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ARTICLE INFO ABSTRACT
Article history: The ongoing mass extinction of animal species at an unprecedented rate is largely caused by human
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versity on a global scale. Over decades, captive breeding programs of non-domestic species were char-
acterized by efforts to optimize species-specific husbandry, to increase studbook-based animal exchange,
and to improve enclosure designs. To counter the ongoing dramatic loss of biodiversity, new approaches
are warranted. Recently, new ideas, particularly the application of assisted reproduction technologies
(ART), have been incorporated into classical zoo breeding programs. These technologies include semen
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Cry : and oocyte collection, artificial insemination, and in-vitro embryo generation. More futuristic ideas of
yopreservation ¢ . "

Self-sustaining population advanced ART (aART) implement recent advances in biotechnology and stem-cell related approaches

Stem cell technologies such as cloning, inner cell mass transfer (ICM), and the stem-cell-associated techniques (SCAT) for the

In-vitro-gametogenesis generation of gametes and ultimately embryos of highly endangered species, such as the northern white

Biobanking rhinoceros (Ceratotherium simum cottoni) of which only two female individuals are left. Both, ART and

aART greatly depend on and benefit from the rapidly evolving cryopreservation techniques and bio-
banking not only of genetic, but also of viable cellular materials suitable for the generation of induced
pluripotent stem cells (iPSC). The availability of cryopreserved materials bridges gaps in time and space,
thereby optimizing the available genetic variability and enhancing the chance to restore viable
populations.
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1. Introduction

Cryopreservation in liquid nitrogen at —196 °C brings most
biological processes to a halt, thereby greatly expanding the pos-
sibilities of assisted reproduction technologies (ART). The visionary
physician and researcher, Kurt Benirschke, in 1975 created the
“Frozen Zoo®”", the first large-scale systematic cryobank for blood
products, DNA samples, tissue, cells and, reproductive material of
exotic species at the San Diego Zoo. In anticipation of future tech-
nologies, he already intended to extend biological knowledge and
to sustain biodiversity, stating that “You must collect things for
reasons you don’t yet understand.” [1]. This collection has
expanded since, counting 10,000 cell lines in 2020 [2]. Indeed,
biotechnological possibilities have greatly expanded, opening a
wealth of new tools and possibilities, many of which are still being
implemented or are at the boundaries of our current imagination.

The Anthropocene — the human epoch — is characterized by the
dominance of Homo sapiens over the planet. Overexploitation of
limited natural resources bears the risk of significant negative
economical and societal consequences [3] as we fundamentally
depend not only on their steady supply but also on the invaluable
‘ecosystem services’ which intact ecosystems provide [4]. The
current unprecedented rate of species extinction is estimated at
100 to 1000 times higher than natural background rates [5,6]
(Fig. 1a and b). This earth’s sixth great extinction event has already
driven 22% of all mammalian species close to being lost forever.
Ecological interactions are extremely complex and intertwined so
that the loss of a single species may have much larger implications
than we can foresee (so-called vortex-effect [7]). In our own in-
terest [5,8], it becomes more and more pressing to contain and
ideally reverse this development by protecting ecosystems, species
and genetic variability.

Important scientific advances have been achieved in the recent
past and will continue to open new pathways for the future of
biodiversity conservation. After summarizing the historical, present
and future possibilities, limitations, and success stories of species
conservation, we will explore the new possibilities arising from
advancing cryopreservation methods. Many important examples
are connected with rhinoceros species, which grants them an
inherent focus in our review; nevertheless — wherever relevant and
possible — we attempt to adequately mention examples across all
animal taxa.

2. Species conservation strategies

The most fundamental level of species conservation is the
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protection of natural resources, as habitat loss or degradation for
logging and agriculture presents the greatest current threat to
biodiversity [9]. Starting in the late 18th century and encouraged by
scientists such as Alexander von Humboldt [10], the Yellowstone
National Park became the first public protected area (Fig. 2a and b).
Nevertheless, large viable habitats are being emptied of wildlife by
hunting [11,12], pollution [13], and by invasive species [ 14]. In many
instances now, however, restoring habitat, stopping poaching and
removing pollution and invasive species will not solve the problem
because remaining clusters of wild animals are too small to be
viable [15]. One of the earliest species conservation success stories
concerns the southern white rhinoceros (SWR, Ceratotherium
simum) which recovered from near extinction [16], through hunt-
ing bans and habitat protection [17], as well as strategic trans-
location [18]. Translocations have since become an important tool
in wildlife conservation [19—21]. This success renders the SWR —
despite lately declining numbers [22,23] — the most abundant
rhinoceros species today. In contrast, the sister taxon northern
white rhinoceros (NWR, Ceratotherium simum cottoni) has dwin-
dled to only two female individuals, as poaching for rhino horn
[24,25], leaves the Rhinocerotidae one of the most threatened
mammalian families [26,27].

Insurance populations and ex-situ breeding by zoological in-
stitutions, crucial to species conservation plans [28,29], have led to
at least 13 to 19 well-documented success stories among verte-
brates [30—33], comprising the European bison (Bos bonasus) [34]
(Fig. 2c), the Przewalski horse (Equus ferus przewalskii) [35] (Fig. 2c),
the Arabian oryx (Oryx leucoryx) [36], and the red wolf (Canis rufus)
[37,38]. Currently ongoing reintroduction efforts include for
example the Scimitar-horned oryx (Oryx dammah) [39], and the
Spix’s macaw (Cyanopsitta spixii) [40]. Despite considerable chal-
lenges and drawbacks, these encouraging examples illustrate the
feasibility re-establishing wild populations that had already gone
extinct.

To halt mass extinction and irreversible loss of keystone species
before suitable solutions are found or habitats restored requires
elaborate methods to enhance genetic management. Especially if
complicated by small numbers of founder individuals, infertility
due to old age, diseases, spatial distance between individuals or
suboptimal husbandry, assisted reproduction technology (ART)
[41—43] or advanced ART (aART) involving state-of-the-art stem
cell and biotechnology (see Fig. 1c) will be necessary. Therein,
making use of cryopreserved tissues, cells and reproductive mate-
rials is crucial, providing the opportunity to preserve and convey
genetic diversity across time and space (Fig. 1d).
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Fig. 1. Different scenarios of population development due to human impact.

Fig. 1. (a) Three different scenarios of the population development after human impact. (b) Reality for a large number of mammals, birds, and reptiles e.g. dodo, Steller’s sea cow
since 1600s. (c) Interventions as demonstrated in (a)—(d) can help to rescue critically endangered species. (d) The role of cryopreservation if current technologies are not sufficient.
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Fig. 2. Different levels of human intervention for species conservation.

Fig. 2. (a) Intact nature prior anthropogenic impact. (b) Situation after foundation of 1st national park (Yellow-Stone National Park) 1872. (c) Captive breeding for reintroduction
programs (e.g. European bison, Przewalski horse). (d) Implementation of assisted reproduction (e.g. black footed ferret, Californian condor). (e) BioRescue — an international
program for saving the northern white rhino from extinction will use SCAT for artificial gamete generation. (For interpretation of the references to colour in this figure legend, the

reader is referred to the Web version of this article.)

2.1. Assisted reproduction technology (ART)

ART in wildlife species has been extensively reviewed elsewhere
(e.g. Refs. [44—46]) and will be only briefly summarized here to
illustrate the importance of cryopreservation. Many of the estab-
lished techniques have been developed and optimized for livestock
production. In-depth-knowledge of reproductive anatomy and
physiology are an important prerequisite, but only available for
approximately 250 species, mainly mammals and birds [47].
Taxonomically closely related domestic or less endangered model
species may serve as a blue-print for developing suitable protocols
for endangered wildlife species [42]. The first species to profit from
the use of ART is the California condor (Gymnogyps californianus).
Mainly due to lead poisoning it went extinct in the wild in 1987.
Artificial incubation, foster parenting, or hand-rearing, state-of-
the-art molecular genetics [48,49] and a ban of lead ammunition
have restored a largely independent wild population [50] (Fig. 2d).

2.1.1. Hormone monitoring and administration

Endocrine monitoring of steroid metabolites is indispensable for
monitoring ovarian cyclicity, infertility, seasonality of testicular
activity, pregnancies, and for the determination of optimal timing
for reproductive interventions, whereas monitoring corticosteroid
levels can help to improve husbandry by assessing stress [51].
Hormonal stimulation is crucial to induce ovulation and manipu-
late reproductive activities (e.g., superovulation, or estrus syn-
chronization in preparation for artificial insemination (Al), embryo
transfer (ET), or contraception) and requires different protocols in
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different taxa, e.g. Refs. [52—55]. Cryopreservation of the relevant
samples allows for long-term collection, systematic evaluation, and
safely shipping samples to laboratories.

2.1.2. Semen collection

Semen collection is fundamental to fertility assessment, ART,
and gamete cryo-banking [56]. Relevant methods comprise
massaging, phantom use, postcoital collection, e.g. Refs. [57,58],
electroejaculation (EE) [59] urethral catheterization [56,60], or
obtaining epididymal sperm by castration, biopsy, aspiration, or
post mortem. Most frequently used methods In wildlife species are
EE (from bats [61] to rhinoceros [62]), as well as urethral cathe-
terization (mainly used in carnivores [63]). Semen collection opens
up the possibility to move sperm instead of animals between fa-
cilities or between the wild and captivity. This permits for the in-
clusion of individuals into the gene pool that do not naturally mate
owing to physical or behavioural handicaps, the use of aliquots for
disease screening, or sex-sorting [64,65]. Semen cryopreservation
removes the limitations imposed by generations and time,
involving even long deceased individuals in reproduction
[42,52,66].

2.1.3. Artificial insemination (Al)

Al is the most frequently used ART and has produced viable
offspring in more than 50 wildlife species [45], comprising 14
bovid, seven cervid [53,67], three cetacean [68—72], two rhinoceros
[73—75], and various wild cat species, including ocelot, Pallas’s cat,
fishing cat, sand cat, tiger, and clouded leopard [76,77]. Building on
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knowledge of the poultry industry, Al supports the recovery of the
whooping crane, peregrine falcon [78], houbara bustard [79,80],
and Spix’ Macaw [81], and was successful in numerous species of
raptors, cranes, waterfowl, psittacines, and passerines [82].
Relevant contributions of Al to species recovery programs are
limited to (i) the black-footed ferret (Mustela nigripes), by
increasing genetic diversity while reducing inter-generational time
[[83]]. Laparoscopic Al with fresh or frozen semen, even 20 years
after their cryopreservation [42], has generated more than 8000
offspring and 4400 releases [83—85] (Fig. 2d). (ii) Giant panda
(Ailuropoda melanoleuca) populations, decreasing due to habitat
loss, poaching, bamboo flowering [86], low reproductive success
[87] improved — besides by hand rearing of twin cubs [88] — due to
Al with fresh and frozen-thawed semen [89], (Fig. 2d). (iii) Al in
captive Asian (Elephas maximus) and African elephants (Loxodonta
africana) [90—93] helps to avoid breeding-related transfers and
increase genetic exchange, also with wild populations [94].

2.14. Ovum pick up (OPU)

The collection of oocytes (OPU) is more invasive, complex, and
costly than that of semen. It is either performed timely post mor-
tem, laparatomically, transcutaneously under ultrasound-guidance,
transvaginally, or transrectally. OPU is regularly performed in do-
mestic or laboratory species such as cattle, deer, horses, and ma-
caques. It has been rarely applied in wildlife [45], where it is
reported mainly for black [95] and Sumatran rhinoceros [96], and
recently for the northern and southern white rhinoceros [52,96].

2.1.5. In vitro fertilization (IVF) and embryo transfer (ET)

In vitro fertilization (IVF) with fresh or frozen-thawed semen
has been developed and optimized for humans, laboratory animals,
and livestock [45] to increase the female genetic contribution to the
gene pool. IVF is followed by in vitro culture of embryos and ET.
Obstacles are oocyte or embryo retrieval, the vulnerability of the
large oocyte to cryo-damage, more complex handling and culture,
and costly equipment. Moreover, synchronization of embryo
development and facilitating foeto-maternal recognition is a major
obstacle to overcome. Exact knowledge of reproductive cycles is
crucial for successful reimplantation. Consequently, as compared to
Al relatively few live offspring have been produced following IVF-
ET.

Since the first successful mammalian embryo transfer in the
rabbit in 1890 [97], the first non-domestic species to give birth to
live offspring after ET was the baboon (Papio cynocephalus) [98].
Successful interspecies embryo transfers were achieved from eland
(Tragelaphus oryx) and gaur (Bos gaurus) to domestic cow (Bos
Taurus) [99,100], and from bongo (Tragelaphus euryceros) to eland
[101]. Despite standard use in domestic species, and despite further
successes in IVF and ET of felid [102—107], bovine [108], deer
[109—111], and primate species as models for human ART [112], this
technique has not played a major role in the genetic management of
mammalian wildlife species so far [113]. Successful hormonally
induced gamete harvesting, in-vitro fertilization, and embryo
development have generated large numbers of viable amphibian
offspring, including the endangered Wyoming toad (Bufo baxteri)
and Mississippi gopher frogs (Rana sevosa), which were released to
the wild [114,115].

2.2. Advanced assisted reproduction technology (aART)

The term advanced assisted reproduction technology was
coined in 2004 [116] and refers to methods that require extensive
laboratory equipment and expertise which lie beyond those needed
for the more “classical” ART methods. While some of these
advanced techniques have been available for decades, recent
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developments have opened up new pathways which may present
the only hope for critically endangered species such as the northern
white rhinoceros or the Bornean subspecies of the Sumatran rhi-
noceros (Dicerorhinus sumatrensis harrissoni). In both cases the
effective founder population is already too small for established
species recovery programs. Therefore, the incorporation of new
cellular resources in combination with cryopreservation, such as
tissue biopsies, blood samples, or fibroblast cultures can open up a
new avenue in conservation. Contrary to cloning, this cellular ma-
terial may be subjected to stem-cell associated techniques (SCAT),
yielding artificial gamete cultures and thereby widen the genetic
pool by including — with the help of cryopreservation — samples
from deceased or completely infertile individuals [117,118] (Fig. 2e).
A strategic roadmap was outlined in “Rewinding the process of
mammalian extinction” [66]. Along these lines, high quality hybrid
embryos from SWR and NWR gametes [52], as well as pure NWR
blastocysts [119] were successfully generated. The blastocysts were
also the basis for the establishment of two embryonic stem-cell
lines. In addition, we were able to produce integration-free naive
and primed iPSC-like cells derived from cryopreserved fibroblast
cultures of a deceased northern white rhino. First steps towards the
transformation of these primordial germ cells (PGC) were very
promising. They expressed typical PGC marker genes Blimp, Stella,
Sox17, and Oct4 [120]. These achievements provide the basis for the
second phase: The production of artificial oocytes and spermatozoa
originally derived from simple fibroblast cultures.

2.2.1. Intracytoplasmatic sperm injection (ICSI)

Intracytoplasmatic sperm injection (ICSI), the injection of sperm
into the egg cytoplasm through a micropipette, is extensively used
in humans [121], but remains rare in domestic and livestock
reproduction owing to low success rates, and the requirement of
expensive equipment, and skills [ 122,123] ICSI nevertheless offers a
great advantage when semen characteristics are insufficient for IVFE.
Attempts of implementing ET and in southern and northern white
and Sumatran rhinoceros following ICSI are currently undertaken
[52,66].

2.2.2. Somatic cell nuclear transfer (SCNT)

SCNT, alias somatic cloning, has suffered a substantial loss in
reputation owing to a range of problems, such as early and late
abortions, compromised immune systems, circulatory and respi-
ratory problems, and a high rate of foetal death, probably primarily
mediated by atypical epigenetic re-programming [124].

Nevertheless, it has been successfully performed not only in
domestic species such as cattle, horse, pig, and sheep [125], but also
in non-domestic red deer (Cervus elaphus) [126] and cynomolgus
monkey (Macaca fascicularis) [127]. Interspecies somatic nuclear
transfer has been achieved in several wildlife species such as the
Gaur (Bos gaurus to Bos taurus) [128], including the endangered
mouflon (Ovis orientalis musimon in Ovis aries) [129], African
wildcat (Felis silvestris lybica in Felis catus) [130], grey wolf (Canis
lupus in Canis familiaris) [131,132], sand cat (Felis margarita in Felis
catus) [133], the extinct Pyrenean Ibex (Capra pyrenaica in Capra
hircus) [134], and the Russian sturgeon (Acipenser gueldenstaedtii in
Acipenser ruthenus) [135].

Although somatic cloning and genomic approaches in mammals
may become a last desperate option for species conservation [136],
it is not very efficient in generating live offspring and major tech-
nical and ecological challenges remain unsolved [113]. Cloning may,
however, be an interesting option for non-mammalian vertebrates
such as amphibians (in which the technique was pioneered) or
species where breeding is threatened or that have even gone
extinct [137].
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2.2.3. Inner cell mass (ICM) exchange

The inner cell mass (ICM) of an early stage mammalian embryo
contains the cells that will determine the developing organism,
whereas the trophoblastic vesicle surrounding it gives rise to the
placenta. Transferring the ICM of an endangered mammalian spe-
cies into a trophoblastic vesicle derived from a surrogate female of a
different species facilitates implantation and successful gestation of
offspring of the endangered species. The foster mother’s species
will be selected to be taxonomically closely related, but less en-
dangered. This is a highly experimental approach, which has so far
been successfully applied between sheep and goat [138,139], and
between sheep embryos [140], but may represent a viable option in
the future — especially if combined with artificial gametes derived
from induced pluripotent stem cells [46]. ICM exchange has not
been attempted so far as a solution to the pressing problem of
lacking reproductively healthy recipients in critically endangered
species.

2.24. Stem cell-associated techniques (SCAT)

aART in combination with techniques for generating gametes
from stem cells provide a new conceptual strategy for saving crit-
ically endangered or practically extinct species. This ambitious and
novel approach is currently being developed for rhinoceros species
[52,66]. In the future it may serve as a blue-print for applying the
potential of in-vitro-derived gametes [139—145] created from
induced pluripotent stem cells to the conservation of further spe-
cies on the brink of extinction.

While SCNT generates copies of existing genotypes, recent ad-
vances in stem cell technology [120] have opened a new promising
path, using live cells to establish induced pluripotent stem cell
(iPSC)-derived gametes. As this approach comprises meiosis, it is
capable of generating an enormous variety of new genotypes. By
crossbreeding arbitrary individuals (theoretically, iPSC of male
donors can be used to produce oocytes, which requires silencing of
Y-chromosome-linked gene(s) [142], a pedigree can be designed in
the Petri dish to optimally exploit the available genetic diversity. So
far, viable offspring from iPSC-derived gametes has been generated
only in the mouse (Mus musculus; [141,143—145], but efforts are
currently undertaken to extend this approach for saving highly
endangered taxa, specifically the northern white rhinoceros
(Ceratotherium simum cottoni). iPSC have been successfully estab-
lished for several domestic and laboratory species [146], but also for
several wildlife species such as the quail [ 147], several feline species
[148], e.g. the endangered snow leopard [149] and for the critically
endangered northern white rhinoceros [150,151] (Fig. 2e).

2.3. Cryopreservation

Cryopreservation crucially enhances the possibilities of ART by
rendering the use of biological materials independent of time and
space.

2.3.1. Cryopreserved materials and associated methods

Various materials can be preserved using cryopreservation for
extended, potentially indefinite, periods of time [152]. Different
methods have been developed for the long-term cryopreservation
of biological samples, with a strong focus on vertebrate species,
whereas many other taxa remain unstudied. The major difficulty to
overcome is vulnerability to cryo-damage, which depends on cell
membrane composition, its permeability regarding both, water and
the cryoprotectant, cryoprotectant toxicity, tolerance to osmotic
changes, and resistance to cooling and freezing temperatures [153].
Thus, suitable protocols differ substantially between species and
material.

Blood samples are suitable for biochemical analyses, as well as
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for medical inquiries, and may serve as a source of DNA for mo-
lecular biological investigations, and — if adequately preserved —
also as a source of viable lymphocytes suitable for iPSC protocols.

Tissue samples e.g. of liver or spleen are useful for the extraction
of enzymes, and genomic and mitochondrial DNA, and for estab-
lishing primary cell cultures. Viable cells for subsequent cell culture
can be preserved by freezing tissues with an adequate cryopro-
tectant such as glycerol or dimethylsulfoxide (DMSO).

Cell culture-based methods have gained considerable impor-
tance in basic research and biomedical applications over the past
decades. Besides storing nuclear genetic information, cells further
contain viable cell organelles and represent an amplifiable source
of biological material. Over the past decades, cell lines from a wide
range of different taxa [152] have been successfully established and
banked. In the context of ART, owing to the development of
advanced methods such as SCNT, ICM and in vitro gameteogenesis,
cultured and cryopreserved cells will play a crucial role in main-
taining and improving population viability of rare and endangered
species.

Cell culture is nevertheless expensive and requires well-
equipped laboratory space, sterile working conditions and skilled
personnel. The most accessible samples are fibrous tissue such as
skin or gingiva, and the less abundant lymphocytes that may be
recovered from blood; viable cells have even been successfully
isolated also from ejaculate, milk [154], and feces [155]. Skin bi-
opsies can be obtained at zoological institutions, e.g. from ear-
notches, or opportunistically during handling for quarantine, vet-
erinary interventions such as castrations, surgery, transport, or
ultimately during necropsy. If adequately cooled and stored, such
tissue may remain viable for several days before further processing
and may be either cryopreserved or cultured immediately. Primary
cells can be obtained by centrifugation of blood, by mechanical
disaggregation or enzymatic digestion of tissues, or by explant
culture [156]. The hence cultured cell lines can be frozen, protected
with glycerol or DMSO, and stored in liquid nitrogen containers for
many years [1]. Such cryopreserved tissues and cell lines provide a
viable and expandable source of genetic material and living cells
that offer manifold possibilities for molecular and basic research.

Growing fibroblasts to sufficient numbers requires time, which
increases material costs and risk of contamination, and repeated
passaging of cell cultures may result in decreased viability. Unless
primary cells are derived from neoplastic tissues or immortalized
by mutation or specific intended modifications [157], their lifespan
is limited due to undergoing senescence and ceasing to proliferate
after a certain number of divisions [158]. Another limitation is the
accumulation of mutations and chromosomal aberrations (aneu-
ploidy) that may arise under culture conditions [159]. Therefore, for
somatic cell-based technologies it is crucial to closely monitor the
quality of the original cell lines and ensure genome integrity
including chromosomal stability and the absence of relevant
epigenetic alterations during prolonged culture and differentiation,
which occur randomly and unpredictably [160]. Cell lines differ in
quality based on culture conditions, age of the cell material donor,
number of passage and many more factors, rendering quality con-
trol crucial to improve the observed low rates of reprogramming
following SCNT and iPSC. Much work needs to be done for banked
cell lines to become a valuable resource for offspring production.
Cell lines can be reprogrammed to iPSC [120], and — if exposed to
suitable factors — their pluripotent nature permits them to differ-
entiate into various tissues including gametes.

Reproductive material suitable for cryopreservation comprises
gametes, embryos, gonadal tissues, as well as embryonal (ES) and
induced pluripotent stem cells (iPSC), which are gaining impor-
tance in preserving species biodiversity, as the associated tech-
nology evolves. However, progress is hampered due to significant
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physiological variations among species and lack of fundamental
knowledge in germplasm cryobiology.

Spermatozoa of approximately 116 mammalian species have
been cryopreserved, accounting for 2% of all mammals, from which
in approximately 45 species live births have been achieved
following Al [161] since the first successful cryopreservation in
1949 [162,163] and the first calf produced from cryopreserved
semen [163]. This renders cryopreserved semen the most suc-
cessful and practical resource for propagating endangered species.
Cryopreserved sperm of genetically valuable individuals can be
stored for decades as a backup for possible future losses in genetic
diversity. Ram semen has been reported to sire viable offspring
after 50 years of storage without any decrease in pregnancy rates
compared to recently frozen semen [164]. Even if thawed sperm
quality is poor, it may generate viable offspring using ICSI [165].
Two of the most successful recent conservation programs, the giant
panda [166] and the black-footed ferret have incorporated Al using
fresh and frozen-thawed semen [167]. For the black-footed-ferret,
cryopreserved semen of six of the last 18 survivors was employed
to produce eight live offspring by Al, some of which up to 20 years
after initial cryopreservation. Their relevance is illustrated nicely by
their significant contribution to genetic diversity and heterozy-
gosity in the population, lowering measures of inbreeding by 5.8%
[83].

In contrast to mammals, bird sperm cells are fragile and
knowledge is limited, complicating semen collection and process-
ing [78]. Due to poor outcomes of cryopreservation in cranes [168],
Al was not implemented in crane genetic management. Frozen-
thawed sperm has generated viable offspring in a few amphibians
[169] and fish [170] species, but so far not in reptiles, in which only
artificial insemination with chilled semen has been accomplished
so far [171].

One obstacle to the broad application of sperm cryopreservation
is the variability in sensitivity to cryoprotectants and low temper-
atures from species to species. Tolerance to glycerol ranges from
less than 2% in mice to 6% in chinchillas [153,172]. Sperm cryo-
preservation protocols are continuously extended and improved
173, e.g. by slow-freezing [174], optimizing freezing of small [175]
and large [176] volumes; directional freezing [167,177,178] and
double-freezing [179]. Even more challenging are amphibian and
fish studies, as their sperm remain immotile as long as they are in
seminal plasma. Motility is induced and quickly exhausted when
they are released into a lower osmolarity environment, in the case
of frogs, in urine [54,180,181]. Thus, amphibian and fish cryopres-
ervation protocols need to keep sperm inactivated during handling
and storage by mimicking the testicular environment. Anuran
sperm has been successfully cryopreserved following non-invasive
collection via hormonal induction [54]. Lately, sperm of a variety of
coral species has been cryopreserved for the in vitro production of
larvae and restauration of reefs [182].

Oocytes are a scarce resource compared to sperm cells, and less
accessible. They can be obtained only invasively or post mortem
[183], and are more difficult to handle [153]. Therefore, they are
underrepresented in cryobanks and oocytes of only a few species
have been preserved so far using vitrification [45,184]. Due to their
large size, structure and lipid-rich yolk composition, frozen-thawed
oocytes are more vulnerable to cryo-damage and until now, have
not yielded any offspring in wild mammalian, fish, or amphibian
species [167]. Survival and function of frozen-thawed oocytes has
improved with the development of minimum volume vitrification
(MVV), exhibiting extremely fast cooling rates that solidifies the
sample into a glass-like state, thereby avoiding harmful intra- and
extracellular ice crystal formation [ 185]. Using this method, oocytes
of four carnivore species (Mexican grey wolf [186], serval, and
Pallas’s cat [187], and lion [188), one antelope (chousingha [189]),
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and one marsupial (Tasmanian devil [190]) have been cry-
opreserved, but the developmental competence of the cry-
opreserved oocytes has only partially been reported.

Embryos of approximately 51 species (1% of mammals) have
been cryopreserved, the success of which in terms of post-thaw
viability and further development is not always reported [161].
Live births after ET of frozen-thawed embryos have been achieved
in merely 25 species [161]. Similar to oocytes, differences in cry-
oprotection and freezability of fertilized eggs among different taxa
will require considerable research. Vitrification [184,191] has been
found to preserve the developmental potential of human embryos
better than the earlier developed slow-freezing [192,193] or ultra-
rapid freezing [194]. As of now, our bank contains few embryos
with thus far unproven viability. Additionally, purebred SWR and
purebred NWR embryos have been generated using harvested oo-
cytes that have been fertilized with cryopreserved sperm of dead
NWR males [52,66,195] and are currently stored in liquid nitrogen
[119].

- Gonadal tissues are designed to mature functional gametes,
but they also continue to contain gamete precursor cells of various
different developmental stages. These spermatogenic and oogenic
cells are another viable resource for obtaining functional sperma-
tozoa and oocytes [153]. As they lack a metaphase spindle, are
smaller and metabolically less active compared to mature gametes
and contain low amounts of lipids [196], they are more cryo-
resistant. Hormonal treatment of the female to stimulate follicle
development for OPU results in just a handful of oocytes for
collection under general anaesthesia. Therefore, collecting oocytes
by stimulating the ovary to develop them in vivo brings limited
opportunities for successful population recovery. One approach is
to harness the full potential of the ovary, which contains thousands
of immature oocytes in primordial follicles — which can be obtained
opportunistically during OPU or by using a needle-derived ovarian
cortex biopsy — by developing an in vitro follicle culture method.
The exceptional power of this technique is that, even when animals
have died, their cryopreserved ovarian tissue can still lead to
offspring. Establishing methods to culture and grow these follicles
in the lab would vastly increase the chance of successful in vitro
embryo production for endangered species. A first step in this
process is to xenotransplant ovarian tissue into mice to verify the
health and growth potential of collected frozen-thawed ovarian
tissue (e.g. for endangered rhinoceros species, Fig. 3). By xeno-
grafting or in vitro culture of banked ovarian and testicular tissue,
including that derived from neonatal and prepubertal individuals
[196—198], mature gametes may be obtained, although this has not
yet been achieved in non-domestic species.

Ovaries or ovarian tissue of a variety of mammalian species have
been cryopreserved, e.g. of several felines [199,200] and the black-
footed ferret (Mustela nigripes), amongst others [45].

Cryopreserved ovarian tissues from wombats, elephants, wal-
labies, and lions have been transplanted into immunodeficient
mice, consistently resulting in the formation of morphologically
normal secondary or antral follicles [200]. While it is still a long way
to obtain viable mature oocytes for successful IVF, nevertheless, this
approach represents an important step towards the inclusion of
female gametes into ART.

For amphibians, direct cryopreservation of immature ovarian
follicles may be a viable option, but would require methods such as
xeno-transplantation to obtain mature, ovulated oocytes. For
obtaining viable oocytes from cryo-preserved primordial germ
cells, the generation of chimeras would be required to produce
adults that can yield viable gametes; this may be a feasible future
possibility also in fish and birds [55,167].

Comparable to ovarian tissue, in theory germ cells contained in
testicular tissue can resume spermatogenesis to produce viable
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Fig. 3. Xenotransplantation of rhinoceros ovarian tissue into mice to verify the health and growth potential of collected frozen-thawed ovarian tissue.

spermatozoa, even in tissue of neonatal and prepubertal in-
dividuals [183]. To achieve this, transplantation or grafting are
needed. ICSI of sperm recovered from grafted cryopreserved
testicular tissue has generated live offspring in the mouse and
rabbit [201], pig [202,203], and rhesus macaque (Macaca mulatta)
[204], in birds (e.g. quails, Coturnix japonica) [205], and in fishes,
such as hatched larvae of the critically endangered cyprinid hon-
moroko (Gnathopogon caerulescens) [206]. Testicular tissue of
various mammalian wildlife species has been cryopreserved [207]
without reported successful generation of live offspring so far.

2.4. Cryobanks

Genome resource banking (GRB) is the systematic collection,
storage, and redistribution of biomaterials in an organized, logis-
tical, and secure manner, which together with associated genomic
information, are essential for progression of biomedicine, health,
and basic research. Especially animal germplasm (sperm, eggs,
embryos, ovarian, and testicular tissues) employed in combination
with ART offers great potential to decelerate the loss of gene di-
versity in captive populations.

Unfortunately, currently there are no suitable alternatives to
cryobanking samples at preferably —196 °C in liquid nitrogen. The
associated disadvantages comprise the risk of cross-contamination
with pathogens in liquid nitrogen, danger of accidents, as well as
high energetic costs and dependence on a constant energy supply.
Alternatives such as dry biobanking by exsiccating samples via
freeze- or vacuum-drying (i.e. lyophilization), have yielded some
successes, such as fertilizing ovine oocytes with freeze-dried
spermatozoa using ICSI [208]. However, reliable protocols are not
established as of now to an extent that the return to biological
activity after rehydration is ensured, but the technology may offer a
much cheaper and more stable solution for biodiversity storage in
the future [161].
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Biobanks offer countless possibilities. Their main advantage is
that they maintain genetic variability across time and space.
Cryopreservation of viable cells can keep otherwise extinct species
suspended and buy time until the methodology and technology are
in place to bring the species back to regular existence [209]. Cry-
obanks of endangered animal species represent an extremely
valuable backup of today’s biodiversity. Original genetic material
can be maintained without removing genetically valuable in-
dividuals from the wild, and decrease the interval between gener-
ations [165,167]. Naturally, they are also confronted with
constraints of space and resources given that storage tanks, main-
tenance and regular liquid nitrogen supply are costly. Long-term
commitment of a cell bank sponsor is needed to secure the per-
petuity of the collection, and mirroring of the bank, preferably in
geographically different sites is highly recommended [1]. Opti-
mally, an automated, digitised sample storage system is imple-
mented. Whereas the majority of existent cryobanks established at
Z0os aim at preserving mainly genetic material or other non-alive
items, extending this classical concept to living materials, and us-
ing advanced cryopreservation techniques, cellular methods and
state-of-the-art stem cell technologies will open up many novel
possibilities.

Preservation of genetic material from wildlife is mostly derived
from zoos due to the ease of access and include many species that
are threatened, extinct in the wild, or completely extinct. The oldest
cryobank for wildlife-derived samples is the San Diego Frozen Zoo®
with more than 10,000 cell lines across 11 mammalian orders,
oocytes, sperm and embryos representing almost 1000 different
taxa [1,2,152], established in 1975. In addition, the Frozen Ark
Consortium [210,211], was founded. In the 1990s, the biobank at
IZW Berlin was established with now more than 150 different living
cell lines and tissues and reproductive material of approximately
250 different exotic species, amongst them cryopreserved semen
from a total of 45 species [210,212]. Further initiatives include the
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National Institute for Environmental Studies in Japan founded in
2002, containing cell lines of many avian and mammalian species,
the amphibian ark (www.amphibianark.org), the Israel-German
Ark of Life (IGAL), founded in 2016, that preserves tissues and
cells of wildlife and exotic species from the largest wildlife clinic in
the Middle East at Ramat Gan Safari, as well as the frozen Zoo in
australia (http://www.australianfrozenzoo.org.au/). Most recently,
CryoArks [213] and and in 2020, the biobank Nature’s SAFE (Saving
Animals From Extinction) were established in the UK (https://
www.natures-safe.com/). Unusually, Nature’s SAFE is an indepen-
dent charity and is dedicated to collecting samples from endan-
gered species with the view to regeneration when required. Several
of these banks have been established when the generally accepted
paradigm still excluded the possibility of reprogramming differ-
entiated cells, thus before the recently arising possibilities could be
foreseen. It therefore seems safe to assume that future applications
will be just as much beyond our current imagination.

3. Discussion

At the current rate of species extinction, urgent action is needed
to preserve as much biodiversity as possible. However, when
recapitulating the initial and recent encouraging success stories of
species recovery by measures ranging from simple habitat protec-
tion to the incorporation of increasing levels of assisted reproduc-
tion technology, and with the recent emergence of state-of the-art
stem cell biotechnology, we may gain hope for the future. The
incorporation of increasingly sophisticated genetic and reproduc-
tive tools has offered us strategies for minimizing the occurrence of
genetic diseases, as in the California condor [48], retain high genetic
diversity in black-footed ferrets using frozen-thawed semen that
had been stored for 20 years [83] and re-build viable species from
population sizes that would otherwise doom the species to
extinction (Fig. 1b—d).

Threats to nature may be increasing - but so are the opportu-
nities and tools at our disposition.

This is illustrated best with the northern white rhinoceros
(Ceratotherium simum cottoni), of which only two female in-
dividuals are left. Cryopreserved tissue samples, somatic cell lines,
iPSCs, and spermatozoa of 12 (5.7) individuals have been stored
[66] and have, so far, allowed us to create so far five blastocysts of a
species with no male individual alive. Encouraging for the prospect
of recovering the NWR from these available resources, the genomes
of the preserved specimen show levels of heterozygosity compa-
rable to the SWRs, with higher levels of genome-wide heterozy-
gosity and slightly lower levels of autozygosity in the NWR
compared to the SWR [214], sparking hope for this charismatic
keystone species. We may still be in time to someday reintroduce
this landscape architect back to its now empty home in the central
African bushland.

Zoos and zoological research institutions are key players for
conserving genetic variability and provide reliable access to valu-
able material. Sample collection would optimally be implemented
into the routine of zoo veterinarian work. A global network of cell
culture repositories is missing. Although the number of GRB has
been increasing over the past decades, their integration into com-
mon strategies, a unified data base, and concerted contribution to
the management of captive populations could be further extended.
Accessible and interconnected databases are needed to combine
the available range of samples of a given species, pooling the
existing resources for successful conservation efforts and research,
thereby lifting the impact for biodiversity preservation on a higher
level. It is further highly desirable to render the collections safe by
mirroring across several distant locations. A further important
impediment to globally concerted research efforts and
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international cooperation is grounded in the exchange of samples
and specimens. The many national and international legislations
and rules intended to prevent importation of exotic diseases and
misuse — the Nagoya protocol, CITES, TRACES, national export- and
import permits, to name a few — can render sample exchange very
costly in terms of time and money, sometimes almost impossible.
With the help of governments and legislation, conservation
research should be facilitated in this respect.

4. Conclusion

Cryopreservation is an indispensable tool. In combination with
assisted reproduction technology, it can become an integral part of
successful species conservation management. The entire informa-
tion of an organism is contained in each of its cells and this infor-
mation can be preserved in liquid nitrogen for decades or even
centuries. Recent advances in stem-cell technology may allow for
reprogramming these cells to gametes, ultimately resulting in
entirely new individuals, conceived from the material of a small
skin biopsy. Many obstacles are still in our way before we can apply
these techniques to one, and a hopefully further on to a broad range
of animals. As of now, we will not be able prevent the extinction of
many populations; but by preserving cells of as many species as
possible, we may be having the chance to bring them back in the
future. Now, as much as in 1984 [1], we must go on and “collect
things for reasons we don’t yet understand.”
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