responses from in situ cortical microglia responding to histamine, a <i>Hrh1</i>- (2-PEA, 100 μM) and a <i>Hrh2</i>- (Amthamine; 10 μM) specific agonist. Black traces indicate the average response of all responding cells (gray). (f) Summary of the percentage of responding microglia from experiments shown in (c), including those with <i>Hrh3</i>- (α-methylhistamine; 10 μM) and <i>Hrh4</i>- (VUF 10460; 10 μM) specific agonists. Box Plots indicate the median (black line) as well as the 25%–75% (box) and 10%–90% (whiskers) percentiles. Statistical significance was tested by a Kruskal Wallis test followed by Dunn’s multiple comparisons test and is indicated as followed: n.s., <i>p</i> ≥ 0.05; * <i>p</i> ≤ 0.05; ** <i>p</i> ≤ 0.01; *** <i>p</i> ≤ 0.001. Number of mice/experiments/cells: N(basal) = 16/143/1296; N(histamine) = 11/45/747; N(2-PEA) = 4/24/167; N(amthamine) = 4/24/184; N(αMH) = 6/29/346; N(VUF) = 6/30/364; N(basal 37°C/C14C) = 4/19/261; N(histamine 37°C/C14C) = 4/21/272.
histamine in situ also induced Ca$^{2+}$ elevations only in a subset of microglia (Figure 2b) with 12.1 ± 5.3%/20.0% of ATP-responding cells being also responsive for histamine ($n = 747$ cells, 45 slices, 11 mice). The subpopulation of histamine-responding microglia was significantly larger in situ than in vitro ($p = .0105$). There were no significant differences between microglial responses from male and female brain slices ($p = .0657$). Histamine responses were often biphasic with a fast initial, transient rise and a second, sustained phase which reversed to baseline Ca$^{2+}$ levels upon wash out of histamine (Figure 2a). The peak amplitude of the initial intracellular Ca$^{2+}$ rise was on average 57.7 ± 5.9% of the ATP-evoked Ca$^{2+}$ elevation. We also quantified the percentage of cells that responded randomly within a 60 s period before histamine application. 0.0 ± 0.0/0.0% of the ATP-responding microglia displayed this spontaneous activity indicating that histamine induced a significant response over baseline activity ($p < .0001$). There were no significant differences in basal ($p = .3226$) or histamine ($p > .9999$) responses when experiments were performed at 37°C (Figure 2b). We next investigated if microglial histamine responses are also abundant in processes. As shown in Figure 2c,d, Ca$^{2+}$ signals upon histamine in microglia that displayed a somatic histamine response and found that the majority of ATP-responding processes (73.7%) did also respond to histamine. These data demonstrate that microglial Ca$^{2+}$ responses to ATP and histamine are much more pronounced in somata than processes.

We next addressed the question if there is brain region-specific heterogeneity in microglial histamine responses and performed in situ live cell recordings in hippocampus, striatum, thalamus, and corpus callosum. As shown in Figure S2, microglia responded also in these brain regions upon application of 100 μM histamine. The proportion of histamine-responding microglia was comparable to cortex in hippocampus (7.3 ± 0.0/20.0%; $n = 320$ cells, 46 slices, 10 mice; $p > .9999$),
Histamine-evoked microglial Ca2+ responses depend on P2\textgamma{12}. (a) Left, overlay of intracellular Ca2+ responses from in situ cortical microglia responding to histamine in the presence or absence of the P2\textgamma{12} inhibitor AR-C69931 (1 \mu M). Black traces indicate the average response of all responding cells (gray). Note that unlike in the other figures, both responding and non-responding traces are shown in these plots. Right, summary of the percentage responding microglia from experiments shown in (a). (b) Same as (a) but data were obtained from thalamic microglia in situ. Box plots indicate the median (black line) as well as the 25\%–75\% (box) and 10\%–90\% (whiskers) percentiles. Statistical significance was tested by a Kruskal Wallis test followed by Dunn’s multiple comparisons test and is indicated as followed: n.s., \(p \geq .05 \); *, \(p \leq .05 \); **, \(p \leq .01 \); ***p \leq .001. Number of mice/experiments/cells: N(Cx basal) = 16/143/1296; N(Cx histamine) = 11/45/747; N(Cx ARC basal) = 4/22/555; N(Cx ARC histamine) = 4/23/590; N(Tha basal) = 39/229/2250; N(Tha histamine) = 13/47/613; N(Tha ARC basal) = 4/20/393; N(Tha ARC histamine) = 4/16/147.

Taken together, we conclude from these experiments that a subpopulation of microglia responds to histamine in vitro and in situ, and that the percentage of histamine-responding microglia varied among different brain regions.

3.3 Microglial histamine responses in situ are mediated by Hrh1 and Hrh2

We aimed at verifying these results in another brain region and investigated microglial Ca2+ responses upon Hrh isoform-specific agonists in the thalamus (see Figure S3). Like in the cortex, there was a significant portion of microglia (18.2 \pm 9.6/34.1\%; \(n = 396 \) cells, 43 slices, 6 mice) responding to the Hrh1-specific agonist 2-PEA (10 \mu M) which was similar to thalamic responses upon histamine (\(p > .9999 \); Figure S3A,B). The Hrh2-specific agonist amthamine also evoked Ca2+ responses in a subset of ATP-responding microglia (13.4 \pm 8.3/19.6\%; \(n = 354 \) cells, 34 slices, 6 mice; \(p > .9999 \)). Isoform-specific activation of Hrh3 (0.0 \pm 0.0/5.4\%; \(n = 223 \) cells, 34 slices, 6 mice) or Hrh4 (0.0 \pm 0.0/0.0\%; \(n = 275 \) cells, 37 slices, 6 mice) did not have significant effects on microglial Ca2+ levels in thalamus when compared with spontaneous baseline activity. To further validate these results, we tested microglial histamine responses in thalamus in the presence of Hrh isoform-specific blockers (Figure S3). Strikingly, the Hrh1-specific antagonist cetrizine (10 \mu M) significantly decreased microglial Ca2+ responses upon histamine application (0.0 \pm 0.0/14.9\%; \(n = 244 \) cells, 32 slices, 5 mice; \(p < .0001 \)). Antagonizing Hrh2 by using tiotidine (10 \mu M) did not significantly affect histamine responses of thalamic microglia (15.5 \pm 7.9/26.7\%; \(n = 425 \) cells from 38 slices and 6 mice; \(p > .9999 \)). Likewise, Hrh3 (carcinine; 10 \mu M) had no significant effects on microglial histamine responses (18.33 \pm 0/34.37\%; \(n = 358 \) cells, 40 slices, 6 mice; \(p > .9999 \); Figure S3A,B). Taken together, our data indicate the involvement of Hrh1 and Hrh2 in microglial histamine responses in cortex and thalamus, with Hrh1 being more predominantly involved. These findings are in contrast to our data on isolated microglia demonstrating that Hrh2 is the only microglia-intrinsic histamine receptor opening the possibility that the microglia Hrh1-mediated response could be indirect and mediated by another cell type.
Astrocytes express Hrh1 receptors (Zhang et al., 2014) and were previously shown to respond with Ca\(^{2+}\) elevations to histamine via Hrh1 (Jung et al., 2000). It suggests that they could be a potential source for signaling substances that are released in a histamine (Hrh1)-dependent fashion from astrocytes and sensed by microglia. We revisited the previous findings and studied astrocytic Ca\(^{2+}\) level changes in response to histamine in situ. AM-ester-coupled Ca\(^{2+}\) indicators are usually nicely taken up by cultured or isolated microglia (e.g., Elmadany, de Almeida Sassi, et al., 2020; Hoffmann et al., 2003; Møller et al., 2000), however, in brain slices taken up mainly by astrocytes (Schipke et al., 2002). We confirmed this previous finding by comparing Fluo4/AM labeling with fluorescence reporter expression in acute brain slices from GFAP-RFP mice. As shown in Figure S6, Fluo4/AM signals largely overlapped with RFP fluorescence (95.9 ± 3.9%), indicating that the Ca\(^{2+}\) indicator was taken up by GFAP+ cells, putatively astrocytes. In fact, this finding does not exclude non-astrocytic cell types with a similar morphology like NG2 cells. However, NG2 glia usually do not express GFAP (Dawson, 2003) and contribute to a rather low extent (2%-3%) to the cell population of the CNS as compared with GFAP+ astrocytes (10%-15%).

We therefore conclude that the majority of the Fluo4-labeled cells in our slices are astrocytes and we used this Ca\(^{2+}\) indicator for loading cortical brain slices from C57Bl6 mice. As shown in Figure 3a,b, 76.5 ± 52.5/87.9% of the cortical ATP-responding cells displayed Ca\(^{2+}\) elevations upon external application of 100 μM histamine (n = 143 cells, 11 slices, 3 mice) which was significantly more than basal, spontaneous astrocytic Ca\(^{2+}\) elevations (0.0 ± 0.0/6.4%; p = .0002). We did the same experiment in cortical slices from Csfr1-2A-mCherry-2A-GCaMP animals (Figure S7) and discriminated microglia by their transgenic mCherry fluorescence from astrocytes (mCherry+). The response rate of the mCherry+ cells was comparable to that of microglial cells in Figure 2 (12.5 ± 5.8/20.6%; n = 160 cells, 12 slices, 4 mice) and was significantly smaller than the response rate of mCherry- cells (64.6 ± 42.6/88.8%; n = 158 cells, 14 slices, 4 mice).

The application of 2-PEA (Hrh1 agonist; 100 μM) led to comparable astrocytic Ca\(^{2+}\) responses (80.0 ± 66.7/88.9%; n = 124 cells, 10 slices, 3 mice; p = .0013 vs. basal and p = .0013 vs. histamine), suggesting that Hrh1 is the dominant histamine receptor isofrom in cortical astrocytes. The astrocytic response rate upon the Hrh2-specific agonist amthamine was 6.5 ± 0.0/20.5% (n = 129 cells, 11 slices, 3 mice) which was not significantly different from basal activity (p > .9999). We also investigated thalamic astrocytes and found similar astrocyte-like responses to histamine (70.7 ± 32.1/82.7%; n = 168 cells, 16 slices, 2 mice; Figure 3c,d) and Hrh1 stimulation (2-PEA; 60.0 ± 39.7/79.7%; n = 133 cells, 13 slices, 4 mice; p > .9999 vs. histamine) whereas there was no response upon Hrh2 activation (amthamine; 0.0 ± 0.0/0.0%; n = 147 cells, 16 slices, 4 mice; p < .0001 vs. histamine).

We therefore conclude that astrocytes express functional Hrh1 receptors in cortex and thalamus being, thus, potential sources of a Hrh1-dependent secondary signaling toward microglial receptors.

3.5 Microglia Ca\(^{2+}\) responses to histamine are dependent on P2ry12 signaling

It has been previously shown that purinergic signaling is a strong communication pathway between astrocytes and microglia, and that astrocytic Ca\(^{2+}\) elevations can be followed by ATP release and subsequent microglial Ca\(^{2+}\) responses (Schipke et al., 2002; Verderio & Matteoli, 2001). The data above demonstrate that astrocytes but not microglia respond to Hrh1 stimulation. In an attempt to test for the hypothesis that Hrh1 stimulation indirectly mediates microglial Ca\(^{2+}\) responses via astrocytes and ATP release, we blocked P2ry12 which is specifically expressed by microglia in the brain, and which is the predominant (metabotropic) purinergic receptor in microglia (Figure 4a,b). Cortical brain slices from microglia Ca\(^{2+}\) indicator mice were incubated for 2 min with AR-C69931 (1 μM) prior to the application of histamine (100 μM). The blockade of P2ry12 dramatically reduced microglial Ca\(^{2+}\) responses to levels indistinguishable from baseline activity: only 2.70 ± 0.3/72% of ATP-responding microglia displayed histamine responses in the presence of AR-C69931 (n = 590 cells, 23 slices, 4 mice; p = .6808 vs. basal and p = .0012 vs. histamine/control), suggesting that ATP is the messenger that causes cortical microglial Ca\(^{2+}\) responses upon histamine application. Microglia histamine responses were also inhibited in thalamus, however, to a lower extent. In the presence of AR-C69931, 12.0 ± 4.6/16.9% of the microglia responded upon histamine application (n = 393 cells from 20 slices and 4 mice). This was not significantly different from spontaneous activity (0.0 ± 0.0/1.1%, p = .6371), but there was also no significant differences to histamine application alone (25.0 ± 11.9/45.8%, p = .4579).

3.6 Histamine stimulates microglial phagocytic activity via Hrh1

To study the effect of brain histamine on microglia at a more functional level, we tested if and how microglia phagocytosis is modulated by histamine. Phagocytic activity was quantified according to our previously published in situ assay (Wendt et al., 2017). Acute brain slices from adult C57BL/6J mice were incubated for 60 min with latex beads and the number of beads incorporated into a 3D-rendered Iba1-labeled (microglia) volume was subsequently counted using confocal imaging and 3D reconstruction (Figure 5a). Per animal and condition, we quantified microglial phagocytosis in 4–5 cortical brain slices, analyzing 4–5 randomly chosen fields of view per slice by z-stacks in the cortex (layers I–VI). As shown in Figure 5b, baseline phagocytic index in the cortex (1.65 ± 0.93/2.47; n = 54) was significantly enhanced when histamine (100 μM) was co-applied together with the beads (2.87 ± 2.14/3.87; n = 90; p < .0001). As there was only a low percentage of cortical microglia responding to histamine with intracellular Ca\(^{2+}\) elevations (12.1 ± 5.3%/20.0%; see Figure 2a,b), we addressed the question if the increase in microglial phagocytosis upon histamine incubation could be due to a stimulation of only a subpopulation of microglial cells (Figure S4A), and therefore determined the
fraction of phagocytizing microglia under control and histamine-stimulating conditions. Under control conditions, on average 6.7 ± 0.6 microglial cells per view field incorporated one bead, which increased to 12.3 ± 0.7 cells during histamine incubation (p < .0001, Figure S4A). Comparing microglial cells incorporating two or more beads under control and histamine-stimulating conditions led to a similar increase (2 beads: 1.6 ± 0.3 and 4.4 ± 0.4 microglia/VF; 3 beads: 0.5 ± 0.1 and 1.6 ± 0.2 microglia/VF; 4 beads: 0.1 ± 0.1 and 0.7 ± 0.1 microglia/VF for control and histamine, respectively; p < .0001 for all comparisons). As the total number of microglial cells within each scanned volume (225 μm × 225 μm × 21 μm) was 113.3 ± 4.4 (n = 144 view fields), the histamine-induced increase in phagocytosis was apparent in 9.2 ± 0.4% of the observed microglia which is in a similar range like histamine-responding microglia in Ca2+ imaging experiments.

Microglial Ca2+ responses to histamine have been similar in thalamus and cortex (see Figure S2B). We therefore tested if the stimulation of phagocytic activity by histamine is also comparable in thalamus. Interestingly, thalamic microglial phagocytosis was generally at a lower level than cortical, with a phagocytic index of 0.44
In an attempt to further study the histamine-induced stimulation of microglial phagocytosis, we also tested the isomorph-specific agonists 2-PEA (100 μM; Hrh1), amthamine (10 μM; Hrh2), R-(-)-α-methylhistamine dihydrobromide (αMH; 1 μM; Hrh3), or VUF 10460 (10 μM; Hrh4) in order to activate histamine receptors in a subtype-specific manner. Interestingly, as summarized in Figure 5b, only incubation with the Hrh1-specific agonist 2-PEA elevated microglial phagocytosis in cortex (3.24 ± 2.38/3.77; n = 34; p < .0001 and p > .9999 compared with control and histamine, respectively) whereas there was no effect when Hrh2 were specifically activated (1.25 ± 0.48/1.93; n = 33; p > .9999 vs. control, Figure 5b). There was likewise no effect on phagocytosis by stimulation of Hrh3 (1.67 ± 0.58/2.01; n = 28; p < .8299 vs. control, data not shown) or Hrh4 (1.86 ± 1.41/2.26; n = 15; p > .9999 vs. control, data not shown). We further verified these results by blocking Hrh1 receptors using Cetirizin dihydrochloride (5 μM) when slices were incubated with histamine. Indeed, histamine-mediated stimulation of phagocytosis was completely blocked by Hrh1 inhibition (1.45 ± 0.73/1.81; n = 44; p > .9999 vs. control). The blockade of Hrh2 by using 10 μM tiotidine did not affect cortical phagocytosis of microglia.

In thalamus, the Hrh subtype-specific effects on microglia phagocytic activity were similar to cortex (Figure 5b), with a stimulation by 2-PEA (Hrh1) that was comparable to histamine and no effects of amthamine (Hrh2). Furthermore, only Hrh1, but not Hrh2, inhibition prevented histamine-induced stimulation of microglial phagocytosis. Taken together, our data demonstrate that histamine stimulates microglial phagocytosis via Hrh1, but not by Hrh2 activation in cortex and thalamus. Similar to acute intracellular Ca^{2+} elevations upon histamine application, histamine incubation for 1 h increased the phagocytic activity also in a subset of microglial cells.

3.7 Stimulation of microglial phagocytic activity by histamine is dependent on P2ry12

We finally tested if the Hrh1-dependent, histamine-evoked stimulation of microglial phagocytosis is dependent on putatively secondary purinergic signals. AR-C69931 was used to block microglial P2ry12 receptors during the 1 h incubation with the beads. As shown in Figure 5c, AR-C69931 indeed completely inhibited histamine-stimulated phagocytosis in cortex. The phagocytic index in the presence of histamine together with AR-C69931 was 0.7 ± 0.28/1.61 (n = 45) and therefore significantly lower than with histamine alone (2.87 ± 2.14/3.99; n = 90; p < .0001) as well as similar to baseline phagocytic activity under control conditions (1.65 ± 0.92/2.51; n = 54; p = .3631) or in the presence of AR-C69931 alone (0.98 ± 0.29/1.56; n = 54; p > .9999). Similarly, the stimulating effect of the Hrh1-specific agonist 2-PEA (100 μM; 3.24 ± 2.35/4.06) was completely abolished by AR-C69931 (0.75 ± 0.43/1.92; n = 45; p < .0001 vs. 2-PEA alone). In thalamus, the Hrh1-dependent stimulation of microglia phagocytosis was also abolished by AR-C69931 (Figure 5b). In the presence of the P2ry12 blocker, histamine (0.18 ± 0.07/0.44; n = 36) did not potentiate microglia phagocytic activity, suggesting that the cellular and molecular mechanisms of the stimulation are not different from cortex. Taken together, our data suggest that histamine-evoked stimulation of microglial phagocytosis depends on microglial P2ry12 receptors in cortex and thalamus.

4 DISCUSSION

Tonic brain histamine levels are controlled by histaminergic neurons in the tuberomammillary nucleus (TMN) in a circadian fashion and have an impact on various brain pathologies. In the present study, we investigated which receptors and pathways are involved in microglial histamine responses. In freshly isolated microglia, only the Hrh2-specific agonist amthamine did evoke intracellular Ca^{2+} elevations while agonists of other subtypes of histaminergic receptors did not trigger responses. Furthermore, only the blockade of Hrh2 but not of the other Hrh isoforms did inhibit histamine responses of isolated microglia. We therefore confirmed many previous transcriptomic observations that microglia express Hrh2 and not histaminergic receptors of the other three subtypes on a functional level (Butovsky et al., 2014; Consortium, 2018; Grabert et al., 2016; Hickman et al., 2013; Zhang et al., 2014).

In a tissue context, namely in cortical and thalamic brain slices, the Hrh2-specific agonist amthamine did trigger a response, but we found also responses upon Hrh1 activation which were even more prominent. The transcriptomic data indicate that Hrh1 receptors are functionally expressed by the majority of astrocytes but not in microglia. The sensitivity of microglial Hrh1 responses to the P2ry12 inhibitor AR-C69931 strongly suggests an astrocyte to microglia communication via ATP/ADP and P2y12. We assume that activation of Hrh1 receptors in astrocytes triggers the release of ATP/ADP which stimulates intracellular Ca^{2+} elevations and phagocytic activity in microglia via activation of P2ry12 purinergic receptors. It is well established that these receptors are prominently expressed by microglia and that activation of these receptors can stimulate phagocytosis (Elmadany, Logiacco, et al., 2020; Inoue et al., 2009; Koizumi et al., 2013; Zhang et al., 2014).
disease conditions as suggested by results from a previous publication of our lab in which LPS treatment significantly increased microglia responses to histamine in adult cultures (Pannell et al., 2014). Another possibility would be that Hrh2 affects other microglial properties than phagocytosis, that is, the ramification (Frick et al., 2016), or that we oversaw potential microglial histamine responses that do not affect intracellular Ca\(^{2+}\) levels (e.g., cAMP). We could also consider that histamine receptors are not evenly distributed among the surface of microglia and that Hrh2 receptors are located rather in microglial processes than in the soma. Our Ca\(^{2+}\) responses are, however, dominated by signals from soma. Hrh2 (and also P2ry12) receptors are known to be linked to cAMP signaling pathways, and not-like Hrh1- to Ca\(^{2+}\). However, it has been previously observed that GPCRs linked to G\(_i\) or G\(_s\) proteins can also elicit intracellular Ca\(^{2+}\) elevations (Elmadany, de Almeida Sassi, et al., 2020; Kuhn et al., 2004; Pannell et al., 2014), potentially by signaling of the G\(_{i}\) subunits in a PLC/IP\(_3\)-dependent fashion from internal stores (Clapham, 2007). Ca\(^{2+}\) elevations downstream of Hrh2 (Esbenshade et al., 2003) or P2ry12 (De Simone et al., 2010; Irino et al., 2008; Jiang et al., 2017; Pausch et al., 2004) activation were previously demonstrated. We therefore suggest that microglial Hrh2- and P2ry12-dependent Ca\(^{2+}\) responses in the current study also originate from internal release. This hypothesis would fit to our data about the sparse responses to ATP or histamine in microglial thin processes which are probably not equipped with endoplasmic reticulum or other Ca\(^{2+}\) stores.

The ambient, average histamine concentration in the extracellular space of the brain is considered to be in the range of 0.5 to 2 \(\mu\)M (Best et al., 2017). That does not exclude that it can be significantly higher in micro-compartmental and has indeed been shown to locally increase up to 20-fold under pathophysiological conditions (Haas & Panula, 2003; Panula & Nuutinen, 2013). We used in the present study a histamine concentration of 100 \(\mu\)M not to mimic physiological HA level changes but rather to test for the presence of functional Hrh isoforms on microglia and astrocytes. The physiological relevance of our data are, thus, more on the functional expression of Hrh isoforms and downstream cellular pathways. In the current study, we used acute brain slices from healthy, young adult mice. Previous in vivo data have shown that calcium signaling in microglia depends on brain state, the inflammatory status and the activity of surrounding neurons (Brawek & Garaschuk, 2013; Eichhoff et al., 2011; Umpierre et al., 2020; Umpierre & Wu, 2020). Although we did not investigate microglia histamine responses in vivo, it seems very unlikely that the involvement of astrocytic Hrh1 and microglial P2ry12 is different in the living brain. Furthermore, there could be alterations under disease conditions due to pathophysiological changes in Hrh or P2ry12 receptor expression levels or altered levels of ambient histamine.

In the current study we neither demonstrated nor ruled out a functional role of microglial Ca\(^{2+}\) signaling in phagocytosis. However, stimulation of Hrh1 which is functionally expressed on astrocytes, stimulated microglial phagocytosis in a (microglial) P2ry12-dependent fashion. Our data therefore indicate that astrocytes are required for histamine stimulation of microglial phagocytic activity. There are several previous reports on the impact of histamine on microglia phagocytosis; however, there is so far no evidence for a potential interaction of astrocytes in microglial responses. In fact, studies on acutely isolated or cultured microglial cells, including the relatively non-physiological cell line N9, do not contain other cell types like astrocytes as potential source of secondary messengers (Albertini et al., 2020; Barata-Antunes et al., 2017; Ferreira et al., 2012; Iida et al., 2015; Rocha et al., 2016). To the best knowledge of the authors, there are so far two studies testing the effect of histamine on microglial phagocytosis under more physiological in situ or in vivo conditions. One study showed that microglia phagocytosis was suppressed by inhibition of Hrh3 in organotypic hippocampal brain slices. The in vivo injection of the inverse Hrh3 agonist JNJ10181457 into the prefrontal cortex, however, did only affect the LPS stimulation of microglia phagocytic activity, but had no effect on unstimulated microglia (Iida et al., 2017). As we did in the present study not directly test for these conditions and brain regions, these data do not necessarily contradict our results and it is quite tempting to speculate about the differences to our results. Conceivable explanations for the involvement of Hrh3 in Iida et al. (2017) might for instance be the high density of neurons in the pyramidal layers of the hippocampus. Given that Hrh3 is mainly expressed by neurons, it seems possible that blockade of Hrh3 could rather have inhibited a yet unknown neuron-microglia communication than acting on microglia directly. In the present study, by using in situ Ca\(^{2+}\) imaging, we did not find any evidence for functional Hrh3 expression on cortical and thalamic microglia and the transcriptomic data also do not support that hypothesis (Figures 1d, 2d and S3C,D). In Iida et al., however, the activation of microglia in the prefrontal cortex by LPS will have changed their expression profile, which potentially lead to an upregulation of microglia-intrinsic Hrh3. The second in vivo study on histamine and microglia phagocytosis was performed by Rocha et al. (2016) who found that stereotactical co-injection of histamine increased microglial engulfment of phosphatidylcholine-containing liposomes in the substantia nigra, according to a stimulation of microglial phagocytic activity by histamine. This result fits well to our findings, although the interplay between histamine and astrocytes was not tested directly. It was actually demonstrated in the same study that histamine did also stimulate phagocytosis of N9 microglia cultures in a Hrh1-dependent fashion however, the comparability of N9 microglia cultures and microglia in situ or in vivo is rather poor (Butovsky et al., 2014).

A further finding of the present study is that there are significant differences in microglial responses to histamine between different brain regions. Interestingly, microglia responses increased in corpus callosum and thalamus, thus, brain regions with a larger percentage of white matter. In thalamus, there was a similar Hrh subtype-specific activation pattern as in the cortex, suggesting that not the microglia-intrinsic expression of Hrh isoforms but rather the microglia communication with non-microglial cells could vary between different brain regions.

Histamine acts as a modulatory neurotransmitter and is linked to the maintenance of wakefulness in the healthy brain. Abnormalities in the histaminergic system have been associated with many brain diseases like Parkinson’s disease or multiple sclerosis (Panula & Nuutinen, 2013). Microglia contribute to many physiological and

ACKNOWLEDGMENTS

We thank Regina Piske, Nadine Scharek, Bastiaan Pierik, and the microscopy core facility (Advanced Light Microscopy, ALM) of the MDC Berlin for technical assistance. We also thank Dr. Ralf Kühn and Andrea Leschke from the Transgenic Core Facility of the MDC for generating the microglia indicator mouse lines. This work was supported by the Helmholtz-Gemeinschaft, Zukunftsthema “Immunology and Inflammation” (ZT-0027), and by the Einstein-Stiftung. Open Access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest with the contents of the article.

DATA AVAILABILITY STATEMENT

Data tables will be shared.

ORCID

Pengfei Xia https://orcid.org/0000-0001-5086-1755
Helmut Kettenmann https://orcid.org/0000-0001-8208-0291

REFERENCES

Hoffmann, A., Kann, O., Ohlemeyer, C., Hanisch, U. K., & Kettenmann, H. (2003). Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): Suppression of nearly all pathological processes in the CNS, and their ability to sense histaminergic tones or stimuli via astrocytes and P2ryan might have implications for the future development of novel immune-related therapies.
receptor-evoked calcium signaling and control of release function. The Journal of Neuroscience, 23(11), 4410–4419.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.