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ABSTRACT Calcium (Ca2þ) is a second messenger assumed to control changes in synaptic strength in the form of both long-
term depression and long-term potentiation at Purkinje cell dendritic spine synapses via inositol trisphosphate (IP3)-induced
Ca2þ release. These Ca2þ transients happen in response to stimuli from parallel fibers (PFs) from granule cells and climbing
fibers (CFs) from the inferior olivary nucleus. These events occur at low numbers of free Ca2þ, requiring stochastic single-par-
ticle methods when modeling them.We use the stochastic particle simulation programMCell to simulate Ca2þ transients within a
three-dimensional Purkinje cell dendritic spine. The model spine includes the endoplasmic reticulum, several Ca2þ transporters,
and endogenous buffer molecules. Our simulations successfully reproduce properties of Ca2þ transients in different dynamical
situations. We test two different models of the IP3 receptor (IP3R). Themodel with nonlinear concentration response of binding of
activating Ca2þ reproduces experimental results better than the model with linear response because of the filtering of noise. Our
results also suggest that Ca2þ-dependent inhibition of the IP3R needs to be slow to reproduce experimental results. Simulations
suggest the experimentally observed optimal timing window of CF stimuli arises from the relative timing of CF influx of Ca2þ and
IP3 production sensitizing IP3R for Ca2þ-induced Ca2þ release. We also model ataxia, a loss of fine motor control assumed to be
the result of malfunctioning information transmission at the granule to Purkinje cell synapse, resulting in a decrease or loss of
Ca2þ transients. Finally, we propose possible ways of recovering Ca2þ transients under ataxia.
SIGNIFICANCE Ca2þ is a second messenger that can trigger synaptic plasticity in dendritic spines of Purkinje cells,
associated among other things with motor learning and motor fine control. Disrupted Ca2þ signals in those spines could
lead to pathological conditions such as cerebelar ataxia, a lack of coordination of muscle movements. The molecular
reaction mechanisms defining the spatiotemporal aspects of such Ca2þ signals in the noisy environment of dendritic spines
in health and disease are not fully understood. Here, we develop a stochastic reaction-diffusion model in MCell to study
how synaptic inputs from parallel fibers and climbing fibers reaching spines of Purkinje cells are shaping Ca2þ signals in
healthy and pathological conditions and propose a way to recover those Ca2þ signals in pathological conditions.
INTRODUCTION

Ca2þ is a second messenger involved in many processes in
eukaryotic cells. Ca2þ signals activate several enzymatic
targets involved in the induction of synaptic plasticity in
dendritic spines of Purkinje cells in the cerebellum and
cause an increase or decrease of synaptic strength. Gluta-
mate released at parallel fiber (PF) synapses binds to metab-
otropic glutamate receptors (mgluRs) on the Purkinje
dendritic spines that activate signaling pathways associated
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with Ca2þ release from endoplasmatic reticulum intracel-
lular stores through inositol trisphosphate receptors
(IP3Rs). This response can be further enhanced by a well-
timed additional Ca2þ influx triggered by climbing fiber
(CF) coactivation (Fig. 1; (6,7)).

Frequently, the detection and discrimination of transient
Ca2þ signals by molecular targets in dendritic spines happen
outside mass-action equilibrium, at low particle concentra-
tions of Ca2þ with endogenous buffers involved, and within
the rather small three-dimensional structure of the spine
which entails a very noisy signaling environment. There-
fore, the spatiotemporal characteristics of Ca2þ signals
can play an important role in the induction of synaptic plas-
ticity (8–12), determining whether long-term potentiation
(LTP) or depression (LTD) occurs.
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FIGURE 1 Illustration of a spine segment of a Purkinje cell showing the

spine head at the top, neck in the middle, and beginning of the dendrite at

the bottom. Visible are the signaling pathways of parallel and climbing fiber

stimulation (1–5), which can trigger a cytosolic Ca2þ transient because of

an opening of IP3Rs on the ER (6,7). To see this figure in color, go online.

Stochastic calcium dynamics in spines
Computational models of the three-dimensional structure
of dendritic spines and their kinetic mechanisms in their
noisy environment can be very helpful in understanding
the biophysical constraints shaping the Ca2þ dynamics
that control synaptic plasticity in neurons (13). We model
the system using stochastic single-particle simulations to ac-
count for the noise and low concentration properties of par-
ticles involved in the signaling processes (14–16).

Spines are dynamic extensions of neuronal dendrites and
play an important role in cell signaling, neuronal excit-
ability, information processing at the cellular level, and syn-
aptic plasticity (17). They receive synaptic inputs from
axons that release neurotransmitters, which bind to postsyn-
aptic receptors on the spines (18,19). Because spines can
react to outer and inner stimuli by changes in synaptic effi-
ciency and in their morphological structure, their global to-
pological arrangement becomes a mirror of sensory history
and experience. Studying the dynamics of spine behavior is
crucial for understanding learning, memory, motor func-
tions, and other large-scale cognitive processes (20–24).

Spines are targets of signaling and contain molecular
signaling mechanisms that regulate and are regulated by
intracellular Ca2þ transients. Rapid Ca2þ release is achieved
by opening of IP3Rs, which reside on the smooth endo-
plasmic reticulum (ER), a Ca2þ store inside the spine and
dendrite (6,7). IP3Rs require inositol-1,4,5-trisphosphate
(IP3) and Ca

2þ to open. Both IP3 production and Ca
2þ influx
are controlled by PF and CF activity (25–28). These inter-
acting signaling pathways give the IP3Rs the capacity to
translate fast PF and CF inputs into longer-lasting slow-
output Ca2þ signals (29).

PF stimulation activates two signaling pathways. It trig-
gers glutamate release at the synapse, which leads to an acti-
vation of type-1 metabotropic glutamate receptors
(mGluR1) located at the postsynaptic density (PSD) at the
top of the spine head. The activated mGluRs activate G-pro-
tein-coupled receptors (Gq) that cause the activation of
phospholipase Cb (PLCb), which synthesizes IP3 from
PIP2. IP3 is free to diffuse from the PSD into the dendrite’s
cytosol (30–32) before it vanishes because of degradation by
IP3 3-kinase and IP3 5-phosphatase on the timescale of a few
seconds (33,34). The second pathway consists of a mem-
brane depolarization, causing Ca2þ influx through voltage-
gated Ca2þ channels (Cav2.1 type P/Q-voltage-gated Ca2þ

channels), which are highly expressed in Purkinje dendrites
(35,36).

CF stimulation also generates a membrane depolarization
opening the same type of P/Q-voltage-gated Ca2þ channels,
which leads to Ca2þ influx not only into the spine but also
into the dendrite (27), summarized in Fig. 1 (1–5).

Whereas PF synapses are located at the head of a den-
dritic spine coupled to the PSD, CFs attach to the dendrite
itself, creating synapses at the dendritic arbor in �2–3 mm
intervals (37). One Purkinje cell is connected to up to 105

parallel fibers but to only a single climbing fiber (17).
It is assumed that the activity patterns of PFs attached to

Purkinje cells in the cerebellum mediate fine control of
movement and promote an increase in synaptic strength
(LTP), whereas the activity patterns of CFs encode informa-
tion about failure of such movement and can trigger a
decrease in synaptic strength (LTD) when succeeding PF
stimuli (38,39).

The endogenous Ca2þ binding proteins (buffers) calbin-
din D28k (Cb), parvalbumin (Pv), and calmodulin (CaM)
are highly expressed in Purkinje cells (17,40,41). Their
role is to shape Ca2þ transients occurring in the cytosol by
setting their spatiotemporal parameters such as amplitude
and decay time, which are crucial for successful information
transmission on cellular level via signaling pathways (42–
46).

Various brain disorders are associated with malfunction-
ing neuronal information processing which can be related
to atypically functioning dendritic spines and IP3Rs (46–
50). Among them, cerebellar ataxia is a serious and hetero-
geneous neurological condition involving a loss of coordi-
nation of muscle movement (51). Most forms of cerebellar
ataxia have no cure to this day (52). Thus, it is important
to develop computational models to study the role of den-
dritic spines with respect to ataxia (53). To model ataxia
in our approach, we look at Ca2þ transients under reduced
IP3 binding rates of IP3Rs and then suggest ways to restore
previous Ca2þ transients.
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FIGURE 2 (A) Model geometry. The endoplasmic reticulum (ER) is

visible in the head and neck. Vtotal ¼ 0.512 mm3, Vhead ¼ 0.100 mm3, and

VER ¼ 0.020 mm3. Release sites of Ca2þ and IP3 for PF and Ca2þ for CF

activation are marked by dots. Exact sizes of the geometry can be found

in Table S4. (B) Interaction scheme of particle species used in the simula-

tions from a cytosolic perspective. SERCAs, leak channels, and IP3Rs are

located on the ER membrane, and PMCAs, NCXs, and more leak channels

are located on the outer plasma membrane. Ca2þ, IP3, and the buffers are

free to diffuse in the cytosol, the volume within the plasma membrane,

and outside the ER.

Friedhoff et al.
METHODS

Model description

The model studies the Ca2þ response to outer stimuli from active PFs and

CFs. Simulation methods are explained in the Supporting materials and
2114 Biophysical Journal 120, 2112–2123, June 1, 2021
methods. Stochastic reaction-diffusion, particle-based simulations use

MCell (54–56), and deterministic simulations use Copasi (57). Whereas

MCell offers a biophysically realistic approach to a biological problem, ac-

counting for low particle concentrations, inherent stochasticity, and com-

plex three-dimensional geometries (58), Copasi describes the kinetic

reactions in a well-mixed volume efficiently, without the influence of diffu-

sion or complex geometry. In this way, the dynamics of the model can be

tested in a computationally fast environment before going into more expen-

sive reaction-diffusion simulations in complex geometries. Copasi was, for

instance, used to approximately find concentrations of each species at equi-

librium, i.e., the initial state then used for simulations in MCell. We focus

on explaining model components here. All parameter values not mentioned

explicitly in the text are listed in the Supporting materials and methods.
Geometry

We created the simple three-dimensional dendrite-neck-head volume

shown in Fig. 2 A for our MCell simulations. The head consists of a sphere

with the top and bottom being cut off. The top area models the PSD, and the

bottom of the sphere connects to the spine’s cylindrical neck. A cylindrical

dendrite is attached to the other side of the neck. The head volume is

Vhead ¼ 0.1 mm3. The total volume dendrite, neck and head, is �5 times

as large, Vtotal ¼ 0.512 mm3 (59).

We created another volume inside the head and neck to represent the

smooth ER. It is a scaled copy of the head and neck, just smaller in size,

with VER ¼ 0.02 mm3. Although the surface of the ER is home to IP3Rs,

ER Ca2þ-ATPases (SERCAs), and leak channels, we did not model the in-

side of it. For Ca2þ release by IP3Rs, we assume a constant Ca2þ efflux (60)

on the timescale of interest not affected by ER depletion. We are aware of

this being an approximation because ER depletion is suggested by the re-

sults of Okubo et al. (61), with intralumenal diffusion as the major flux

of replenishment. However, lumenal concentrations, together with the ER

size required to account for lumenal diffusion on the timescale of release,

would render our study unfeasible because of particle numbers above

2 � 105.

Additionally, we used no-flux boundary conditions at the dendrite sites

for all particle species, modeling a situation in which neighboring spines

also receive stimuli (see (62), their Fig. 1 b).
Molecular components of Ca2D dynamics

General and steady-state particle concentrations, number of particles, and

diffusion coefficients can be found in Tables S5 and S6.

Ca2þ transporters

SERCA pumps are described by a three-state model (63,64), Fig. S3 and

Table S4, subsequently binding two Ca2þ before decaying back into the

rest state, removing two Ca2þ from the cytosol. We put 68 SERCAs onto

the ER membrane (64).

We included five sodium-calcium exchangers (NCXs) (63,64) on the

outer plasma membranewithout modeling sodium dynamics. Our model as-

sumes constant intracellular and extracellular [Naþ] as a simplification. We

used a simple two-state model (64), i.e., one NCX receptor can bind one

Ca2þ and then either release it back into the cytosol or decay back into

the rest state, removing one Ca2þ.
Plasma membrane Ca2þ-ATPase (PMCA) is another Ca2þ pump that

helps to maintain a low Ca2þ concentration in the cytosol of all eukaryotic

cells. We used 13 PMCAs (63,64) and also a two-state model similar to the

NCX model, but with different reaction rates (65,66).

We include 10 leak channels on each the ER and plasma membrane of the

dendrite that yield a small constant influx of Ca2þ into the cytosol. The leak

fluxes fix free [Ca2þ] z 50 nM in steady state.

Buffers. The buffer species in the model are Pv, Cb, and CaM (Fig. 3). We

describe Pv by a three-state model. It binds either one Ca2þ or one magne-

sium (Mg2þ) (42,67).
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FIGURE 3 Overview of buffer models for (A) Pv, (B) Cb, and (C) CaM.

CaM can hold up to four Ca2þ. We used a 16-state model with individual

binding sites. For ease of reading, we omitted the six states with two bound

Ca2þ. Reaction rates for all can be found in Table S3.

Stochastic calcium dynamics in spines
Cb is a major Ca2þ buffer in spines of hippocampal and also Purkinje

neurons. We used a three-state kinetic model with a low- and a high-affinity

site (42,68), with the low-affinity site being present only if the high-affinity

site is filled. One Cb protein can therefore bind up to two Ca2þ.
CaM is a multifunctional calcium-binding protein expressed in all eu-

karyotic cells. It is not only a buffer but also acts as a messenger target

of Ca2þ. Once Ca2þ is bound to CaM, it can modify the interactions of

Ca2þ with various other targets like phosphatases or kinases. One CaM pro-

tein has four Ca2þ binding sites. We modeled the interactions with Ca2þ us-

ing a 16-state model with various medium- and high-affinity binding sites

and various reaction rates (66).

IP3R models

We used 54 or 56 IP3Rs (69) on the ERmembrane, depending on the param-

eter set. A large variety of IP3R models have been developed in the last

three decades (70–73). We compare here two models. Doi’s model has

been chosen because it has been applied to spine dynamics before (63).

We picked Moraru’s model for comparison because its open probability de-

pends nonlinearly on [Ca2þ], and it is eligible for easy implementation in

MCell (74). This choice allows for statements on the role of IP3R inhibition

and IP3R-related slow timescales.

Doi’s model. A seven-state model for the IP3R was proposed by Doi et al.

(63). The model is able to reproduce the bell-shaped open probability curve

P0([Ca
2þ]) (Fig. 4 C). An IP3R requires one IP3 to bind before one Ca2þ

binds to open; otherwise, it will stay closed and can only bind more Ca2þ

if it does not previously release the bound Ca2þ. Once the receptor opens,
it releases Ca2þ into the cytosol with a constant Ca2þ release rate (Figs. 4 A

and S2; Table S2).

Moraru’s model. We chose a subsection of the IP3R model of Moraru

et al. (74), in which we ignored an additional slow IP3 binding site that is

irrelevant for the timescales considered in our model. An IP3R can maxi-

mally bind four Ca2þ and four IP3 molecules, and any state transition

that includes binding or unbinding of one Ca2þ or one IP3 is allowed. There
is an additional transition from the state T42 with four bound IP3 (75) and

two bound Ca2þ to the open state, Topen. Moraru’s model also reproduces

the bell-shaped open probability curve (Fig. 4 C). The amplitude of the

open probability is easily controlled by changing the reaction rates kopen
and kclose of the transitions between T42 and Topen (Fig. S1). Because it is

known that the binding dynamics of inhibitory Ca2þ is slower than that

of excitatory Ca2þ by a factor of up to 100 (70,76), we decreased the inhib-

itory Ca2þ binding reaction rates into and from states Tx3 and Tx4, which

represent the inhibitory Ca2þ binding sites in this model, by an additional

factor rs (see Fig. 4 B; Table S1).
Parallel and climbing fiber stimulation

We studied the Ca2þ response to four different types of stimuli after exper-

imental results (8): a single PF stimulus, PF burst, CF stimulus, and PF

burst þ CF stimulus. Stimulation by active PFs was simulated by plasma

membrane influx of Ca2þ and IP3 production close to the PSD. CF stimu-

lation was modeled by Ca2þ influx close to the PSD and into the dendrite

end close to the spine neck (Fig. 2).

We chose different amounts of Ca2þ per PF and CF stimuli (0–1500 Ca2þ

and 0–2000 Ca3þ, respectively) as part of our parameter scan. A single PF

stimulus consists of one instantaneous injection of Ca2þ and production of

IP3 (380 close to the PSD), and a PF burst was made up of five single Ca2þ

injections at 100 Hz and 1400 caged IP3, yielding an �5 times larger IP3
transient. In the latter, more relevant case, free [IP3] usually peaks around

4.5–5 mM. A CF stimulus included an additional Ca2þ release of 200 par-

ticles in the dendrite (Fig. 1). The typical time of the CF stimulus is tCF ¼
100 ms after the initiation of the PF stimuli but was varied in Optimal

timing of CF stimulus.

IP3 dynamics used constant production and decay rates and was able to

capture biexponential IP3 concentration behavior (33,34,63,77). We chose

an amount of IP3 in agreement with physiological concentrations (6) such

that the IP3Rs were saturated with IP3 for the case of a PF burst. IP3 produc-

tion was delayed by 100 ms compared to the onset of the PF Ca2þ influx to

account for the slower process of IP3 synthesis compared to instantaneous

Ca2þ influx from PF and CF stimuli. IP3 diffuses freely in our model.
RESULTS

We successfully constructed a three-dimensional stochastic
reaction-diffusion model of Purkinje cell dendritic spine
Ca2þ dynamics that reproduces many aspects found in ex-
periments (8,62). Because of the nature of computational
modeling, we were able to shed light on some aspects of
the system’s response to stimuli that are otherwise
extremely hard to control experimentally, e.g., removing
certain buffer species or changing the amplitude of Ca2þ

associated with a PF or CF stimulus.
Snapshots of the spine head including Ca2þ, IP3, and IP3R

states on the ER from a typical simulation are shown in
Fig. 5. At t ¼ 0 ms in the first frame, the red dot is the
initially localized collection of 110 Ca2þ of the first PF stim-
ulus. The particles diffuse and get absorbed by buffers
immediately. The CF stimulus consists of 1700 Ca2þ, which
is visible in three frames corresponding to t ¼ 100 ms to t ¼
100.032 ms, showing how quickly Ca2þ diffuses. IP3 slowly
enters the system at the same time at t ¼ 100 ms (see also
Fig. 9 A). IP3Rs start to react to IP3 and increased [Ca2þ]
(note changing colors of IP3Rs). Eventually, a global Ca2þ

transient is initiated, which leads to a prolonged increase
Biophysical Journal 120, 2112–2123, June 1, 2021 2115



A

B

C

FIGURE 4 (A) Doi’s model: T00 represents an empty IP3R. The IP3R acts

as a coincidence detector and only opens if IP3 binds before Ca
2þ, making

T11 the open state. Otherwise, it buffers Ca
2þ and becomes inactivated, pre-

venting binding of IP3. (B) Subsection of Moraru’s model. All vertical and

horizontal transitions are possible. When four IP3 and two Ca
2þ (activating)

are bound, T42 (light gray), there is a probability to go into the open state

Topen, whence additional Ca2þ will be released. Further Ca2þ binding of

the IP3R will lower the probability of opening, effectively promoting the

10 states Tx3 and Tx4 to inhibitory Ca2þ states (gray), x ˛ [0, 4]. We set

the Ca2þ binding and dissociation rates of the inhibitory states to be slower

than the rates of the activating states, expressed by ratio rs. Parameter values

can be found in Table S1. (C) IP3R open probability at constant [IP3] ¼ 10

mM for Doi’s (dotted) and our version of Moraru’s model with inhibitory

Ca2þ binding scaling rs ¼ {10�1, 10�2} (dashed and solid, respectively).

Data points are results of stochastic computations with Copasi. The rise

of the open probability at low Ca2þ causes CICR.

Friedhoff et al.
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of [Ca2þ], shown from t¼ 350–650 ms (see also Fig. 6). Us-
ing many of these simulations, we studied the IP3-induced
Ca2þ responses of our model spine to different stimuli.
We chose these stimuli in accordance with available exper-
imental data (8,62). We were able to approximately repro-
duce properties of Ca2þ transients in the spine head in
response to a PF, CF, PF burst, and PF burst þ CF stimulus
when using Moraru’s IP3R model, as we will see below.

We focused on the difference of Ca2þ transients, espe-
cially on the peak values, upon a PF burst and a PF burst
with a CF stimulus coactivation at tCF ¼ 100 ms after the
onset of the PF burst, as these two cases are assumed to
encode the induction of LTP and LTD, respectively
(38,39,45). We expect the system to show a clear Ca2þ tran-
sient with a spine head peak of �2.8 mM under a PF burst
stimulus and a 150% increase to �7.1 mM with a CF coac-
tivation (8), showing a supralinear response to summation of
stimuli, also generally found in other model approaches
(29,63,78) and experiments (44,62).
Robustness of IP3R dynamics against Ca2D

concentration noise: a model with linear
activation characteristics

Local concentration fluctuations at IP3Rs upon opening or
closing are large (79,80), and therefore, channel state noise
strongly affects channel state dynamics. In this section, we
investigate the noise response of linear Ca2þ-dependent
channel activation in the IP3-sensitized state as, e.g., Doi’s
model uses. We and others (63) were able to reproduce den-
dritic spine Ca2þ dynamics in well-mixed conditions with
Doi’s model as a system of ordinary differential equations
(ODEs), generating proper Ca2þ transients to different PF
and CF stimuli conditions (see also Figs. S6 and S7).

We foundwithMCell simulations that the stochastic fluctu-
ations of Ca2þ in the cytosol prevent any possible rise of
the Ca2þ transient peak with CF or PF stimuli with linear
Ca2þ-dependent IP3R channel activation. It takes only one
Ca2þ to bind to the receptor to open if sufficient IP3 is already
present. Once one or two IP3Rs are in the open state just
because of basal Ca2þ fluctuations, they release enough
Ca2þ to open more IP3Rs to create a global Ca2þ transient
with a peak� 3.0 mM(Fig. S5A). Addingmore Ca2þ because
of PF (Fig. S5, B–D) orCF (Fig. S5E) stimuli did not showany
further peak increase because the transients arising from basal
fluctuations are saturated already. Even large CF Ca2þ ampli-
tudes left the Ca2þ peak values essentially unchanged. The
peaks of the Ca2þ transients are essentially constant for
Ca2þ PFamplitudes 0–220 (Fig. S5F).At large PF amplitudes
(>220 Ca2þ), the inhibitory action of Ca2þ on the IP3Rs
decreased transient amplitudes significantly, as some of the to-
tal available IP3Rs bind inhibitory Ca

2þ before a global tran-
sient can be initiated. Results from adding a CF stimulus
with increasing CF Ca2þ amplitude are shown in Fig. S5 F,
in which a small peak decrease is visible.



FIGURE 5 Snapshots of the spine head from a typical simulation with Ca2þ (red), IP3 (beige), and IP3Rs colored according to their state (Moraru’s model)

as explained by the legend. At t ¼ 0 ms, the large red dot shows the 110 Ca2þ coming from the first PF stimulus, and at tz 100 ms, 1700 Ca2þ from the CF

stimulus. The highly localized Ca2þ stimuli very rapidly spread by diffusion and are absorbed by buffers. Spatial averages of the Ca2þ concentration are

shown in Fig. 6. To see this figure in color, go online.

Stochastic calcium dynamics in spines
This high sensitivity to noise of IP3Rs in this model has
not been observed in stochastic simulations based on mole-
cule numbers only, i.e., in non-spatially-resolved simula-
tions (81). Given the same molecule number amplitude,
the local concentration amplitude of fluctuations in our
spatially detailed simulations is larger than in the spatially
lumped simulations of Koumura et al. (81). This effect of
local noise most likely explains the different results with
respect to noise sensitivity (14,15,82) and renders spatially
resolved simulations necessary (83).

Therefore, we turn to a model with nonlinear Ca2þ-depen-
dent activation characteristics in the following.
Moraru’s IP3R model

A model with nonlinear Ca2þ-activation characteristics like
Moraru’s model exhibited better robustness against basal
fluctuations, and we use it from now on.
Ca2D transient peak response to a PF and CF
stimulus

Piochon et al. (8) estimated the peak of the Ca2þ transient in
the spine head after a single PF stimulus paired with a CF
stimulus to be �0.4 mM, whereas the response to a single
PF stimulus was lost in noise. More interestingly, a PF burst
stimulus triggered a Ca2þ responsewith a peak value of�2.8
mM, and a peak value of�7.1 mMwas reached for a PF burst
stimulus with CF coactivation, an increase of �150%. Ca2þ

peak increase with CF coactivation is crucial for the current
understanding of initiation of synaptic plasticity in the
form of long-term depression (LTD) (9,17), even though
LTD has also been observed after very strong PF stimulation
alone (8,26,84,85).

We were able to reproduce Ca2þ transients with peak
values in agreement with experimental data for the cases
of single PF with additional CF coactivation, PF burst,
and PF burst with CF coactivation. Summarized Ca2þ re-
sults from our simulations for some example parameter
sets are shown in Fig. 6 A, where the peak of the Ca2þ tran-
sients in response to a PF burst and a PF burstþ CF stimulus
are shown. The peak values of Ca2þ transients computed
deterministically in Copasi increased clearly with
increasing PF and CF Ca2þ amplitudes and showed no satu-
ration for tested parameters. The system was very sensitive
to CF coactivation (see Figs. S8 and S9).

Averages and the standard deviation (SD) of actual tran-
sients of Ca2þ are shown in Fig. 6 B. The SD due to the
inherent randomness is large but does not blur the difference
between a single PF burst and combined PF burst þ CF
stimulus.

We simulated a single PF stimulus with CF coactivation
and obtained an average peak value of �20 Ca2þ ¼ 0.40
mM from 12 simulations, in agreement with Piochon et al.
(8) (Fig. S12).

Closing of IP3Rs was caused by a mixture of reaching the
inhibitory states Tx3 and Tx4 with three or four Ca2þ bound
for larger values of rs due to increasing [Ca

2þ] during a Ca2þ

transient (see bell-shaped open probability curve, Fig. 4)
and IP3 becoming less available during IP3 degradation;
see IP3R state occupation videos (Videos S1, S2, S3, and
S4) with different values of rs in the Supporting material.
Biophysical Journal 120, 2112–2123, June 1, 2021 2117
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FIGURE 6 (A) Moraru’s model: peak values of Ca2þ transients in the

spine head for different parameter sets to PF burst and PF burst þ CF

(PFb þ CF) stimuli, averaged over 12 simulations. Error bars show SDs.

Parameters are A, N ¼ 54 IP3Rs, PF ¼ 90 Ca2þ, and CF ¼ 1700 Ca2þ;
B, N ¼ 54 IP3Rs, PF ¼ 150 Ca2þ, and CF ¼ 1700 Ca2þ; and C, N ¼ 56

IP3Rs, PF¼ 110 Ca2þ, and CF¼ 1700 Ca2þ. Set C is our control parameter

set and will be used from now on. (B) Ca2þ in spine head after PF burst

(dotted) and PF burstþ CF (solid) stimuli with control set. The inset shows

a magnification of the first 220 ms. At t ¼ 0.1 s, the highly localized Ca2þ

from the CF stimulus is visible as a spike. The injected Ca2þ gets absorbed

by buffers immediately explaining the immediate return to lower [Ca2þ]
shortly after the stimulus. The averages with SDs (greyish areas) of 12 sim-

ulations are shown.
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During a typical Ca2þ transient, [Ca2þ] stays approximately
constant in the spine head, decreases linearly down the neck
and becomes constant again in the dendrite segment of the
volume, see Video S5.

Results of Ca2þ transients to different stimuli conditions
and associated total Ca2þ release from IP3Rs with single
buffer species removed, showing how single buffer species
shape Ca2þ transients and influence IP3R dynamics, are pre-
sented in Fig. S11.
Ca2D transient peak scaling with PF and CF Ca2D

amplitude

We find that the relation between the peak value of Ca2þ

transients and the CF Ca2þ amplitude is strongly affected
by the rate of Ca2þ-dependent inhibition of the IP3Rs (Table
S1). The rate value suggested in the original Moraru model
entails saturation at a CF Ca2þ amplitude of 500 already (di-
2118 Biophysical Journal 120, 2112–2123, June 1, 2021
amonds and fit with rs ¼ 1.0 in Fig. 7 A). Peak values in-
crease with CF amplitude over a large range with a
smaller rate of inhibitory Ca2þ binding to the IP3R, rs. We
find measured responses of the transient peak to a CF
stimulus coactivation and beyond with even larger CF am-
plitudes with rs¼ 0.01 (circles, Fig. 7 A). We used this value
throughout the study. The same applies to the response to PF
stimuli with various Ca2þ amplitudes, showing larger peak
values for smaller rs (Fig. 7 B). Additionally, increasing
PF Ca2þ amplitudes (without CF coactivation), mimicking
a situation of intense PF stimulation, increases peak values
even further, reaching the same or even higher peak values
than with CF coactivation and smaller PF Ca2þ amplitudes
in Fig. 7 B. This resembles the situation in which a strong PF
stimulus alone, rather than PF stimulation with CF coactiva-
tion, can trigger LTD (8,26,84,85).
Optimal timing of CF stimulus

The size of the Ca2þ transient elicited by the CF stimulus,
and with it the induction of LTP and LTD, responds opti-
mally to a certain timing of the CF stimulus relative to
the PF stimulus as Wang et al. have shown (62). They
measured the Ca2þ response to different timing windows
between CF and PF stimulus and used a Gaussian to fit
the Ca2þ transient’s total integrated response to their re-
sults, which peaked around 92 5 37 ms and had a half-
width of 212 5 85 ms.

We simulated these experiments by varying the CF stim-
ulus time from 0 to 400 ms after the initiation of the PF stim-
ulus. We find that the system is sensitive to the timing of the
CF stimulus, as shown when determining the Ca2þ transient
peaks under such CF Ca2þ timing variation and also exhibits
optimal time windows with a maximal peak (Fig. 8). We find
optimal responses for different strengths of PF stimuli also
including the parameter value set A in Fig. 6.

We compare our results in Fig. S10 to the experimental
data from Wang et al. (62).

The rising phase of the Ca2þ peaks in Fig. 8 is due to
Ca2þ-induced Ca2 release (CICR) (see Fig. 4 C). The CF
stimulus causes Ca2þ influx. It takes more than 200 ms
for this Ca2þ rise to decay back close to prestimulus levels
(Figs. 6 and S12). When IP3 production starts 100 ms after
onset of PF stimulation, CICR starts because of the presence
of IP3 and the remaining Ca2þ from the CF stimulus. The
closer to IP3 production the CF stimulus occurs, the stronger
the CICR. Interestingly, this does not necessarily lead to an
optimal response at a timing window at the time of onset of
IP3 production at 100 ms, as the blue and green curves in
Fig. 6 show. We did not observe optimal time windows
when we released IP3 at the onset of PF stimulation (data
not shown).

The decaying phase of the Ca2þ peaks in Fig. 8 toward
large time windows is affected by processes terminating
Ca2þ release. One of them is the decay rate of IP3 as the
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FIGURE 7 Peak scaling of Ca2þ transients against (A) CF Ca2þ ampli-

tude for the PF burst þ CF scenario and (B) against PF Ca2þ amplitude

for the PF burst scenario for three different inhibitory Ca2þ binding time-

scale ratios rs ¼ {1.0, 0.1, 0.01}; see Table S1. The slower the rate of inhi-

bition, the larger the resulting Ca2þ transients for a given CF or PF Ca2þ

amplitude. The value of rs sets the largest possible peak value when varying

PF and CF Ca2þ amplitudes. Large enough transients triggered by CF co-

activation with intermediate Ca2þ amplitudes are only reached when rs is

on the order of 10�2. Data points are averages of 12 stochastic simulations

and were fitted to Hill curves, error bars show SDs.
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simulations in Fig. 9 show (which we will discuss in more
detail below). The slower IP3 is removed from the spine
head—either by degradation or by diffusing out of the
spine—the longer the Ca2þ transient.

Ca2þ-dependent inhibition is another process contrib-
uting to the termination of Ca2þ release and affecting the
peak dependency on the CF time window as the comparison
between the purple curve and all other ones in Fig. 8 shows.
Additionally, the peak scaling data in Fig. 7 illustrate the
role of Ca2þ-dependent inhibition in setting peak height.
Increasing the rate of Ca2þ-dependent inhibition leads to a
longer time window providing optimal response (purple
curve in comparison to the blue one).

However, increasing the inhibition rate by a factor of
three does not shorten the Ca2þ transient by the same factor
and does not abolish optimal time windows because Ca2þ-
dependent inhibition is only one of several factors shaping
the transient.
Ataxia

It has been shown that spinocerebellar ataxia type 29
(SCA29), characterized by early-onset motor delay, hypoto-
nia, and gait ataxia, can be caused by malfunctioning type 1
IP3Rs (50). Mutations associated with SCA29 were identi-
fied within or near the IP3-binding domain. These mutations
interfere with the binding of IP3 and cause IP3Rs of type 1 to
lose any channel activity, reducing or removing IP3-induced
Ca2þ transients.

On that basis, we decrease the IP3 binding rate kon of the
IP3R model to mimic ataxia, which results in lower or van-
ishing Ca2þ transients. We search to rescue the system from
this pathological condition by trying to recover the original
Ca2þ peak in two ways. First, we increase the amount of IP3
that enters the system, representing increased activity of the
PLCb pathway, which synthesizes IP3. In a second
approach, we decrease the degradation rate of IP3, thus
increasing the IP3 that is available to the IP3Rs in absolute
number as well as in duration.

The first method of increasing IP3 was only able to recover
the Ca2þ transients if we increased the amount of IP3 like 1/
kon (see Fig. S13). Because the decrease of kon might be sub-
stantial (50), the [IP3] values compensating it are likely
beyond the saturation values of the PLCb pathway.

Prolonging IP3 exposure

We decrease the IP3R’s binding rate of IP3 to values possibly
representing ataxia and then reduce kdecay trying to recover
the original Ca2þ transient. We start from their standard
values kon ¼ 83.3 (mM s)�1 and kdecay ¼ 15 s�1.

The control Ca2þ peak value can be recovered because
slower IP3 degradation increases the amount and duration of
IP3 in the system (Fig. 9 A), making up for the negative effects
of slower IP3binding.Additionally, the decreaseof kdecay leads
to prolonged activity of the open IP3R. The slowed IP3R dy-
namics also cause some delay in reaching the Ca2þ peak
(Fig. 9 C). Whereas the control parameters yield a Ca2þ tran-
sient peak at�0.47 s (red, Fig. 9 C), slowing IP3 degradation
down to one-sixth kdecay¼ 2.5 s�1 delays the peak to�0.65 s
(orange), i.e., it increases the response time by�40% and in-
creases the width of the Ca2þ transient.

We provide amore systematic analysis in Fig. 9B. It shows
the peak values in dependence on kon for five different IP3
decay rates kdecay. The red curve shows resultswith the control
value of kdecay. The curves with reduced kdecay cross the Ca

2þ

peak control value 360 (red dotted line) at specific values
kon, ax, which are smaller than the kon control value. They
are related to kdecay approximately by kdecayz

kon;ax
6:0mM�1. Simu-

lations with the parameter value pairs of (kdecay, kon, ax) calcu-
lated according to this equation provide control of Ca2þ peak
values with our control parameter set for all other parameter
values. A decay rate reduction calculated according to this
equation compensates the pathological reduction of kon, ax

with respect to the Ca2þ transient peak.
Biophysical Journal 120, 2112–2123, June 1, 2021 2119
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FIGURE 8 (A) Peak of Ca2þ transients against

timing of CF stimulus for three parameter sets

from Fig. 6 and an additional one with rs ¼ 0.03.

12 stochastic simulations per data point were used,

and points were fitted to Gaussians with the condi-

tion to converge against peak values of PF burst

stimulation alone for very large and small tCF. Error

Bars indicate SDs. The maxima of the Gaussian fits

occur at 91 ms (red), 59 ms (blue), 16 ms (green),

and 80 ms (purple), in qualitative agreement with

experimental data (62) (þ92 5 37 ms). The half-

widths of the Gaussian fits are 257 ms (red),

294 ms (blue), 443 ms (green), and 260 ms (purple),

in qualitative agreement with experimental data (62)

(212 5 85 ms). (B) Illustrating PF and CF stimulus

timing by showing five Ca2þ spikes in spine head

from a PF burst stimulus at 100 Hz from 0 to

40 ms and a Ca2þ spike from a CF stimulus, here

tCF ¼ 100 ms. To see this figure in color, go online.
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DISCUSSION

Cerebellar learning theories suggest that learning is ex-
pressed as a change of neuronal weights, i.e., synaptic
strengths, reflecting the topological properties of a neuronal
network state. Understanding learning therefore requires
knowledge of the molecular mechanisms assumed to encode
synaptic plasticity and information transmission at the lowest
neuronal level, which are Ca2þ transients and the associated
cell responses in synapses of spines, eventually. In Purkinje
neurons, the IP3-induced Ca2þ transients are dynamical re-
sponses to outer stimuli from PFs or CFs happening at low
Ca2þ concentrations. Whereas PFs are assumed to carry in-
formation about movement and fine motor control, CFs are
assumed to carry error information that gives feedback about
the network state that triggered the movement (86–88). We
developed a model that is based on complex single-particle
stochastic reaction and diffusion processes within a small
three-dimensional geometry to study Ca2þ transients in
response to dynamical PF and CF stimuli.

Our use of three-dimensional stochastic simulations
demonstrated the necessity for IP3R models to filter out
Ca2þ binding noise to a sufficient degree. A linear relation
between [Ca2þ] and the open probability at small concentra-
tions appears not to provide that filtering and entailed Ca2þ

dynamics insensitive to CF and PF stimulus Ca2þ ampli-
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tudes. However, an increase of the Ca2þ transient peak
due to a CF stimulus provides meaning to this stimulus
and is thus a necessary model requirement.

Using Moraru’s IP3R model to provide sufficient noise
filtering, we were able to reproduce the dynamic behavior
of the Ca2þ transients from experiment with respect to the
absolute and relative peak values of Ca2þ transients under
stimuli (8) and the behavior of peaks under variation of
the timing of the CF stimulus (62).

The signal of the CF stimulus turning LTP into LTDmight
be binary information or graded information. If simply the
presence of a stimulus entails LTD, we face binary signaling.
If the strength of the stimulus encodes the strength of depres-
sion, we see a graded response. We found this characteristic
of the signaling by the CF stimulus to depend on the rate of
Ca2þ-dependent inhibition of the IP3R. We achieved agree-
ment of Ca2þ transient peak values with experimental results
at slow inhibition rates. Although these rates are slower than
originally suggested by the authors of themodel, they are still
compatible with puff data of the IP3R taking the large local
[Ca2þ] at puff sites into account (79,89,90). In summary,
these simulation results suggest a graded response of the
Ca2þ transients’ peak value to the CF Ca2þ amplitude.

Using our model also allowed for detailed tests on the ef-
fects of endogenous Ca2þ buffer molecules. We find clear
indication that buffers do not only passively shape
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FIGURE 9 (A) Time courses of average [IP3](t) and SDs in the spine

head for different IP3 decay rates are shown. (B) Data points show averages

of Ca2þ peak values and SDs for different values of IP3 decay rates kdecay
against the binding rate of IP3. Each color and fit represent one decay

rate. Binding rates smaller than the original value possibly represent ataxia.

(C) Averages of 12 Ca2þ transients and SDs for cases with modified IP3
decay and binding rates, taken from (B), that approximately peak around

the original peak value of 360 Ca2þ (dotted red line in (B)) are shown.

To see this figure in color, go online.
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amplitude and decay and rise times of Ca2þ transients but
actively modulate state dynamics of IP3Rs, resulting in an
increase or decrease of released Ca2þ.
It has been experimentally established that the timing
window of PF and CF stimuli is critical to the induction
of LTP and LTD and thereby also to the properties of the
IP3R-induced Ca2þ transients (62). The mechanism our re-
sults suggest is that the relative timing of IP3 production eli-
cited by PF stimuli, which sensitizes IP3Rs for CICR to the
moment of the influx of Ca2þ due to the CF stimulus causing
CICR, sets the optimal time window.

We simulated ataxia on the basis of the assumption that it
manifests itself in our model by a substantially reduced rate
of binding of IP3 to the IP3R. Reducing the rate of IP3 degra-
dation by IP3 3-kinase and IP3 5-phosphatase turned out to
be able to compensate the reduced binding without strong
stimulation of the PLC pathway. Whether the recovered
peak values are enough to trigger an increase of AMPA re-
ceptors in agreement with observations by Piochon et al. (8),
even with delayed peak times and decay of the Ca2þ tran-
sients, is an open question left for future research. Its
outcome decides whether reduction of IP3 degradation of-
fers new ways of addressing ataxia pharmacologically.
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