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ABSTRACT
Objective Gut microbial products are involved in regulation 
of host metabolism. In human and experimental studies, we 
explored the potential role of hippurate, a hepatic phase 2 
conjugation product of microbial benzoate, as a marker and 
mediator of metabolic health.
Design In 271 middle- aged non- diabetic Danish 
individuals, who were stratified on habitual dietary 
intake, we applied 1H- nuclear magnetic resonance (NMR) 
spectroscopy of urine samples and shotgun- sequencing- 
based metagenomics of the gut microbiome to explore 
links between the urine level of hippurate, measures of 
the gut microbiome, dietary fat and markers of metabolic 
health. In mechanistic experiments with chronic 
subcutaneous infusion of hippurate to high- fat- diet- fed 
obese mice, we tested for causality between hippurate 
and metabolic phenotypes.
Results In the human study, we showed that urine 
hippurate positively associates with microbial gene 
richness and functional modules for microbial benzoate 
biosynthetic pathways, one of which is less prevalent in the 
Bacteroides 2 enterotype compared with Ruminococcaceae 
or Prevotella enterotypes. Through dietary stratification, we 
identify a subset of study participants consuming a diet rich 
in saturated fat in which urine hippurate concentration, 
independently of gene richness, accounts for links with 
metabolic health. In the high- fat- fed mice experiments, we 
demonstrate causality through chronic infusion of hippurate 
(20 nmol/day) resulting in improved glucose tolerance and 
enhanced insulin secretion.
Conclusion Our human and experimental studies show 
that a high urine hippurate concentration is a general 
marker of metabolic health, and in the context of obesity 
induced by high- fat diets, hippurate contributes to 
metabolic improvements, highlighting its potential as a 
mediator of metabolic health.

INTRODUCTION
Human obesity is an epidemic that raises the risk 
of type 2 diabetes and cardiovascular disease. Gut 
microbiome dysbiosis is now recognised as a key 

feature of these disorders. The gut microbiota 
is a complex ecosystem, harbouring thousands 
of microbial species and strains.1 It is a dynamic 
system described as a continuum between core and 
rare participants,2 with an overall ecosystem struc-
ture alternately described in terms of gradients3 or 

Significance of the study

What is already known about this subject?
 ► Previous reports have demonstrated the role 
of the microbiome in obesity, non- alcoholic 
fatty liver disease, insulin resistance and type 2 
diabetes

 ► A microbial- host co- metabolite, hippurate, has 
been associated with health in studies with 
fatty liver disease, insulin resistance, diabetes, 
obesity and metabolic syndrome.

What are the new findings?
 ► Hippurate showed the strongest association 
with microbial gene richness and microbial 
genes associated with hippurate belong to the 
phenylpropanoid pathway

 ► High hippurate levels are associated with 
metabolic health in volunteers consuming a 
high- meat diet rich in saturated fats

 ► Chronic pharmacological treatments with 
hippurate provide metabolic benefits in high- fat 
diet contexts

 ► Hippurate also specifically increases β cell 
area in pancreas and function in high- fat diet 
conditions.

How might it impact on clinical practice in the 
foreseeable future?

 ► Hippurate can be used a marker of metabolic 
health in stratified studies and its levels can be 
monitored in lifestyle interventions

 ► Specific dietary advice could eventually 
be given to increase hippurate production 
potential by the microbiome
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enterotypes across populations.4–6 The microbiome collectively 
encodes up to 10 million different microbial genes.7 8 Micro-
bial gene richness has been proposed as a marker of ecolog-
ical diversity mirroring improvements in metabolic health.9 10 
Many factors affect the gut microbiota,11 including diet,12 13 
age,14 15 lifestyle,16 dietary supplements such as sweeteners17 
and drugs.16 18 Although the microbiota directly impacts various 
biological processes of the host through production or degrada-
tion of a multitude of compounds, the vast majority of molecules 
involved in this chemical crosstalk remain elusive.19–22

Hippurate is one of the most abundant microbial–host co- me-
tabolites, produced by conjugation from glycine and microbial 
benzoate in the liver and kidney through phase 2 detoxifica-
tion.23 Hippurate has been shown to be associated positively 
with microbial diversity but negatively with blood pressure, 
non- alcoholic fatty liver disease, visceral fat mass and Crohn’s 
disease.24–28 This suggests the potential role of hippurate in 
metabolic health.

Despite recent progress, there is a critical need for an in- depth 
characterisation of the complex nutrition–microbiome–host 
interaction involving the hippurate pathway, in particular related 
to (1) associations with microbial gene richness, biosynthetic 
gene modules and their harbouring enterotypes; (2) population 
stratification to identify patient subgroups in which hippurate 
improves metabolic health; and (3) biological characterisation of 
the effect of hippurate on host phenotypes.

To address these points, we characterised the urinary metab-
olome and faecal metagenome of 271 middle- aged non- diabetic 
participants from the Metagenomics of the Human Intestinal 
Tract (MetaHIT) study in the context of a broad range of body 
weight, immune and metabolic markers as well as habitual 
dietary intake data.9 We evaluated the interplay between diet, 
microbiome and metabolome in general and for the hippurate 
pathway in particular. We show that hippurate beneficially 
impacts on bioclinical phenotypes, which we further confirm 
through in vivo studies in a preclinical model of obesity and 
diabetes.

METHODS
Human subjects
All analyses were done on non- diabetic Danish individuals from 
the MetaHIT study (N=271),9 29 including the subset of 193 
individuals who completed a validated Food Frequency Ques-
tionnaire (FFQ).18 The study was approved by the Ethical 
Committees of the Capital Region of Denmark (HC- 2008- 017 
and H- 15000306) and was in accordance with the principles 
of the Declaration of Helsinki. All participants gave written 
informed consent. Sampling and clinical phenotyping were 
performed as described previously.9 29 Briefly, all study partici-
pants were recruited from the population- based Inter99 study.30 
The study programme consisted of two visits, approximately 14 
days apart. At the first visit, all participants were examined in 
the morning after an overnight fast. At the second visit, a dual- 
energy X- ray absorptiometry scan was performed. Serum glycine 
levels were previously assessed.29 Estimated glomerular filtra-
tion rate (eGFR) was calculated with the chronic kidney disease 
- epidemiology collaboration (CKD- EPI) formula without the 
ethnicity factor.31

Dietary data
A subset of the study participants (n=193) completed a validated 
FFQ in order to obtain information on their habitual diet.32 The 
FFQ gathered dietary information from all meals during a day 

and recorded the intake frequencies within the past months. The 
consumed quantity was determined by multiplying the portion 
size with the reported consumption frequency in the FFQ. Stan-
dard portion sizes for women and men, separately, were used in 
this calculation; all food items in the FFQ were linked to food 
items in the Danish Food Composition Databank as previously 
described.18 Estimation of daily intake of macronutrients and 
micronutrients for each participant was based on calculations 
using FoodCalc (V.1.3) (http://www. ibt. ku. dk/ jesper/ FoodCalc/ 
Default. htm).

Sample collection
Faecal samples were collected at home by the study participants 
and immediately frozen after collection. The samples were trans-
ferred to the research centre using insulating polystyrene foam 
containers and stored at −80°C until analysis. DNA extraction 
was performed as described.9 Blood sampling was performed at 
the fasting state, and urine was collected at the first visit mid- 
void on arrival at the study centre and frozen immediately with 
no preservatives added. Samples were stored at −80°C until 
analyses.

Metabolic profiling
Urine samples were randomised, prepared and measured on a 
1H- NMR spectrometer (Bruker GmbH) operating at 600.22 
MHz following Bruker IVDr standard operating procedures 
(SOPs) as described.33 Briefly, 540 µL urine was mixed with 60 
µL buffer (1.5 M NaH2PO4, 0.1% v/v TSP, 2 mM NaN3 in D2O, 
pH7.4), vortexed and centrifuged at 12 000g for 5 min at 4°C. 
Then, 550 µL of the resulting supernatant was transferred into 
a 5 mm SampleJet NMR tube for 1H- NMR analysis. The 1H- 
NMR spectra were imported into Matlab for preprocessing as 
reported24 using Probabilistic Quotient Normalisation (PQN)34 
followed by peak picking with the Statistical Recoupling of Vari-
ables (SRV) algorithm.35 Structural assignment was performed 
as reviewed36 using in- house and publicly available databases. 
The hippurate peaks at 7.84(d), 7.55(t) and 7.64(t) ppm were 
integrated manually and summed.

Metagenomics
Shotgun sequencing of microbial DNA and metagenomics 
processing workflow for gene richness were performed as 
published.9 Sequences were mapped onto the previously released 
integrated gene catalogue.7 Following the strategy published in 
Vieira- Silva et al,37 we built a novel set of 20 manually curated 
gut- specific metabolic modules to map microbial phenylpro-
panoid metabolism from metagenomic data (online supple-
mental data 1). Assembly of the module set was based on 
extensive literature and database review (KEGG,38 MetaCyc39). 
Included pathways were restricted to prokaryote metabolism of 
phenylpropanoids and related substrates. While the scope of the 
current module sets exceeds microbial benzoate production, it 
does not claim completeness regarding coverage of microbial 
phenylpropanoid metabolism. Each module represents a cellular 
enzymatic process, defined as a set of ortholog groups and 
delimited by input and output metabolites. Module structure 
follows the KEGG database syntax. Abundances of customised 
modules were derived from the ortholog abundance tables using 
Omixer- RPMV.1.0 (https:// github. com/ raeslab/ omixer- rpm).40 
Enterotyping of the genus- 
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Univariate statistical analysis
Outliers were identified by ROUT test (Q=1%) in GraphPad 
(Prism). For comparisons between groups, normality was tested 
using D'Agostino- Pearson omnibus normality test, then one- way 
analysis of variance, followed by Tukey’s honestly significant 
difference (HSD) post hoc testing when data were normally 
distributed; otherwise, groups were compared using the two- 
tailed Mann- Whitney test (p<0.05 considered to be statistically 
significant). Data were displayed as mean±SEM throughout. 
Multiple testing corrections were performed using Storey’s 
procedure (noted q).42 For comparison between more than 
two groups, a two- tailed Kruskal- Wallis test was applied (with 
multiple correction using the Benjamini- Hochberg method, 
noted p adjusted for false discovery rate, pFDR) followed by a 
joint- rank Dunn test for pairwise comparisons between groups.

Principal component analysis (PCA)
PCA was performed using MATLAB V.R2014a function ‘ppca’ 
in order to run a probabilistic PCA to be able to include variables 
with a minority of missing values.

Principal coordinates analysis (PCoA)
Unconstrained ordination was performed to visualise interindi-
vidual variation in microbiota composition, using Bray- Curtis 
dissimilarity on the genus- level abundance matrix with the vegan 
(V.2.4- 1) R package.43

Least-squares and stepwise multivariate linear regressions
The cumulative contributions of explanatory variables on 
excreted hippurate were determined by multivariate linear 
regressions (with or without stepwise feature selection). Hippu-
rate and the continuous explanatory variables were rank- 
transformed and model explanatory power was assessed using 
the Akaike information criterion.

Orthogonal partial least squares (O-PLS)
Orthogonal partial least squares discriminant analysis 
(O- PLS- DA) was performed in MATLAB V.R2014a for super-
vised multivariate analysis as described.44 The predictive capa-
bility of O- PLS- DA models was evaluated through sevenfold 
cross- validation44 to compute Q2

Yhat goodness- of- prediction 
parameters. The empirical significance of the Q2

Yhat param-
eter was evaluated by random permutation testing (10 000 
iterations).45

K-means clustering
Optimal number of clusters were determined using the elbow, 
silhouette and gap statistics methods by majority vote from the 
R (4.0.3) packages factoextra (1.0.7) and cluster (2.1.0). Clus-
tering was performed using the built- in R K- means function with 
the Hartigan- Wong algorithm using 25 random sets.

Animal experiments
All animal procedures were authorised by the ethics committee 
of the University of Paris (Ref: 00486.02). Four groups of six 
C57BL/6J male mice (Janvier Labs) were fed either control 
carbohydrate diet (CHD; 10% fat) (D12450Ki, Research diets) 
or high- fat diet (HFD; 60% fat) (D12492i, Research diets) as 
illustrated in online supplemental figure 1. The composition 
of each diet is given in online supplemental data 2. Hippurate 
(5.55 mM in 0.9% NaCl) was administered subcutaneously for 
6 weeks using Alzet minipumps (model 2006, Charles River); 
control mice were infused with saline. Procedures and assays 

were as described.46 Briefly, glucose tolerance and insulin secre-
tion were assessed using an intraperitoneal glucose tolerance 
test (IPGTT). Blood samples were collected before injection 
of glucose (2 g/kg) and sequentially afterwards to determine 
glycaemia using a glucometer (Roche Diagnostics) and insulin 
using an ELISA (Mercodia). Pancreas sections were incubated 
with an insulin- specific antibody (Cat #: C27C9, Ozyme) or 
an anti- Ki67 antibody (Cat #:ab15580, Abcam) followed by an 
horseradish peroxidase (HRP)- conjugated secondary antibody 
(Cat #:1706516, Bio- Rad). Digital images were analysed using 
Visiopharm Integrator System (Visiopharm), and quantitative 
analysis was carried out using a positive pixels algorithm (Indica 
Labs).

RESULTS
Hippurate is the urine metabolite most strongly associated 
with faecal microbial gene richness
To identify microbial and host compounds mediating beneficial 
effects in metabolic health, we profiled the urinary metabo-
lome of the MetaHIT population9 using 1H- NMR to perform 
a Metabolome- Wide Association Study (MWAS)25 for microbial 
gene richness.9 We first built an O- PLS- DA model based on the 
1H- NMR spectra to stratify the population by gene richness 
using our previously published cut- off of 480 000 microbial 
genes9 (figure 1A, p=3.21×10-15). A gene counts density plot 
supported the validity of the stratification (online supplemental 
figure 2A). The cross- validated model significantly predicted 
variance associated with gene richness through a permutation 
test (figure 1B, p=0.1×10-4, 10 000 randomisations). Model 
coefficients for this discrimination revealed hippurate as having 
the strongest association with high microbial gene counts and 
creatinine with low gene counts (figure 1C). Individuals with 
low microbial gene richness present significantly lower urinary 
hippurate levels than those with high (figure 1D, online 
supplemental figure 2B; rank- based Spearman’s correlation 
rho2=0.173, p=1.99×10-9). These data support the association 
between hippurate levels, gene richness and Shannon’s diversity 
index23 (figure 1E, rho2=0.108, p=2.82×10-8).

Importantly, urinary hippurate levels showed significant 
negative associations with markers for metabolic impairments 
such as body mass index (BMI), body weight, the homeostasis 
model assessment of insulin resistance (HOMA- IR), interleu-
kin- 6 (IL- 6), insulin and C- peptide (partial Spearman’s correla-
tions, q<0.1, online supplemental figure 2C). Urinary hippurate 
levels did not associate with either serum glycine (n=269, linear 
Pearson’s correlation, r=0.06, p=0.30), which is required for 
hippurate synthesis through conjugation with gut microbial 
benzoate,47 or eGFR (r=−0.10, p=0.11), which could limit 
hippurate clearance, or to a combined effect of both variables 
(r=−0.02×10-2, p=0.84; online supplemental figure 2D,E, 
online supplemental table 1). Two representative annotated 1H- 
NMR spectra for individuals with low or high gene counts are 
shown (online supplemental figure 3, online supplemental table 
2). We next used K- means clustering for data- driven stratification 
of urinary hippurate into ‘high’ and ‘low’ (online supplemental 
figure 4A). Individuals in the ‘high’ hippurate cluster exhibited 
higher hippurate levels (p<2.16×10-16, online supplemental 
figure 4B) and gene counts (p=2.00×10-5, online supplemental 
figure 4C). Moreover, insulin resistance (HOMA- 
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algorithm.48 Absolute hippurate values highly correlated with 
hippurate (AU) (rho2=0.76, p<2.2×10-16), individuals with high 
gene counts secreted higher absolute hippurate (p=0.00015) 
and absolute hippurate significantly correlated with gene counts 
(rho2=0.11, p=7.17×10-8; online supplemental figure 5A–C). 
Using the hippurate stratification in online supplemental figure 
4A for absolute hippurate values, we report that the cut- off 
value for secreted hippurate is 3.94 mM (online supplemental 
figure 5D). To further validate our results, we normalised our 
1H- NMR peaks with the corresponding creatinine values. Again, 

scores obtained from an O- PLS- DA model built on creatinine- 
corrected 1H- NMR peaks significantly associated with gene 
richness (p=8.12×10-14), predicted gene counts (p=1×10-4; 
10 000 permutations) and creatinine- adjusted hippurate had the 
strongest covariance with high gene counts (online supplemental 
figure 6A–C). Moreover, individuals with high gene counts 
secreted elevated creatinine- adjusted hippurate (p=5.38×10-9) 
and creatinine- adjusted hippurate correlated with gene richness 
(rho2=0.18, p=5.48×10-13) and Shannon diversity (rho2=0.12, 
p=6.01×10-9, online supplemental figure 6D–F).

Figure 1 Hippurate is the main metabolite correlated with gene richness and functional redundancy of the gut microbiome. (A) Scores plot 
(predictive component 1) obtained for an orthogonal partial least squares discriminant analysis (O- PLS- DA) model fitted using urinary 1H- NMR 
spectra to predict microbial gene richness, showing a significant association between high gene richness (over 480 000 gene counts) and 1H- NMR 
spectra (p=3.21×10-15 for a significantly non- zero slope using F- test, N=271). (B) Empirical assessment of the significance of O- PLS goodness- of- fit 
parameter Q2

Yhat by generating a null distribution with 10 000 random permutations (p=1.00×10-4). (C) Manhattan plot highlighting associations 
between 1H- NMR variables and gene count displayed in a pseudo- spectrum layout. A negative value (blue circles) means a negative correlation, while 
a positive value (red circles) means a positive correlation. Grey circles are clusters with a p value >0.01. Size of circles represents the covariance of the 
cluster with the gene count. (D) Association between urinary hippurate intensity (area under the curve of the hippurate 1H- NMR peaks; AU) and high 
gene counts (over 480 000; p=6.84×10-8 for a significantly non- zero slope using F- test). (E) Linear- regression- based scatterplot showing correlation 
between urinary hippurate (AU: log- 
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Gut microbiome determinants of hippurate production in the 
phenylpropanoid pathway
To characterise microbiome determinants of benzoate produc-
tion (the microbial precursor of hippurate), we next used faecal 
metagenomic data. We functionally annotated functions of the 
Integrated Gene Catalogue (IGC) to KEGG Orthology (KO) 
groups and found 2733 KEGG modules positively associated 
with urine hippurate (pFDR <0.05; online supplemental table 
3). We then manually curated 20 metabolic modules covering 
microbial phenylpropanoid metabolism, including benzoate 
production (referenced in online supplemental data 1). Each 
module represents an enzymatic reaction, defined as a set of 
ortholog groups and delimited by input and output metabolites. 
Proportional abundances of only two modules were correlated 
with urine hippurate levels (at prevalence (number of subject with 
the pathway present/total number of subjects)>20%): cinnamate 
conversion, leading to the production of phenylpropanoate 
(MC0004; N=271, prevalence=100%, Spearman’s rho=0.19, 
q- value=0.006) and coumarate degradation, also encoding 
degradation of cinnamate to benzoate (MC0005; N=271, prev-
alence=74%, Spearman’s rho=0.21, q- value=0.006; figure 2A; 
online supplemental figure 7, online supplemental table 4). 
Interestingly, while MC0004 and MC0005 are competing for 
cinnamate as a common precursor, they both positively associ-
ated with urinary hippurate—despite the fact that the MC0004 
metabolism would not result in increased benzoate produc-
tion. Both modules additionally correlated with microbial gene 
richness (MC0004; N=271, rho=0.63, q- value=8.35×10-

31; MC0005; N=271, rho=0.34, q- value=4.48×10-8; online 
supplemental table 5). Metagenomic species encoding MC0004 
orthologs were predominantly found in genomes of Firmicutes, 
Actinobacteria and, to a lesser extent, Proteobacteria (figure 2B; 
online supplemental tables 6 and 7). Distribution of MC0005 
was limited to (unclassified) Firmicutes and Proteobacteria 
(figure 2B), with both modules undetected in genera belonging 
to the predominant Bacteroidetes phylum.

Mapping of relative abundances on an enteroscape (first plane 
of a normalised genus- level PCoA based on Bray- Curtis dissim-
ilarity38; figure 2C) revealed a gradient of module distribution 
across microbiome community types. Prior research identified 
a potentially dysbiotic microbiome community characterised by 
inflammation, low microbial density, gene richness and Bact2 
enterotype.6 49 50 We applied the same strategy, that is, DMM on 
genus- level abundance profiles,41 to cluster faecal microbiomes 
into four enterotypes (Ruminococcaceae, Rum; Bacteroides1, 
Bact1; Bacteroides2, Bact2; Prevotella, Prev). Urinary hippu-
rate (N=271, Kruskal- Wallis, χ2=41.78, q- value=4.45×10-

9), MC0004 (χ2=40.04, q- value=1.05×10-8) and MC0005 
(χ2=22.25, q- value=5.79×10-5) relative abundances were 
unevenly distributed over enterotypes, with Bact1 and Bact 2 
carriers displaying lower hippurate excretion levels than their 
Rum and Prev counterparts (figure 2D; online supplemental 
tables 8 and 9). These results suggest that microbial modules 
and community structures could potentially (co- )determine the 
abundance of hippurate in the host.

Urine hippurate level associates with improved metabolic 
health in individuals with diets rich in saturated fats
We next assessed individual nutritional intake through vali-
dated FFQs available for 193 study participants.18 A PCA of 
133 dietary intake descriptors summarises dietary patterns 
and loadings highlight four archetypal diets: higher consump-
tion of fruits and vegetables versus high consumption of meat 

containing saturated fats on the first principal component (PC1) 
and carbohydrate- rich foods versus fish- containing unsaturated 
fats on PC2 (figure 3A), a trend that was confirmed at the food 
ingredient and nutrient level (online supplemental figure 8A,B). 
We therefore used K- means clustering to stratify the population 
according to dietary PC1 contrasting between healthy (low- PC1, 
higher consumption of fruit and vegetables; n=126) and at- risk 
(high- PC1, higher consumption of saturated lipids and meat; 
n=67) diets (online supplemental figure 8C). The clinical vari-
ables of individuals in the two dietary clusters were not signifi-
cantly different, unlike the consumption of main dietary items 
including meat, potatoes and saturated fat (online supplemental 
table 10).

To summarise the main factors influencing interindividual vari-
ation in hippurate excretion, we calculated the cumulative contri-
bution of several covariates using stepwise rank- transformed 
linear regression (sLR, n=193; figure 3B; online supplemental 
table 11). Microbial gene richness accounted for 12.95% of the 
variation in urine hippurate (p=2.76×10-7), with dietary PC1 
(p=3.78×10-3), MC0020 encoding for hippurate dehydrolase 
(p=8.36×10-3), and Bact2 prevalence (p=3.07×10-2), respec-
tively, adding an additional 3.76%, 3.02% and 1.97% to the 
cumulative, non- redundant explanatory power. While gene rich-
ness was positively associated with secreted hippurate, all other 
factors displayed a negative correlation (online supplemental 
table 11). When replacing dietary PCs with individual food items, 
the latter did not contribute significantly to hippurate excretion 
(online supplemental figure 8D, online supplemental table 11).

We next set out to disentangle the interaction between dietary 
habits, hippurate association and glycaemic control. Indeed, 
hippurate more strongly associated with lower HOMA- IR 
in those consuming an at- risk diet (high PC1; rho=−0.272, 
p=0.03; figure 3C, red) when compared with those with lower 
lipid intake (low PC1; rho=−0.151, p=0.096; figure 3C, blue) 
or the whole population (rho=−0.182, p=0.012; figure 3C, 
black), adjusted for age, sex and BMI. Similar observations 
were made for circulating insulin and tumour necrosis factor-α 
(TNFα) (figure 3D,E). Using K- means to stratify for hippurate 
each dietary cluster (online supplemental figure 8C) revealed 
that for the subset of 67 individuals consuming an at- risk diet, 
elevated urinary hippurate associated with improved insulin 
sensitivity, lower fasting insulin and lower fasting associated 
adipocyte factor (FIAF)51 or C- reactive protein (online supple-
mental table 11, online supplemental figure 9A–D). Urinary 
hippurate did not associate with any health benefits in the subsets 
of participants consuming mostly a fruit and vegetable diet (low 
PC1, online supplemental table 12) despite having similar levels 
of hippurate to individuals with high- PC1 (online supplemental 
figure 9E). Similarly, hippurate levels associated with limited 
benefits for those consuming a high carbohydrate diet but not a 
pescetarian diet (online supplemental table 12).

To disentangle contributions of hippurate and microbial gene 
richness to bioclinical variables in subjects consuming a fat- rich 
diet, we adjusted Spearman’s rank- based correlations. In this 
subpopulation, hippurate levels significantly correlated with low 
adiposity and better glycaemic control, similarly to gene richness 
(figure 3F). However, the associations between gene richness 
and bioclinical variables collapsed after adjusting for secreted 
hippurate (rho=−0.067, NS), suggesting it was contributed 
by the partial correlation between gene richness and hippurate 
(figure 
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Figure 2 Detection of microbial phenylpropanoid metabolism- related modules in faecal metagenomes of healthy volunteers and their associations 
with urine hippurate concentrations. (A) Visualisation of gut- specific metabolic modules (GMMs) encoding phenylpropanoid metabolism- related 
pathways detected in more than 20% of individuals; MC0004 (orange; N=271, Spearman’s rho=0.19, q- value=0.006) and MC0005 (blue; N=271, 
Spearman’s rho=0.21, q- value=0.006) relative abundances correlate positively with urine hippurate concentrations (online supplemental table 4). (B) 
Metagenomic species encoding modules MC0004 and MC0005. (C) (Top panel) Faecal microbiomes dissimilarity visualised on the first plane of the 
genus- level principal coordinates analysis (PCoA, Bray- Curtis dissimilarity), with individual samples coloured according to enterotypes (Bacteroides1 
(Bact1), blue; Bacteroides2 (Bact2), red; Prevotella (Prev), green; Ruminococcaceae (Rum), yellow). (Middle and bottom panels) Same genus- level 
PCoA overlaid with a mesh coloured according to the median abundances of GMMs MC0004 (red) and MC0005 (blue) in samples falling within each 
cell of the mesh (N=271). MC0005 relative abundance was transformed for clearer visualisation (square root). (D) Distribution of urine hippurate 
concentrations (N=271, Kruskal- Wallis, χ2=41.78, q- value=4.45×10-9; (left panel) and MC0004 (N=271, Kruskal- Wallis, χ2=40.04, q- value=1.05×10-8; 
(middle panel)) and MC0005 (N=271, Kruskal- Wallis, χ2=22.25, q- value=5.79×10-5; (right panel)) relative abundances over enterotypes. Significance 
levels of post hoc Dunn test corrected for multiple testing are indicated (q- 
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Chronic hippurate treatment modulates glucose homeostasis 
in mice
Since hippurate was associated with markers of metabolic health 
primarily in subjects consuming diets rich in saturated fats, we 
investigated diet- dependent influences of hippurate on host 
metabolism in mice. Mice were treated with 5.55 mM hippu-
rate (0.14 mg/kg/day) (online supplemental figure 1). Subcuta-
neous infusion ensured constant delivery of hippurate, avoiding 

first- pass metabolism. Hippurate did not affect body weight, 
BMI or fasting glycaemia (online supplemental figure 10A–F). 
Hippurate reduced glucose tolerance in the CHD- fed lean mice 
(figure 4A–C). Glycaemia 30 min after glucose challenge and the 
ΔG parameter were significantly elevated in hippurate- treated 
mice than controls. Conversely, hippurate improved glucose 
tolerance in HFD- fed obese mice, exemplified by a significant 
reduction in cumulative glycaemia (−23.90%, p<0.005) and 

Figure 3 Elevated urine hippurate abundance associates with improved glucose homeostasis only in participants consuming a diet rich in 
saturated fats and meat. (A) Biplot of the principal component analysis (PCA) of dietary intakes highlights opposite diets along the first two principal 
components (PCs). The main drivers of each PCs are named and represented by blue arrows. (B) Cumulative contributions of explanatory variables 
to interindividual variation in hippurate excretion, estimated by stepwise rank- transformed linear regression (sLR; n=193; online supplemental table 
11). Explanatory variables included age, gender, body mass index (BMI), Integrated Gene Catalogue (IGC) richness, microbiota phenylpropanoid 
metabolism modules and diet as dietary principal components. (C–E) Linear- regression- based scatterplots showing the association between urinary 
hippurate (AU; log- transformed for visualisation purposes) and homeostasis model assessment of insulin resistance (HOMA- IR), plasma insulin and 
tumour necrosis factor-α (TNFα) for the whole cohort (n=193; black line), for those consuming a diet rich in lipids (high PC1, n=67; red line) and for 
those consuming a diet rich in vegetables and fruits (low PC1, n=126, blue line). Colour- coded Spearman partial correlations and p values adjusted 
for age, sex and BMI are depicted above. For full name description of physiological data, see online supplemental table 10. (F) Heatmap depicting 
Spearman’s correlations of hippurate or microbial gene counts with adiposity bioclinical variables unadjusted or adjusted for hippurate or gene counts 
as indicated. WBTOT_PFAT, total body fat percentage. **Spearman p<0.01, *Spearman p<0.1 after multiple testing adjustment with the Benjamini- 
Hochberg method. (G) Schematic illustrating partial Spearman correlations between microbial gene counts (GC) or hippurate (Hip) with HOMA- 
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ΔG parameter (−37.22%, p<0.005; figure 4E–G). Strongly 
enhanced insulin release and glucose- induced insulin secretion 
in hippurate- treated lean mice (figure 4D) suggests a direct effect 
on insulin secretion. In contrast, hippurate administration in 
HFD- fed mice enhanced insulin secretion in response to glucose 
and may account for improved glucose tolerance mediated by 
hippurate in obese mice. Hippurate significantly increased 
insulin- positive areas in lean (+294%, p=0.0063) and obese 
mice (+348%, p=0.0468; online supplemental figure 11A,B). 
Staining for Ki67- positive nuclei revealed that β-cell prolif-
eration was increased by hippurate (+289.73%,p=0.0152) 
only in CHD- fed mice (online supplemental figure 11C). Alto-
gether, data from hippurate- treated mice broadly agree with the 
metabolic improvements observed in the human study: hippu-
rate improves glucose homeostasis under HFD conditions and 
increases insulin- positive beta cell mass.

DISCUSSION
We integrated metabolomics with metagenomics in 271 middle- 
aged non- diabetic subjects from the MetaHIT study9 and iden-
tified urinary hippurate as the metabolite most significantly 
associated with microbial gene richness. Dissection of the 
microbiome determinants of hippurate production led to the 
identification of two metabolic modules associated with urinary 
concentrations, one of them leading to the synthesis of its 
precursor benzoate. We then highlighted diet- dependent rela-
tionships between microbiota–host co- metabolism of benzoate 
and hippurate, demonstrating that hippurate is primarily associ-
ated with metabolic benefits in individuals consuming a saturated 
fat- rich diet. Consistent with associations between microbial 
gene richness and insulin sensitivity reported in MetaHIT9 and 
associations between circulating hippurate and reduced meta-
bolic disease risk,23 25 26 28 our findings suggest that elevated 
levels of hippurate are a marker of metabolic health, primarily in 
people with habitual diets rich in saturated fats.

Our analyses provide new insights in the microbial back-
ground of benzoate production, with two modules being 
significantly associated with urine hippurate variation. These 
modules cover the degradation of cinnamate, an intermediate 

in the metabolism of a broad range of plant secondary metab-
olites,52 present in large quantities of its unmodified form in, 
for example, berries.53 The phenylpropanoid pathway connects 
a wide range of dietary substrates such as phenylalanine, quinic 
acid, shikimic acid or chlorogenic acid to benzoate being often 
a common endpoint. Dietary and microbial intermediates in 
this pathway are associated with beneficial health outcomes.23 54 
Both modules were distributed unevenly over the gut ecosystem 
main bacterial phyla, notably remaining undetected among 
Bacteroidetes. The latter observation was mirrored by their low 
relative abundances in the dysbiotic Bact2 enterotype, which is 
characterised by low bacterial cell counts, low microbial gene 
richness, and respectively low and high relative abundances of 
butyrate producers and Bacteroides spp55 compared with Prev or 
Rum enterotypes. Bact2 prevalence associates with stool mois-
ture content,49 inflammation,6 49 obesity and insulin resistance.6 
This community has been described as immature, with its meta-
bolic potential reflecting refrained/prematurely halted succes-
sional ecosystem development.55 56 Hence, benzoate production 
could be thought of as an emergent community feature linked 
to ecosystem maturation into eubiosis. Remarkably, out of 
the individual modules included in the present analysis, only 
MC00020 encoding hippurate hydrolase contributed to urine 
hippurate concentrations beyond dietary principal components 
and enterotype. This suggests that in non- Bact2 enterotypes, 
benzoate production largely depends on food intake in agree-
ment with Pallister et al.23 The negative contribution of hippu-
rate hydrolase to urinary concentrations further suggests higher 
deconjugation of dietary hippurate and/or retroconversion of 
detoxified benzoate after excretion in the intestinal tract, as 
demonstrated for trimethylamine- N- oxide.57 This microbiome 
determinism of urinary hippurate levels appears to mirror and 
antagonise host genetic determinism we identified for benzoate 
in a rat F2- intercross.58

Our finding that hippurate exerts beneficial metabolic effects 
in the context of high- fat diet was replicated in a mouse model of 
HFD- induced obesity. Hippurate dramatically improved glucose 
tolerance in obese HFD- fed mice which may be explained by 
stimulation of glucose- induced insulin secretion and/or β-cell 

Figure 4 Effects of chronic subcutaneous administration of hippurate on glucose tolerance and insulin secretion in C57BL/6J mice. Mice were fed 
control chow diet (A–D) or high- fat diet (E–H). The effects of chronic subcutaneous administration of hippurate (5.55 mM) for 42 days were tested 
on glucose tolerance (A–C, E–G) and glucose- stimulated insulin secretion (D, H). Control mice were treated with saline. Area under the curve (AUC) 
was calculated as the sum of plasma glucose values during the intraperitoneal glucose tolerance test (IPGTT). ΔG is the AUC over the baseline value 
integrated over the 120 min of the IPGTT. All glycaemia and insulin measures during the IPGTT are from 6 mice/group. Data were analysed using 
the unpaired Mann- Whitney test. Results are means±SEM. *p<0.05; **p<0.01; ****p<0.0001, significantly different between mice treated with 
hippurate and saline- 
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mass increase in a diet- dependent manner. Although glucose 
tolerance displays an interaction between diet and response to 
hippurate in CHD- fed mice, the mechanism of which remaining 
elusive, the main effect is an increased glucose tolerance in HFD 
in both mice and humans. Collectively, our preclinical studies 
suggest that some of the beneficial metabolic effects of hippu-
rate may be mediated through direct action on the pancreas. 
This is consistent with our work showing an inverse associa-
tion among hippurate, insulin resistance, hypertension, obesity 
or liver steatosis,24–26 28 and observations that hippurate exerts 
protective effects in β-cells.59 Further experimentation would be 
required to unequivocally establish this.

CONCLUSION
Overall, we identify hippurate as a pivotal microbial–host co- me-
tabolite mediating part of the beneficial metabolic improvements 
associated with high microbial gene richness in the context of 
Western- style diets. This work expands previous reports in 
which hippurate was inversely associated with insulin resis-
tance, steatosis, hypertension and obesity,24–26 28 and microbial 
ecological diversity.23 28 Our work provides a simple beneficial 
marker documenting the diversity of microbial ecosystems and 
functions, as well as providing health benefits in terms of meta-
bolic control. Our observations support the existence of several 
microbial–host metabolic states with different responses to diet 
and health outcomes for the host, further exemplifying the role 
of the microbiome in human biochemical individuality60 and 
provides avenues in personalised nutrition and stratified medi-
cine.61 62
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