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To access genome-wide chromosome physical interactions in 
the cell nucleus, high-throughput technologies have been 
developed1 that exploit the power of sequencing, spanning 

from chromosome conformation capture (3C)-based methods, 
such as Hi-C and its derivatives2–8, to GAM9 and SPRITE10. They 
have shown that the mammalian genome has a complex 3D orga-
nization crucial in the regulation of genomic functions11–17, which 
encompasses DNA loops4, megabase-sized topologically-associated 
domains (TADs)18,19 and higher-order structures such as metaTADs20 
and A/B compartments2. However, while microscopy is rapidly 
advancing21–24, it remains unclear to what extent those technolo-
gies are faithful to the underlying 3D structure of the genome and 
how they perform relative to each other in different applications, 
because they return distinct measures of interactions and no bench-
mark exists. Is GAM as faithful to genome architecture as SPRITE? 
Are single-cell Hi-C data reliable or dominated by noise? How many 
cells are required to attain statistically significant results? How does 
detection efficiency impact experimental outcomes? Which method 
is more suited to capture interactions at large genomic distances? 
Here we answer those questions by comparison of the in silico per-
formance of Hi-C, GAM and SPRITE to capture the architecture of 
a known set of polymer 3D structures from validated models of real 
chromosomal loci.

Hi-C methods have revolutionized the field of chromosome archi-
tecture and are widely used. They provide a measure of the abundance 
of pairwise interactions—that is, a Hi-C contact frequency map—by 
sequencing the ligation products of DNA fragments that are in close 
spatial proximity in the nucleus2,4. GAM probes the 3D proximity of 
DNA sites by sequencing the genomic content of thin, cryosectioned 
and laser-microdissected slices from the nuclei of cells fixed under 
optimal preservation conditions1,9: physically distant DNA sites are 

unlikely to cosegregate in the same thin slice whereas physically proxi-
mal sites do so. The output of a GAM experiment is a cosegregation 
map—that is, the frequency with which pairs (or groups) of genomic 
regions are found in the same slice, as detected by sequencing. 
Nonrandom DNA interaction probabilities in single cells can then be 
reconstructed by the use of statistical tools such as statistical inference 
of cosegregation (SLICE)9. Finally, SPRITE10 relies on the sequenc-
ing of barcoded DNA: after DNA crosslinking and fragmentation 
in isolated nuclei (as in Hi-C), interacting chromatin complexes are 
uniquely barcoded via a split-pool method and identified by sequenc-
ing. SPRITE interaction maps can be extracted from DNA segments 
with the same barcode, which must originate from the same interact-
ing complex.

To compare Hi-C, GAM and SPRITE, we ran a computational 
experiment implementing all three methods in silico on an ensemble 
of known 3D polymer structures, and analyzed their outputs in such 
a simplified, yet fully controlled, framework. To facilitate comparison 
with real experimental data, rather than using arbitrary polymer con-
formations, we focused on the models of three 6-Mb genomic regions 
around the Sox9 and HoxD genes in mouse embryonic stem cells 
(mESC)25,26 and around the Epha4 gene in mouse CHLX-12 cells27, 
and of a 2.5-Mb locus in human HCT116 cells28. These loci are par-
ticularly interesting because disease-linked structural variants around 
the Sox9 and Epha4 genes have been shown to induce gene misexpres-
sion as a consequence of the rewiring of contacts with local enhanc-
ers16,27,29, and the HoxD locus has a specific 3D compartmentalization 
thought to control transcriptional states during differentiation30,31.

Different computational approaches32–36 and polymer mod-
els25,27,37–47 have been discussed to reconstruct chromatin 3D confor-
mations. Here, we focus on the String&Binders (SBS) model27,38,47 that 
was shown to reproduce accurately the architecture of chromosomal  
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loci25–28. The SBS model of each of the loci considered was inferred 
from available Hi-C data and used to derive an ensemble of 3D struc-
tures. Those 3D structures were in turn employed to benchmark the 
performances of in silico Hi-C, SPRITE and GAM experiments. For 
the Sox9 locus, we also analyzed a polymer model inferred from 
GAM data48 and found similar results.

To validate our approach, we demonstrated that in silico average 
Hi-C, GAM and SPRITE data all successfully compare against cor-
responding independent experiments, and that our model returns 
a bona fide representation of chromatin conformations by com-
parison against independent, single-cell, multiplexed FISH imaging 
data available for the human HCT116 cell locus22. That provides evi-
dence that the architecture of the loci considered is well described 
by our polymer models and that they can be used to compare the 
performance of the three technologies with respect to key experi-
mental parameters, including detection efficiency, genomic separa-
tion and cell numbers.

We found that in silico Hi-C, GAM and SPRITE bulk data are 
overall faithful to the reference 3D structures of the polymer models 
of the loci considered. The intrinsic variability of single-molecule 
conformations renders single-cell contact data much less faithful to 
the underlying 3D structure and strongly different across replicates. 
We identified the minimal number of cells required for replicate 
experiments to return statistically consistent data, which is shown 
to be different across the technologies—lowest in SPRITE and high-
est in GAM under the same conditions. The noise-to-signal level 
in contact matrices grows as a power law by decreasing efficiency, 
which implies that experiments using large cell numbers may be 
required to reduce noise effects, and it varies with genomic distance 
differently in the three methods, with GAM being the least affected 
by noise at larger genomic separations.

Results
Derivation of in silico contact maps from known single-molecule 
3D structures. For comparison of in silico Hi-C, GAM and SPRITE 
data, we focused first on the case study of a 6-Mb region around the 
Sox9 gene (chr11:109–115 Mb, mm9) in mESCs and its SBS poly-
mer model25. The SBS is a model of chromatin where molecules, 
such as transcription factors, form DNA loops by bridging distal 
cognate binding sites47. It has been shown to accurately describe 
Hi-C, GAM and FISH data across loci and cell types20,25–27,38,48–50. 
The genomic locations of the binding sites of the Sox9 locus model 
were inferred from its Hi-C data19 by the PRISMR algorithm25,27, a 
machine learning method that determines the minimal set of bind-
ing sites (and cognate binders) best describing the input data from 
only polymer physics (Methods). Here, we considered the published 
model of the locus at 40-kb resolution and explored an ensemble 
of single-molecule 3D polymer structures derived by molecular 
dynamics (MD) simulations in the thermodynamic steady state of 
the system (Fig. 1a and Methods).

To derive Hi-C, GAM and SPRITE in silico contact data, we 
computationally implemented the steps of the three methods 
on those 3D structures (Fig. 1a). In brief, with in silico Hi-C we 
fragmented in equal segments the two polymer chains represent-
ing the two Sox9 alleles in each cell, ligated crosslinked fragments 
and counted ligation products to derive an in silico analog of Hi-C 
contact frequencies (Methods). The overall efficiency of the process 
is the product of the in silico crosslinking, digestion, biotinylation, 
ligation and sequencing efficiencies. In silico SPRITE was similarly 
implemented by counting chain fragments tagged with the same 
barcode. Finally, in silico GAM was performed by cutting randomly 
oriented slices from a sphere (representing the nucleus) where two 
single-molecule 3D structures (the two ‘alleles') had been randomly 
positioned, and by listing the polymer sites falling within each slice, 
to derive the cosegregation matrix (Methods). The overall efficiency 
comprises the detection and sequencing efficiency of such sites. The 

nuclear radius and slice thickness are set to match typical experi-
mental values9,25 (Methods).

By such a procedure we derived in silico contact maps of the 
known polymer 3D structures and investigated how the output of 
the different technologies is affected by the overall detection effi-
ciency, by the number of pairs, N, of 3D single-molecule struc-
tures included in the analysis (below, for simplicity, we refer to N 
as the number of in silico cells) and how that varies with genomic 
separation.

In silico Hi-C, SPRITE and GAM reproduce experimental 3D 
structure data. Because our polymer model is inferred from Hi-C 
data19, to check that the derived in silico bulk Hi-C map—that is, 
contact data averaged over the ensemble of 3D structures—repro-
duces real bulk Hi-C data19 in the Sox9 locus (Fig. 1b), we mea-
sured their correlation and found that the coefficients Spearman 
(rs), Pearson (r) and HiCRep (stratum adjusted correlation coef-
ficient (scc))51 have high values: rs = 0.83, r = 0.83 and scc = 0.80, 
respectively (Supplementary Table 1a), as previously reported25. 
Similar results were obtained for the HoxD locus in mESC and the 
Epha4 locus in CHLX-12 cells (Supplementary Figs. 1a,b and 2a and 
Methods).

To validate our approach, we next compared the in silico SPRITE 
and GAM contact matrices derived from the same ensemble of 
model 3D structures with the corresponding, independent SPRITE 
and GAM experimental matrices, and we found high correla-
tions between model and experiment—respectively, rs = 0.92 and 
rs = 0.79, r = 0.75 and r = 0.80 (Fig. 1b and Supplementary Table 1a). 
The HiCRep score, albeit designed for comparison of Hi-C data, 
is also statistically significantly high—respectively, scc = 0.57 and 
scc = 0.40, (Methods and Supplementary Fig. 3). In the comparison 
we used published SPRITE bulk mESC data10 and a GAM dataset 
produced for the 4D Nucleome Consortium52 (Methods) com-
posed of 1,122 nuclear slices from F123 mES cells, compared with 
the output from 1,122 in silico slices. The lower correlation between 
experimental and in silico GAM contact matrices (derived from 
Hi-C-based polymers) raises the possibility that Hi-C and GAM 
may capture some distinct specific contacts, although those differ-
ences could derive from noise. Again, similar results were found for 
the mESC HoxD locus (Supplementary Fig. 1a,b; SPRITE and GAM 
data are not available for the Epha4 locus in CHLX-12 cells).

To demonstrate that the SBS model 3D structures are a bona 
fide representation of chromatin conformations in single cells, 
we took advantage of published multiplex FISH super-resolution 
microscopy data22 for a 2.5-Mb region in human HCT116 cells 
(chr21:34.6–37.1 Mb), because we can compare experimental and 
model single-molecule 3D structures22,28 and Hi-C data53 (GAM and 
SPRITE data are not available for that cell type). We repeated the 
procedure described for the Sox9 locus and compared all-against-all 
the model-predicted 3D structures with those from imaging data22 
(Fig. 2a). To find the best match between model and experimen-
tal structures, each SBS model single-molecule conformation was 
univocally associated with a corresponding imaged 3D structure, by 
searching the minimum root mean squared deviation28,54 (RMSD) 
of the coordinates of pairs of rotated and centered 3D structures. 
To test the significance of the association, as a control we consid-
ered self-avoiding random-walk (SAW) polymer chains having the 
same number of beads and the same average gyration radius—that 
is, same size—as the real images of the locus (Methods), and we 
univocally associated each SAW structure with an experimen-
tal structure by the least RMSD criterion. Next, we compared the 
RMSD distribution between SBS structures and their best-matching 
experimental structure to that between SAW structures and their 
best-matching experiment (Fig. 2b). The two distributions were 
found to be statistically different (two-sided Mann–Whitney U-test 
P = 0), with 93% of the former falling below the first tertile of the  
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latter (Fig. 2b). We also compared the RMSD distribution between 
the experimental structures and their best-matching SBS model 
conformation with the control distribution of RMSD between 
experimental structures and their best-matching SAW conforma-
tion (Fig. 2c). Again, the two distributions are statistically different 
(P = 0), with 70% of the former below the first tertile of the con-
trol. Finally, we verified that the distribution of RMSD between 
experimental structures and their best-matching SBS model con-
formation is statistically indistinguishable from that between the 
best-matching pairs of experimental structures (P = 0.15).

To further validate the model, we checked that the SBS-predicted 
and microscopy-imaged22 mean distance matrices, as well as the 
model and Hi-C53 bulk contact matrices, have a high correlation 
(respectively, rs = 0.96 and rs = 0.94) (Fig. 2d and Supplementary Fig. 
4a,b,d). Importantly, as in the other loci considered (see below), the 
in silico SPRITE and GAM average matrices also faithfully represent 
the mean distance data (correlation, rs = −0.98 and rs = −0.99, respec-
tively; Supplementary Fig. 4c). As an additional check, to compare 
the distance matrices of the imaged data, of the SBS and of the SAW 
models, we computed their genomic-distance-corrected Pearson 
correlation coefficient, r′ (Methods). We found (Supplementary 
Fig. 5a–c and Methods) that the mean distance matrix of the SAW 
model is featureless, with no TADs or patterns, and it has a much 
lower correlation with the experimental one (r′ = 0.32) than the 
SBS model mean distance matrix (r′ = 0.84). Finally, we extended 
the comparison to single-molecule distance data. We computed the 
distribution of r′ values between the pairs experiment–experiment, 
experiment–SBS and experiment–SAW single-molecule distance 
matrices, and found that while the first and second distributions are 
not statistically distinguishable (two-sided Mann–Whitney U-test 
P = 0.19), the experiment–SAW distribution is clearly different 
(P = 0; Supplementary Fig. 5d).

Taken together, the agreement between model and experiments 
provides a validation of our polymer model because its 3D structures 

inferred from Hi-C data accurately recapitulate independent 
SPRITE, GAM and microscopy data, even at the single-molecule 
level, consistently across different experiments, loci and cell types. 
The consistent agreement also shows that our in silico approach has 
no particular biases favoring Hi-C, SPRITE or GAM.

In silico bulk Hi-C, SPRITE and GAM data describe the bench-
mark average distance matrix. Next, we investigated how well in 
silico Hi-C, SPRITE and GAM data reflect the spatial architecture of 
the underlying ensemble of model conformations. In the case study 
of the Sox9 locus, we computed the average distance matrix of the 
known 3D structures and compared it with in silico Hi-C, SPRITE 
and GAM bulk data—that is, averages over in silico cells (Fig. 3). 
The absolute values of Spearman correlation coefficients (as well 
as of Pearson and HiCRep correlations; Supplementary Table 1b) 
of the three methods with the average distance matrix are all high 
(rs < −0.89; values are negative because large physical distances cor-
respond to small contact frequencies).

Interestingly, the patterns visible in the in silico Hi-C, SPRITE 
and GAM bulk data are similar to each other, albeit GAM better 
highlights longer-range contacts between TADs (Fig. 3a). In par-
ticular, all three in silico methods identify the known TADs of the 
locus9,10,19 (Fig. 3b, different colors in the bottom bar). Additionally, 
Hi-C, SPRITE and GAM data match the domain-like patterns of 
the average 3D distance matrix, which represent the typical fold-
ing of the reference ensemble of model conformations (Fig. 3b). 
Similar results are found for the murine HoxD and Epha4 loci and, 
as already stated, the human locus (Supplementary Figs. 1c,d, 2b,c 
and 4b,c).

Taken together, our results support the view that bulk data from 
Hi-C, SPRITE and GAM are faithful to the overall spatial structure 
of the underlying 3D conformations in murine and human loci and, 
albeit that differences exist, they provide comparable information 
on average distances.
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Fig. 1 | In silico Hi-C, SPRITE and GAM average contact maps match experimental data. a, Illustration of computational experiments. An ensemble of 
single-molecule 3D structures of the polymer model of the DNA locus of interest is derived from bulk Hi-C data using the the PRISMR procedure27 and 
polymer physics simulations. b, The model 3D conformations, inferred from Hi-C data only, return average contact maps (bottom) that can be compared to 
Hi-C and independent SPRITE and GAM experimental data (top) in the study of the Sox9 locus (chr11:109–115 Mb, mm9) in mESC. Experimental Hi-C and 
SPRITE maps are derived from bulk data10,19, while GAM data are from a new dataset constructed from 1,122 F123 cells (Methods) and, correspondingly, the 
in silico maps. The color scale represents the percentiles of each dataset. Values of Spearman correlation rs between model and experiment are reported. 
Pearson and HiCRep correlations are reported in Supplementary Table 1a.
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Stochasticity of single-cell data reflects the intrinsic variability 
of single-molecule 3D conformations. Whereas bulk Hi-C data 
are comparatively similar across replicates, single-cell data exhibit 
strong variability54–58. Here we explore two sources of such variabil-
ity: limited detection efficiency and, importantly, inherent differ-
ences across single-molecule conformations of chromatin.

To investigate the impact on contact maps of the structural vari-
ability of single molecules, we discuss first the ideal case of in silico 
experiments where the efficiency is set to 100%. Consistent with 
single-cell imaging data21–24, single-molecule conformations vary 
widely in the ensemble of model 3D structures28 (Fig. 4a, bottom) 
and their single-cell distance matrices (Fig. 4a, top) have broadly 
varying Spearman correlations with the average distance matrix 
(Fig. 4b; mean rs = 0.88; Supplementary Table 1c). Additionally, 
the correlation of an in silico single-cell Hi-C, SPRITE or GAM 
contact map (Fig. 4c) with its corresponding single-cell distance 
matrix is much lower than in the case of the bulk data previously 

discussed, with, on average, rs = −0.37 and rs = −0.46 for, respec-
tively, in silico Hi-C and SPRITE (Fig. 4d and Supplementary Table 
1d). As expected, for GAM the correlation between single-cell maps 
is even lower (average rs = −0.15) and its distribution much broader, 
in the range −0.4 < rs < 0. That is also a consequence of the differ-
ent experimental procedures: while a single-cell in silico Hi-C or 
SPRITE experiment returns the contacts measured over an entire in 
silico nucleus—that is, two independent polymer structures repre-
senting the alleles—a single-cell in silico GAM experiment probes 
the polymer content of only a single slice of an in silico nucleus—
that is, a tiny fraction of the two polymers.

Contact data from single-cell experiments become further dete-
riorated at lower values of detection efficiency and have worse 
correlations with the corresponding single-cell distance maps 
(Supplementary Table 1e). Consequently, the variability of replicates 
from in silico single-cell experiments increases and the correlation 
between their contact maps correspondingly decreases. For example,  
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for an efficiency of 0.5, we found that the average correlation 
between in silico single-cell replicates is around rs = 0.2, 0.4 and 0.1 
for Hi-C, SPRITE and GAM maps, respectively. While the impact 
of limited efficiency on contact maps is systematically investigated 
in the following section, here we stress that the values of correlation 
measured between single-cell replicates are consistent with those 
reported in real experimental studies. For example, in real single-cell 
experiments in CD4 TH1 cells with an efficiency of approximately 

0.025 (ref. 55), the average Spearman correlation between different 
Hi-C maps of the Sox9 locus was found to be rs = 0.01, which is 
numerically equal to the value found for the same efficiency in our 
model of mESC (Methods and Supplementary Fig. 6a).

To summarize, the variability of in silico single-cell Hi-C, SPRITE 
and GAM data reflects the intrinsic structural differences across 
chromatin single molecules, and they are less faithful than bulk data 
to the corresponding single-cell distances even in the ideal case of 
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100% detection efficiency. Lower efficiencies further increase fluc-
tuations, to the point where single-cell replicates can have corre-
lations well below 0.1 at realistic efficiencies, hence explaining the 
variability of single-cell experiments9,54–57.

The number of cells required for replicate reproducibility dif-
fers among Hi-C, SPRITE and GAM. The quality of in silico Hi-C, 
SPRITE and GAM contact maps improves when the number of in 
silico cells (N) in the experiment increases (Fig. 5a). Figure 5b shows, 
for example, the effect of N in the case of efficiencies comparable to 
typical experimental values: we set the Hi-C efficiency to 0.05, taken 
as an upper limit of values reported in recent studies54–56,59; the same 
value is used as an estimate of the efficiency for SPRITE. Because 
the experimental efficiency in GAM9 is roughly one order of mag-
nitude larger than in Hi-C and SPRITE, in the example shown we 
used an in silico GAM efficiency of 0.5 (Methods).

Importantly we checked that, in the large N limit, (1) the contact 
matrices overall are not dependent on the efficiency value consid-
ered and (2) the average over a large number of cells compensates 
for reduced efficiencies (see below and Methods). Indeed, as shown 
in Fig. 5a,b, the patterns of contact matrices become sharper and 
stabilize when N becomes sufficiently large, as also observed in 
experimental investigations55,60. However, our data show that the 

threshold value of N to reach saturation is strongly dependent on 
the efficiency level and varies with different technologies.

We aimed to identify the minimal number of cells that, at a given 
efficiency, is required for replicate in silico experiments to return 
similar outputs—that is, to approach the bulk limit. To measure the 
similarity of pairs of identical experiments in the Sox9 locus (all 
with the same N and efficiency; Fig. 5c), we computed the aver-
age Pearson correlation between their contact maps (Fig. 5d,e; 
Spearman and HiCRep correlations returned analogous results; 
Supplementary Fig. 7). The correlation grows when N is increased 
and plateaus to 1 at the large N limit (Fig. 5d,e), independently of 
the efficiency of the in silico experiment. For each given efficiency, 
we heuristically defined the minimal number of cells, M, required 
for statistically reproducible results across replicates as the value of 
N where the correlation grows larger than a given threshold, rt = 0.9 
(Methods). Interestingly, we found that M is different in the differ-
ent technologies: for example, if the efficiency is 0.1 we found that 
M is 200, 100 and 2,000 for Hi-C, SPRITE and GAM, respectively 
(Fig. 5d). Figure 5e shows the correlation between replicates at vary-
ing N obtained for efficiencies close to those reported in real Hi-C, 
SPRITE and GAM experiments—that is, as specified above, 0.05 for 
Hi-C and SPRITE and 0.5 for GAM: in those cases, M is approxi-
mately 650, 250 and 800, respectively. Additionally, we checked that 
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our estimates of M compare well against available experimental esti-
mations (Methods and Supplementary Fig. 6b).

Next, we systematically investigated how the quality of in silico 
data is affected by the efficiency of the experiment (Supplementary 
Fig. 11). We found that the number of cells required for replicate 
similarity (M) is strongly dependent on efficiency (Fig. 5f): M  
diverges approximately as an inverse squared power law as the 
efficiency becomes small. In other words, halving the efficiency 
requires the quadrupling of cell number to achieve the same quality 
levels. In general, we find that M for SPRITE is two times smaller 
than the corresponding value for Hi-C and one order of magnitude 
smaller than for GAM. Additionally our investigation shows that, 
even in the ideal case of efficiency = 1, single-cell replicates have 
below-threshold correlations because M > 10 even for SPRITE, 
due to the intrinsic variability of single-molecule 3D structures, as 
reported above.

Similar results were found for the murine HoxD, Epha4 and 
human HCT116 loci (Supplementary Figs. 8a–d, 9a–d and 10a–d). 
The sets of in silico single-molecule 3D structures employed in all 
our analyses were produced using polymer models inferred from 
Hi-C data25–28. However, for the Sox9 locus we tested that our results 
remained unchanged overall also when the polymer model of the 
locus is inferred from GAM contact maps rather than from Hi-C48 
(Supplementary Figs. 13 and 14a–d and Methods). Additionally, to 
assess the general validity of our analyses, we applied the in silico 
approach to 3D conformations of a toy block-copolymer, unrelated 
to real chromatin loci, finding similar results (Supplementary Fig. 
15 and Methods). Finally, we checked that the above definition and 
features of M can be fully grounded on the central limit theorem 
(CLT; Methods and Supplementary Fig. 12).

GAM cosegregation data, as mentioned before, include both 
random and nonrandom cosegregation events (that is, specific 
interactions) that can be dissected by the use of statistical methods 
such as SLICE9 (Methods). Hence, we investigated the performance 
of SLICE on in silico GAM data when both N and efficiency varied 
(Supplementary Fig. 16). SLICE returns, in particular, the single-cell 
interaction probability of pairs, and multiplets, of DNA sites9. We 
found that SLICE bulk interaction probabilities are faithful to the 
known average distance matrix (r = −0.95, rs = −1.00, scc = −0.99; 
Supplementary Fig. 16a,b) and the SLICE matrices behave with 
both N and efficiency as found for GAM contact maps. Because 
by definition SLICE specifically detects significant interactions, 
however, we found that the average number of in silico cells (M) 
needed to return statistically reproducible results across replicates 
is approximately half that required for GAM alone under the same 
conditions (Supplementary Fig. 16c–e). For a realistic efficiency of 
0.5, for example, we found that M = 400 for SLICE whereas M = 800 
for GAM. In that respect, SLICE can be employed as a useful tool to 
enhance the performance of GAM, especially in applications where 
the number of available cells is small, such as in the analysis of sam-
ple tissues or biopsies.

Our findings illustrate how the level of variability of in silico 
contact matrices is affected by both the N value and experimental 
efficiency, and how different technologies perform under different 
situations. Consistent with the CLT, the number of cells required for 
replicate similarity (M) grows as an inverse squared power law as 
efficiency decreases.

Noise-to-signal levels vary differently with genomic dis-
tance in Hi-C, SPRITE and GAM. Finally, we investigated the 
noise-to-signal level of the entries of contact matrices and how 
it varies with genomic separation, with N and with the efficiency 
of in silico experiments. For each entry of a contact map, the 
noise-to-signal ratio is defined as the ratio of the standard devia-
tion, σ, to the mean value, μ, across replicate experiments under the 
same conditions. For a given N and efficiency, we observed that the 

average noise-to-signal ratio, σ/μ, is strongly dependent on genomic 
distance (Fig. 6a and Methods). In the Sox9 locus, we found for 
both Hi-C and SPRITE that σ/μ increases by more than one order 
of magnitude as genomic separation increases from 50 kb to 5 Mb. 
In particular, there is a steep increase above the 1-Mb level. SPRITE 
has the lowest σ/μ ratio at genomic scales below 1 Mb but, interest-
ingly, GAM has an overall lower varying noise-to-signal level, espe-
cially at large genomic separations (>1 Mb) where it is almost one 
order of magnitude lower than Hi-C and SPRITE.

At a given genomic distance and efficiency, as expected, the 
noise-to-signal ratio decreases as N increases (Fig. 6b). Consistent 
with the CLT, it follows an inverse squared power law in N (that is, 
N−1/2). One consequence of such a scaling behavior is that single-cell 
(N = 1) contact maps become highly noisy at large genomic separa-
tions. For example, at the 1-Mb scale and for a detection efficiency 
of 0.5, the noise-to-signal ratio for N = 1 is >100% for all three meth-
ods, with Hi-C having the largest fluctuations (σ/μ > 1,000%). As 
expected, the noise-to-signal ratio is also strongly affected by exper-
imental efficiency (Fig. 6c): in brief we find that, in our in silico 
study, for a given genomic distance and a given N, σ/μ decreases 
roughly as an inverse power law of efficiency.

Similar results were obtained for the murine HoxD, Epha4 and 
human HCT116 loci (Supplementary Figs. 8e–g, 9e–g and 10e–g). 
Finally, we extended all the analyses done on the model of the Sox9 
locus derived from Hi-C data to the polymer model derived from 
GAM data48 and acquired results fully consistent with our previ-
ous findings, supporting the broader validity of our approach 
(Supplementary Fig. 14e–g).

discussion
Hi-C, SPRITE and GAM are powerful technologies utilized to probe 
DNA contacts genome wide. We discuss a quantitative benchmark to 
assess how well these different methods represent the 3D structure 
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of the genome and how they perform relative to each other under 
different experimental conditions. Our approach is based on com-
puter simulations of their performance in capturing the architecture 
of a known set of polymer 3D structures. We focused on the models 
of regions around genes Sox9 and HoxD in murine ES cells, around 
the Epha4 gene in CHLX-12 cells and in human HCT116 cells, as 
well as on a toy block-copolymer model. We analyzed in silico Hi-C, 
SPRITE and GAM with different experimental parameters includ-
ing the cell numbers considered, detection efficiency and genomic 
separation scales (Table 1). There is a consistent agreement between 
independent Hi-C, SPRITE and GAM data and our in silico mod-
els across the studied loci and cell types (Fig. 1). Additionally, in 
the human HCT116 locus for which single-cell microscopy data are 
available22, we verified that the model polymer conformations pro-
vide a bona fide representation of the experimental single-molecule 
3D structures (Fig. 2).

We find that in silico Hi-C, SPRITE and GAM bulk contact 
data, as well as SLICE interaction probabilities, faithfully repre-
sent the known spatial conformations of model polymers (Fig. 3). 
Single-cell contact data reflect the intrinsic broad structural vari-
ability of chromatin single molecules and are much less faithful to 
their corresponding single-cell distance matrices (Fig. 4). Because 
single-cell GAM captures a single slice of a nucleus rather than the 
entire nucleus, its fluctuations are even stronger than in single-cell 
Hi-C and SPRITE.

The minimal number of in silico cells (M) to be considered in 
an experiment for replicates to return sufficiently similar contact 
patterns (Fig. 5) increases approximately as an inverse squared 
power as the efficiency of the experiment decreases. For equal con-
ditions, M varies in different technologies (Fig. 5): SPRITE has the 
lowest M and so performs better on samples with a small number 
of cells; GAM has the highest value, but its M is reduced if GAM 
is employed in combination with SLICE, a statistical tool utilized 
to extract nonrandom contacts. In real applications the efficiency 
varies across the three methods and the corresponding values of M 
can become similar. For example, experimental estimates of the effi-
ciency of Hi-C are around59 0.05 and are similar for SPRITE, while 
for GAM it is about9 0.5. Under those conditions we find that M is 
around 650, 250 and 800 for Hi-C, SPRITE and GAM, respectively; 
additionally, when GAM is combined with SLICE, M becomes 
approximately 400.

The noise-to-signal ratio in contact maps is affected by the cell 
number employed in in silico experiments, and grows approxi-
mately as a power law by decreasing efficiency (Fig. 6). Genomic 
distance also impacts the noise-to-signal ratio (Fig. 6): for identical 
conditions, GAM is less noise sensitive at large genomic separation 
(say, >1 Mb).

Overall, our computational analyses are consistent across the 
investigated cases (models of both real loci and toy models), sup-
porting the view that quantitative comparison of the performance 
of in silico Hi-C, SPRITE and GAM has a more general validity. 

Albeit simplified, the resulting picture can thus help in the rational 
design of real-world applications of those technologies for specific 
purposes and in different contexts.
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Methods
The SBS model. The SBS model38,47 describes a chromatin segment as a 
self-avoiding polymer chain comprising beads interacting with diffusing molecules, 
called binders. Along the polymer chain, binders can attractively interact with 
beads that act as binding sites. The interaction is specific, such that different 
types of binding site interact only with their associated binders. The model can 
be visually represented as a chain with beads of different colors, where only 
same-color bead–binder pairs interact. Because the interaction is multivalent, 
a binder can attach to multiple beads. The number of colors (that is, types of 
binding site), their location along the polymer chain and the concentration of 
binders regulate the folding dynamics and equilibrium configurations of an SBS 
polymer25,38.

Inference of the SBS model of a DNA locus from experimental data. The SBS 
model of a given genomic locus is a polymer with a convenient set of binding 
sites (colors) suitably arranged along the chain. To infer the genomic positions 
of different colors, a machine learning method, named PRISMR25,27 is employed. 
Briefly, PRISMR finds the SBS polymer that best reproduces a given input contact 
matrix, without any previous assumptions, based only on the principles of polymer 
physics27. Input contact matrices—as Hi-C27 or GAM48—describing a genomic 
region of length L base pairs (bp) at resolution res are Nbin × Nbin sized, where 
Nbin = L/res is the number of DNA windows (bins) in the region considered. In 
general, the best SBS polymer describing such a DNA region will be composed by 
Nbead = Nbin × n beads, where n accounts for the presence of different binding sites in 
a bin and is given by PRISMR.

Once the polymer model of the locus of interest is found, its 3D conformation 
is derived by a massive parallel MD computer simulation at thermodynamic 
equilibrium. This is repeated for several independent runs to yield an entire 
ensemble of single-molecule 3D equilibrium structures. All MD simulations 
are carried out using the free software LAMMPS61, with interaction potentials 
previously established in the literature62. Full details of the models employed 
and simulation parameters can be found in the referenced papers. This entire 
approach has been successfully used to reproduce experimental data (FISH, Hi-C 
or GAM)25,28,38,48, and provided correct predictions on the impact of mutations over 
3D DNA organization27.

Model 3D structures of murine Sox9, HoxD and Epha4 and human HCT116 
cell loci. The SBS polymer model of the murine Sox9 locus (chr11:109–115 Mb, 
mm9) was inferred25 by PRISMR from mESC Hi-C data at 40-kb resolution19, and 
consists of 2,250 beads and 15 types of binding site (colors). The ensemble of its 3D 
structures derived by MD is composed of 500 configurations. Full details on MD 
simulation parameters are previously described25.

To check the robustness of the approach, we also employed a second ensemble 
of SBS 3D structures describing the same genomic region but derived48 from 
GAM mESC 40-kb cosegregation data9. The polymer consists of Nbead = 2,250 and 
15 colors and the ensemble comprises 450 equilibrium structures. Details of the 
MD simulation are previously published48 and the parameters used are the same as 
previously described25.

The SBS polymer model for the murine HoxD locus (chr2:71–78 Mb, mm9) 
was derived26 by PRISMR from mESC Hi-C data at 40-kb resolution19. The polymer 
comprises Nbead = 2,100, with 12 colors; the ensemble comprises 500 equilibrium 
configurations. Full details of the MD simulation are previously reported26.

In regard to the murine Epha4 locus (chr1:73–79 Mb, mm9), the polymer 
model was obtained27 by PRISMR applied to CHLX-12-cell in situ Hi-C data at 
10-kb resolution4. Here, the polymer is Nbead = 12,600 beads long, with 21 colors. 
The ensemble comprises 500 equilibrium configurations. Full details of MD 
simulation parameters are previously reported27.

The SBS model of the human HCT116 locus (chr21:34.6–37.1 Mb, hg38) was 
inferred28 from Hi-C data at 30-kb resolution53. The polymer consists of 830 beads 
and four types of binding site, and MD simulations provided 1,000 3D equilibrium 
conformations. All further details of MD simulations can be found in previous 
work28.

3D structures of the block-copolymer toy model. To test our algorithms and 
results, we also employed a toy SBS block-copolymer model unrelated to real DNA 
loci. We considered a polymer chain of 210 beads with only three different colors 
(Supplementary Fig. 15a); two of those colors (green and red) were arranged in 
separate blocks. Visually, we colored in green the first block and in red the second. 
In addition, to permit specific contacts across both blocks, we introduced a single 
bead of a third color, represented in blue, at approximately the middle position 
of each color block. Potentials and parameters used for MD simulations are the 
same as previously described25 and, in particular, the interaction energy scale was 
set at 9kBT for the red and green beads and at 12kBT for the blue beads, with kB 
being the Boltzmann constant and temperature T = 300 K. The interaction range 
was set at 1.3σ for the red and green beads and 1.5σ for the blue, where σ is the 
bead diameter. Four binders of the blue type and 88 each of the red and green 
were employed to make the polymer fold. At equilibrium, the green and red 
blocks segregate separately forming two globular domains while the isolated blue 
beads produce a long-range contact stretching out from their respective blocks 

(Supplementary Fig. 15a,b). The ensemble is composed of 150 structures. Here, a 
bin is assumed to be formed by a single bead, such that Nbin = Nbead.

GAM data. GAM data were obtained from mouse ESCs (clone F123), a male cell 
line derived from an F1 Mus musculus castaneus × S129/SvJae63, kindly provided 
by B. Ren (University of California San Diego, San Diego, CA, USA). Normalized 
contact matrices from individual nuclear profiles (NPs) of the F123 cell line at 
40 kb were obtained from the 4D Nucleome Consortium52 and are available on the 
4D Nucleome data portal under accession no. 4DNFIFBSQ1EO. Normalization 
of cosegregation frequencies was performed using pointwise mutual information 
(PMI). The PMI of genomic windows i and j describes the difference between 
the probability of both windows being found in the same NP (that is, their joint 
distribution) and their individual distributions across all NPs. PMI assumes that 
finding one window is independent of finding the second. Specifically, for windows 
i and j, the value of PMI is

PMI = log
(

p(i, j)
p (i) p(j)

)

,

where p(i) is the frequency whereby window i was found across the NPs (p(j) is 
analogously defined) and p(i,j) is the frequency that the two windows are found 
together across the NPs. PMI is then normalized (NPMI) by bounding between −1 
and 1 as follows:

NPMI = −

PMI
log p (i, j)

.

Comparison between experimental and in silico contact matrices. Quantitative 
comparisons between in silico and experimental matrices were performed computing 
the Spearman (rS) and Pearson (r) correlation coefficients, and the stratum adjusted 
correlation coefficient (scc) from the HiCRep method, developed specifically for Hi-C 
data51. The experimental data used for comparisons (Fig. 1b, Supplementary Table 1a 
and Supplementary Fig. 13a) with the in silico data of the Sox9 region are Hi-C19 and 
SPRITE10 in mESC and GAM from the F123-cell 1,122 × 1NP dataset. All datasets are 
at 40-kb resolution. For the HoxD locus, the experimental data used (Supplementary 
Fig. 1a) are the same as for the Sox9 locus. For the Epha4 locus, the Hi-C data4 in 
mouse CHLX-12 cells at 10 kb were employed for comparison with our in silico Hi-C 
map (Supplementary Fig. 2a). All datasets used are aligned to the mm9 assembly. 
Finally, for the locus in the human HCT116 cell line, we considered the Hi-C data53 
and the distance matrices from imaging data22, at 30 kb and aligned to the assembly 
hg38 (Fig. 2d and Supplementary Fig. 4).

In silico distance matrices. To compute the distance matrix of a given polymer 
model, we calculate the Euclidean spatial distance between all pairs of beads, 
obtaining a two-dimensional (2D) matrix Nbead × Nbead. Then, we coarse-grain 
it by averaging over all entries belonging to the same pair of bins, to acquire a 
distance map Nbin × Nbin. Bulk distance matrices (shown in Figs. 2d and 3b and 
Supplementary Figs. 1c, 2b, 4b,13b and 15b) are obtained by averaging over all the 
ensemble of polymer structures. Conversely, single-cell distance matrices (Fig. 4a) 
are an average over the single pair of polymers comprising a simulated cell.

The unit length of distances in the polymer models is σ—that is, the diameter 
of a bead in our MD simulations. We set the value of σ based on estimates of the 
chromatin compaction factor, as in previously published works27,39,64. For example, 
in the case of Sox9, the genomic content per bead is g = L/Nbead = ∼2,667 bp, with 
L = 6 Mb (locus genomic length) and Nbead = 2,250 (number of polymer beads). We 
used a chromatin compaction factor of 70 bp nm–1—that is, an average value between 
the 30-nm fiber and the naked DNA39,65, which returned σ = 38 nm. Analogously for 
the Epha4 polymer model, that is also 6 Mb in length. For the HoxD and HCT116 
locus polymer models (7.0 and 2.5 Mb in length, respectively), the same calculations 
yielded σ = 48 nm and σ = 43 nm, respectively. In the toy block-copolymer model we 
express distances simply in units of σ (Supplementary Fig. 15).

In silico simulations of Hi-C, SPRITE and GAM. The codes used to implement 
in silico Hi-C, SPRITE and GAM take as input the spatial coordinates of the 
beads of our polymer 3D structures. To take into account the two alleles present 
in each single cell, we explicitly consider pairs of independent structures in our 
simulations. By repeating the algorithms over different, randomly selected polymer 
pairs, we simulate experiments carried over a population of cells. All codes are 
written in the C programming language.

In silico Hi-C. For in silico Hi-C experiments we implemented a proxy of the key 
steps of a Hi-C protocol2,4,54,55,57—that is, crosslinking, digestion, biotinylation, 
ligation and contact matrix generation, as described in detail in the following 
sections. In particular we applied those steps separately to each in silico cell, as in a 
real single-cell Hi-C experiment.

Crosslinking. During real Hi-C crosslinking, DNA contacting sites are bound 
together with formaldehyde to fix the overall 3D structure. Formaldehyde binds 
to DNA–protein complexes and consequently fixes DNA sites that are linked by 
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protein bridges66. In our SBS polymers only same-colored beads interact with each 
other through a binder and only if they are closer than a threshold distance d, fixed 
by the interaction energy cutoff25. Thus, for in silico Hi-C we crosslink beads of the 
same color and that are closer than d. This is done with efficiency pc, simulating the 
experimental one. To identify the sets of crosslinked beads, a customized version of 
the DBSCAN clustering algorithm67 is employed.

Digestion. After crosslinking, DNA is digested—that is, cut into fragments. In 
standard Hi-C experiments, digestion fragments have a median length in the 
range from few hundreds of base pairs to several kilobases, depending on the 
restriction enzyme used55. Importantly, in the SBS models of the Sox9, HoxD, 
Epha4 and human loci, because the genomic content of each bead falls within 
that range a single polymer bead is a good representation of the average digestion 
fragment. Thus, we implement digestion by splitting the polymer chain into its 
own individual beads. As result, we acquire a set of independent clusters consisting 
of crosslinked beads.

Biotinylation. The next step is biotinylation, where DNA fragments in each 
crosslinked cluster are marked with biotin. Unmarked fragments cannot be detected 
in Hi-C. In our algorithm, biotinylation is implemented by removing beads from their 
clusters with probability 1 – pb, with pb modeling biotinylation efficiency.

Ligation. In Hi-C, crosslinked and biotinylated pairs of fragments are randomly 
linked, forming contacting pairs. This is implemented by random selection of pairs 
of beads from the same crosslinked cluster within threshold distance, d. To account 
for experimental ligation efficiency, each selected bead is ligated with a probability 
of only pl, and is otherwise discarded.

Contact matrix generation. Next in Hi-C, ligated fragments are sequenced and 
a contact is counted between their corresponding bins, eventually producing a 
contact matrix Nbin × Nbin. Similarly, in our algorithm we produce a 2D Nbin × Nbin 
matrix. For each polymer structure in input, ligated beads are counted as a contact 
with given detection probability pd—modeling the sequencing efficiency of real 
experiments—and their corresponding matrix entry is incremented by 1. The 
procedure is iterated over the N simulated cells, and the final in silico matrix yields 
the total count of contacts between each possible pair of bins.

In silico SPRITE. For SPRITE, we implemented the main steps of its protocol10—
crosslinking, digestion, split-pool tagging and contact matrix generation.

Crosslinking. In SPRITE experiments, crosslinking is carried out as in Hi-C10, so the 
same procedure described above for our in silico Hi-C is employed.

Digestion. After crosslinking, in SPRITE experiments DNA is fragmented first by 
sonication and then by DNAse digestion, resulting in a collection of crosslinked 
fragments of approximately 150–1,000 bp (ref. 10), similar to restriction fragments 
produced by digestion in Hi-C. Hence, we implement SPRITE chromatin digestion 
with an algorithm analogous to that used for in silico Hi-C.

Split-pool tagging. The split-pool tagging procedure allows identification of DNA 
fragments belonging to the same crosslinked cluster, because they are uniquely 
barcoded and all DNA fragments belonging to the same cluster are associated with 
a specific tag sequence10. In our in silico procedure, because the beads composing 
a given cluster are known, an explicit split-pool tagging implementation is not 
required. However, to take into account the fact that in real experiments some 
fragments may not be tagged successfully, we remove beads from their clusters 
with probability 1 – ps.

Contact matrix production. Experimentally, fragments with the same barcode are 
sequenced and assigned to their corresponding genomic windows—that is, the 
bins comprising the contact map. In this way it is possible to define those bins 
associated with a fixed cluster. A contact is then counted for every possible pair 
of bins associated with a cluster. The count is weighted by a corrective factor 2/n, 
taking into account the size of the cluster, with n the number of fragments in the 
cluster10. In our in silico procedure, because each fragment is represented by a 
polymer bead, we assign a count to a bin pair if at least one bead from each bin is 
found in the same cluster. As with in silico Hi-C, each bead is detected with only 
given probability pd, modeling sequencing efficiency. Each contact count over 
the population of simulated cells is then multiplied by its weight, 2/n, and finally 
collected in a Nbin × Nbin matrix.

In silico GAM. In GAM experiments, a nuclear slice is cut in random 
orientation from a cell nucleus, the DNA sites in the slice are sequenced and their 
co-occurrence in a collection of slices measured to construct a GAM cosegregation 
matrix9. In our algorithm, nuclear slicing and cosegregation matrix generation 
were implemented as follows.

Slice cutting. We model a cell nucleus as a sphere containing two different, 
randomly placed, polymer structures of the locus of interest, to take into account 

both alleles present in the considered cell type. For each in silico cell we generate 
a randomly oriented slice within the sphere, and all polymer beads inside are 
counted as cosegregating. The in silico nuclear radius and slice thickness are set, 
in units of σ (polymer chain bead size), to match the scales of the experimental 
values in the considered cell types9,25,68,69. The simulated slices may not contain 
the specific locus of interest, as in a real GAM experiment, where cellular slices 
contain only a fraction of the nucleus. To account for experimental detection 
and sequencing efficiencies, beads inside a simulated slice are counted only with 
certain probability, pd.

Cosegregation matrix production. In GAM, bins found in the same slice are detected 
with a given efficiency and counted as cosegregating. Cosegregation frequencies 
are then arranged in a 2D Nbin × Nbin matrix. Similarly, in our algorithm, we build 
a 2D Nbin × Nbin-sized matrix. Reflecting the process of calling positive windows in 
experimental GAM data, if at least one single bead belonging to a bin is present in 
a simulated slice we consider the whole bin to be inside it. We therefore count all 
possible pairs of bins found in a slice and add that to the corresponding entry in 
the cosegregation matrix. We finally normalize the matrix by the number of slices 
employed, to generate cosegregation frequencies.

SLICE. We applied the statistical tool SLICE over in silico cosegregation data to 
determine its performance (Main Text and Supplementary Fig. 16). To do so, we 
considered the SLICE model statistics previously developed9 and implemented a 
version of the SLICE algorithm customized for the application on the in silico data 
of genomic loci.

The efficiency of in silico experiments. Each step of the in silico Hi-C 
algorithm has a specific efficiency: the probability pc for the inclusion of a 
bead in a crosslinked cluster, the probability pb for the survival of a bead in a 
cluster, the probability pl for ligation of a bead and the probability pd for the 
detection of a ligated bead. Similarly, each step of in silico SPRITE and GAM 
has limited efficiency. By construction, in our algorithms the different steps are 
all independent and hence the overall in silico efficiency, ε, that we discuss in 
Main Text is simply the product of single-step efficiencies. For example, for Hi-C, 
different values of pc, pb, pl and pd corresponding to a given ε yield the same average 
output. The same holds for SPRITE and GAM.

The in silico overall efficiency refers to the probability of the detection of a 
polymer bead in our Hi-C, SPRITE and GAM algorithms, and can be mapped 
onto the corresponding experimental overall efficiency. For Hi-C, since the average 
length of a digestion fragment equals the size of a polymer bead in our models, in 
silico overall efficiency can be assumed to be a good proxy for single-cell efficiency 
in a real Hi-C experiment, and analogously for SPRITE. In the case of GAM, 
experimental efficiency is computed via the SLICE algorithm9 and provides the 
probability for detection of a DNA window (that is, a bin) present in a physical 
slice. The link between in silico and experimental bead efficiency can be derived 
as follows. In a simulated GAM experiment, if k beads of a bin fall within a slice, 
the probability of detection of such a bin is 1 − (1 − ε)k. Averaging over all the 
permitted values of k, the following approximate relation links bead and GAM 
efficiency:

εGAM = 1 −

1 − ε

ε

1 − (1 − ε)2n

2n

where εGAM is the experimental GAM efficiency, ε is the bead efficiency of in silico 
GAM and n is the number of beads composing a bin in the polymer structures. 
For example, we found that the value ε = 0.5 employed in Fig. 5 corresponds to 
εGAM = 0.97, which is very close to the experimental efficiency of 0.94 estimated for 
the published GAM dataset at 40-kb resolution9. We also tested, using numerical 
simulations, that the above approximate relation holds.

In the in silico experiments, the efficiency value used can strongly affect 
the quality of the contact maps (Supplementary Fig. 11), which worsens when 
efficiency is reduced. Such impact is generally compensated by the use of a large 
number of cells. Indeed, bulk contact maps, even at very low efficiency values, 
well correlate with those obtained at efficiency = 1. For instance, the Spearman 
correlation between bulk contact maps at efficiency = 1 and efficiency = 0.025 is 
rs = 0.96 for Hi-C, rs = 0.97 for SPRITE and rs = 0.99 for GAM. Hence, for large 
numbers of cells, contact matrices are overall independent of efficiency, albeit that 
certain effects remain, linked to the specificity of the protocols of the experimental 
technologies.

Analyses of in silico single-cell data. In silico Hi-C, SPRITE and GAM 
single-cell contact matrices were obtained from a single simulated cell—that 
is, a pair of independent polymer structures (Fig. 4c). Single-cell distance 
matrices were computed as described in the section In silico distance matrices. 
For a given simulated cell, we calculated Pearson, Spearman and HiCRep 
correlation coefficients between contact and distance maps and between the 
latter and the bulk distance matrix. This was repeated for 250 in silico single 
cells and the average correlation was extracted (Supplementary Table 1). The 
distributions of Spearman correlation are reported in Fig. 4d for contact maps at 
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efficiency = 1. In the calculation of rank correlations (Spearman) we considered 
the dissimilarity of the data structure of SPRITE and of Hi-C and GAM in silico 
single-cell data, as the latter have only integer entries. Such a difference was 
taken into account by normalization and discretization of the entries of in silico 
SPRITE matrices in integers.

Analysis of noise-to-signal ratio. The noise-to-signal ratio of the entry aij of 
a contact matrix, where i and j are bin indices, is defined as the ratio between 
standard deviation σij and the mean μij of that entry, across replicates. To estimate 
two such quantities, we first fixed the number of cells N and the efficiency ε. We 
then performed an in silico version of Hi-C, SPRITE and GAM 50 times each 
(when N = 1, we ran 100,000 times to overcome low sampling), and obtained a 
set of replicate contact matrices whereby we could extract mean and standard 
deviations for each entry, aij. This procedure was applied for N and ε ranging from, 
respectively, 1–50,000 and 0.05–0.90. In particular, in Fig. 6 and Supplementary 
Figs. 8e–g, 9e–g, 10e–g and 14e–g we report the noise-to-signal ratio under 
different conditions.

First, we fixed the number of cells (N = 50,000) and efficiency (ε = 0.5) and 
studied variation in the noise-to-signal ratio with genomic distance (Fig. 6a 
and Supplementary Figs. 8, 9, 10 and 14e). To do that, we averaged over those 
entries corresponding to a fixed genomic distance, d—that is, considering all 
entries with i and j satisfying d = |i – j| × res, where res is resolution (40 kb). 
Analogously (Fig. 6b and Supplementary Figs. 8, 9, 10 and 14f), we fixed the 
genomic distance (d = 1 Mb, approximately the TAD length scale) and efficiency 
(ε = 0.5) and varied the number of cells. Noise-to-signal ratio was computed 
as average over those entries corresponding to d = |i – j| × res = 1 Mb, as before. 
Finally (Fig. 6c and Supplementary Figs. 8, 9, 10 and 14g) we fixed genomic 
length (1 Mb) and the number of cells (N = 50,000), and varied efficiency in the 
range 0.05–0.90.

Heuristic criterion for assessment of similarity between replicates. Here we 
describe the criterion employed to assess the minimal number of cells (M) required 
for an in silico experiment (Hi-C, GAM or SPRITE) to provide reproducible 
contact maps—that is, contact matrices sufficiently similar across replicate 
experiments (Fig. 5d–f and Supplementary Figs. 8b–d, 9b–d, 10b–d, 14b–d and 
15d). Given a simulated experiment with fixed efficiency ε and cell number N, we 
repeat it k independent times and correspondingly produce k contact matrices. 
The pool of N in silico cells employed each time is randomly chosen. We then 
compute the average Pearson correlation, r between all possible pairs of the 
contact matrices set. In general, as N increases so does r. If r equals rt = 0.90, the 
corresponding number of cells employed, M, is taken as the minimum required for 
reproducibility at efficiency ε. To estimate M for a given efficiency, we employed a 
bisection search algorithm with the parameter k set to 15. Although our criterion 
is heuristic, our estimates of M for various efficiencies (Fig. 5d–f) are statistically 
robust and, importantly, they are consistent with the CLT (following section). We 
tested our approach with other, similar measures including Spearman and HiCRep 
correlation coefficients, and found similar results in the Sox9 locus case study at 
efficiency = 0.1 (Supplementary Fig. 7).

Consistency of the heuristic criterion with the CLT. The definition of the number 
of cells required for replicate similarity, M, based on their correlation value (Main 
Text), is fully consistent with a definition grounded on the CLT. In brief, consider 
the average value, μ, and the standard deviation, σ, of a given entry of a contact 
map in an experiment with N cells at a given efficiency. CLT dictates that the 
noise-to-signal squared ratio, σ2/μ2, scales as 1/N. Accordingly, from the CLT, the 
minimal number of cells, L, required to reduce the noise-to-signal squared ratio 
lower than a given threshold δ is L = Aδ−2σ2/μ2, where A is a constant. We checked 
that both M and the average value of L are linearly proportional to each other—that 
is, M is inversely proportional to the squared signal-to-noise ratio averaged over 
all entries of a single-cell contact map ρ (Supplementary Fig. 12). With analogous 
statistical arguments (following section), the approximate inverse squared power 
law relation between M and efficiency (Fig. 5f) can be explained.

Here, we discuss the above results in detail and show how the heuristic 
criterion used to define M (Main Text) is consistent with a simple argument based 
on the CLT: let the b × b matrix













a11 · · · a1b

...
. . .

...

ab1 · · · abb













be the output of a simulated single-cell experiment (for example, Hi-C, SPRITE 
or GAM). We suppose that each entry of the matrix is a random variable with a 
probability density function (pdf) fij. This pdf in general depends parametrically on 
the global efficiency of the simulated experiment (ε). Thus, the following relation 
holds:

P
{

aij ∈ [a, a + da]
}

= fij (a;ε) da,

where the first term is the probability of aij belonging to the interval [a,a + da]. By 
definition, mean and variance for the entry (i,j) are

μij (ε) =

∫

dafij (a;ε) a, σ
2
ij (ε) =

∫

dafij(a;ε)
(

a − μij (ε)
)2

.

If an in silico experiment with N cells at efficiency ε is performed, the output is 
the sum of N independent single-cell matrices:





















A11 =
n
∑

m=1
am11 · · · A1b =

n
∑

m=1
am1b

...
. . .

...

Ab1 =
n
∑

m=1
amb1 · · · Abb =

n
∑

m=1
ambb





















,

where m runs over the number of cells. We make the reasonable assumption that 
the amij  random variables, for fixed (i,j), are identically distributed. Thus, each entry 
Aij, if N is large enough, is a normally distributed random variable according to the 
CLT. Mean and variance are

Mij (ε) = nμij (ε) , S
2
ij (ε) = nσ

2
ij (ε) .

Let us now suppose N is large enough so that the CLT holds. Then, for the 
entry Aij, we can impose a noise-to-signal ratio lower than a fixed value δ:

Sij(ε)
Mij(ε)

≤ δ →

1
√n

σij (ε)

μij (ε)
≤ δ → n ≥

1
δ2

σ2
ij (ε)

μ2
ij (ε)

≡ Lij(ε).

Hence, in a simulated experiment with N cells, N needs to be higher than Lij(ε) 
for Aij to have a noise-to-signal lower than δ. Consequently, we can define the 
minimum number of cells granting a stable entry Aij as

Lij (ε) = δ
−2 σ2

ij (ε)

μ2
ij (ε)

.

To relate this quantity to the heuristic definition of minimal cell number, we 
need to generalize for all matrix entries. So, we average the noise-to-signal ratio 
over the entries (since contact matrices are symmetric, we can consider only the 
upper triangular submatrix):

⟨

σ2

μ2 ⟩(ε) =
2

b(b − 1)
∑

j>i

σ2
ij (ε)

μ2
ij (ε)

,

where b(b – 1)/2 is the number of upper triangular entries. This expression is 
dominated by single-cell entries with large noise and small signal. However, we 
want the definition of minimum number of cells to be controlled by high-signal 
and low-noise entries, which are more interesting. Therefore, it is more appropriate 
to average over the squared signal-to-noise ratio. By simply rewriting the definition 
of Lij as

Lij (ε) = δ
−2

(

μ2
ij(ε)

σ2
ij (ε)

)

−1

,

we can assume that the minimal cell number L(ε) yielding reproducibility for the 
whole N-cell experiment at efficiency ε is given by

L (ε) = δ
−2

ρ
−1

(ε) ,

ρ (ε) ≡ ⟨

μ2

σ2 ⟩ (ε) =
2

b (b − 1)
∑

j>i

μ2
ij (ε)

σ2
ij (ε)

.

So, given the minimal cell numbers, M—found by our heuristic criterion 
(previous section) for different efficiencies—we tested whether these are consistent 
with the CLT-based definition by checking whether they are proportional to ρ−1(ε). 
In Supplementary Fig. 12 we explicitly show that this relation is well verified in our 
simulations.

Statistical relation between M and ε. Based on the results in the previous section, 
we can derive the relation between M and ε (Fig. 5f and Supplementary Figs. 8–10 
and 14d). Since M and L(ε) are proportional (see previous section), we need to 
derive only the dependence of L(ε) on ε.

Let us suppose that the output matrix of an in silico single-cell experiment is a 
Bernoullian variable—that is, it has only binary entries—for example, 0 or 1. This 
is not exactly the case for Hi-C and SPRITE, yet we will show that the following 
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considerations hold approximately true. For a simulated single-cell experiment 
with efficiency ε, we define the probability for the entry aij to be 1 as pij(ε) and have 
μij(ε) = pij(ε) and

σ
2
ij (ε) = pij (ε)

(

1 − pij (ε)
)

,

where μij(ε) and μij (ε) = pij (ε) indicate mean and variance, respectively. Hence, 
following the notation of the previous section, we can rewrite ρ(ε) in this particular 
case as

ρ (ε) =
2

b(b − 1)
∑

j>i

pij(ε)
1 − pij(ε)

.

To find the relation between L(ε) and ε we need to write ρ(ε) as function of  
ε—that is, to exhibit the dependence of pij(ε) on ε. In complete generality, it holds:

pij (ε) = P
{

aij = 1
}

= P {i detected} P {j detected} P {i, j in contact|i, j detected} ,

where σ2
ij (ε) (P {j detected}) is the probability of bin i (j) being detected 

and P {i, j in contact|i, j detected} is the conditioned probability that bins i 
and j are in contact given that they have been detected. We now assume that 
P {i detected} = P {j detected} = ε. This is a simplifying assumption, because a 
bin is actually composed of multiple beads. We have:

pij (ε) = ε
2cij,

where, for sake of simplicity, we have indicated the conditioned probability with cij.
So we can write ρ(ε) as function of ε:

ρ (ε) =
2

b(b − 1)
∑

j>i

ε2cij
1 − ε2cij

.

For small ε, we can approximate the denominator as 1 and have

ρ(ε)ε≪1 = ε
2 2
b(b − 1)

∑

j>i
cij = ε

2c.

Thus, the Bernoulli approximation leads to a predicted exponent of −2 
between L(ε) and ε for small values of ε:

L (ε) = δ
−2

ρ
−1

(ε) ≈ δ
−2

ε
−2.

These predictions are satisfactorily confirmed in Fig. 5f and Supplementary 
Figs. 8–10 and 14d). The fact that Hi-C and SPRITE entries are not binary would 
affect the functional form of ρ(ε), adding correction terms to the ε2 dependency. 
Nevertheless, for small efficiencies, ε2 is still expected to be the most relevant term 
and the approximations chosen still hold.

Analysis of single-cell experimental data. We checked how our estimates of the 
number of cells required for replicate similarity, M, compare against available 
experimental investigations, and we verified that the correlation values between in 
silico replicates are comparable to those found in experiments.

We considered published Hi-C data55 from the mouse CD4 TH1 cell line. 
Available data include bulk Hi-C, ten single-cell Hi-C and pooled Hi-C from 
60 single-cell experiments. For all of these, we extracted 40-kb Hi-C maps for the 
Sox9 locus (chr11:109–115 Mb, mm9) by totaling contact counts belonging to 
the same 40-kb bin pairs. We calculated the mean Spearman correlation between 
all possible independent pairs of single-cell Hi-C maps, obtaining rs = 0.01 
(Supplementary Fig. 6a). Next, we computed the Spearman correlation between bulk 
Hi-C and 60-cell maps, obtaining rs = 0.33 (Supplementary Fig. 6b and Main Text).

Then, from the Hi-C-derived 3D structures of the Sox9 locus in mESC, we 
generated an in silico bulk Hi-C map, a 60-cell map and ten single-cell maps 
produced at efficiency = 0.025. This is the upper bound efficiency declared for 
the Hi-C data above55. We calculated the average Spearman correlation between 
all independent pairs of in silico single-cell maps, obtaining rs = 0.01, which is 
numerically equal to the mean correlation found between single-cell Hi-C maps 
from the CD4 TH1 cell line (Supplementary Fig. 6a). Finally, Spearman correlation 
was computed between the bulk and 60-cell Hi-C maps, finding rs = 0.27, which is 
not far from the correlation rs = 0.33 obtained in the experimental analog presented 
above (Supplementary Fig. 6b).

Additionally, to verify that our estimates of M are consistent with available 
experimental results, we considered the data from a recent Low-C experiment (a 
Hi-C method for low input material) on mESC60 where, in the case of a locus of 
width 10 Mb, a sample of 1,000 cells was shown to be sufficiently large to produce 
contact maps highly similar to the bulk map (Pearson correlation r = 0.95). That 
estimate of the minimal number of cells needed to approach the bulk limit is 
consistent with the value of M = 650 for in silico Hi-C at efficiency = 0.05, as 
reported in the Main Text.

Structural comparison of single-molecule 3D conformations from model and 
multiplex FISH microscopy. To check whether the SBS 3D structures are a bona 

fide representation of chromatin conformations in single cells, we considered the 
super-resolution microscopy data of the HCT116 locus available in the literature22 
at 30 kb. The model 3D structures28 were compared to the HCT116 experimental 
configurations via the RMSD criterion28,54, which comprises rotation of two 
centered 3D structures until their coordinate difference is minimal, where that 
difference is computed by the RMSD of corresponding site coordinates. Thus, 
for every model configuration, the best-matching experimental structure is that 
yielding the lowest RMSD. To prove their significance, the best RMSD values found 
for each model configuration were tested against a control distribution, given by 
RMSD between an ensemble of SAW polymer structures and their best-matching 
experimental conformations. To obtain a fair control, the SAW model structures 
were produced with the same number of particles and the same average gyration 
radius as the imaged conformations. The two distributions were found statistically 
different (two-sided Mann–Whitney U-test P = 0; Fig. 2b). Analogously, the 
distribution of RMSD between the imaging data and their best-matching SBS 
structures was considered and compared to that of RMSD between experimental 
and best-matching SAW structures. Again, the distributions were found statistically 
incompatible (two-sided Mann–Whitney U-test P = 0; Fig. 2c). Finally, as in a 
previously published paper28, we compared the distribution of RMSD between 
the experimental structures and their best-matching SBS model to that of RMSD 
between best-matching pairs of experimental structures. The distributions were 
found to be statistically indistinguishable, with two-sided Mann–Whitney U-test 
P = 0.15.

Correlations between distance maps from 3D conformations of model and 
multiplex FISH microscopy. In the case of the human HCT116 locus, we considered 
the single-molecule distance maps of the imaged 3D structures22 and of the SBS 
model configurations28 and computed the correlations between all pairs (exp–SBS 
distribution of correlations; Supplementary Fig. 5d). Analogously, we considered the 
single-molecule distance maps of the SAW 3D structures (see previous paragraph) 
and calculated all-against-all correlations with the experimental single-molecule 
distance matrices (exp–SAW distribution). Finally, correlations between all 
possible pairs of experimental single-molecule distance maps were extracted 
(exp–exp distribution). Specifically, in all three cases we computed the Pearson 
genomic-distance-corrected correlations27,28, r' (Supplementary Fig. 5d): for every pair 
of considered matrices, we first subtracted from each of their diagonals their mean 
values, to remove the average effect of increasing distance with increasing genomic 
separation; then, the Pearson correlation was calculated. The exp–SBS and exp–exp 
distributions are statistically indistinguishable (two-sided Mann–Whitney U-test 
P = 0.19 (ref. 28); average values r' = 0.21 and r' = 0.27, respectively). Conversely, the 
exp–SAW distribution is statistically different from both (two-sided Mann–Whitney 
U-test P = 0; average r' = 0.00). We also computed the r' correlation between the mean 
experimental distance matrix and the mean distance matrices from the SBS and SAW 
model structures (Supplementary Fig. 5a–c) where we found, respectively, r' = 0.84 
and r' = 0.32.

Statistical significance of HiCRep scores between in silico and experimental 
contact maps. Albeit that HiCRep has been devised to compare pairs of 
Hi-C matrices, we used it also for pairs of GAM and SPRITE data to return a 
comprehensive view of similarity measures, beyond Spearman and Pearson 
correlations. We verified that the HiCRep correlations (scc) between experimental 
and in silico GAM and SPRITE contact maps are statistically significantly high. In 
the case of the Sox9 locus (Fig. 1b and Supplementary Table 1a), we considered a 
null model where we computed scc between 100 pairs of randomized experimental 
and in silico contact maps, for Hi-C, SPRITE and GAM. Randomization is 
performed by bootstrapping contact frequencies at each genomic distance. We 
found that the measured scc correlations between model and experimental maps 
are higher than the 90th percentiles of the control distributions for all three 
technologies (Supplementary Fig. 3). For all other loci, analogous results were 
obtained.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
Published Hi-C, SPRITE, GAM and microscopy data used for analysis are available 
at the referenced papers. The new GAM data from the F123 cell line are available 
on the 4D Nucleome data portal under accession no. 4DNFIFBSQ1EO.

Code availability
The codes used in our work are based on standard, publicly available software 
packages, as detailed in Methods. Molecular dynamics simulations use 
LAMMPS, v.30july2016. Analyses and plots were produced with the Anaconda 
package v.4.7.12. HiCRep correlations were computed with R v.3.5.1. 3D 
structure visualizations were produced with POV-Ray, v.3.7. The algorithms for 
simulation of Hi-C, SPRITE, GAM and SLICE in silico use standard routines, 
such as DBSCAN, and are described in full detail in Methods. The Hi-C, 
SPRITE and GAM algorithms are available at https://github.com/fmusella/
In-silico_Hi-C_GAM_SPRITE.
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