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 While targeted therapy in chronic lymphocytic leu-
kemia (CLL) has signifi cantly improved prognosis 
for many patients, overall outcome remains het-
erogeneous. Additional therapeutic options are 

particularly needed for (1) patients experiencing drug toxicities 
or resistance and (2) patients residing in countries whose health-
care system has not yet approved or does not cover the costs of 
these new treatments.  1 , 2 

 The present study, therefore, focused on dasatinib, a sec-
ond-generation tyrosine kinase inhibitor (TKI) of breakpoint 
cluster region-Abelson1, Sarcoma-family kinases, and also 
Bruton ’ s tyrosine kinase, that was approved for the treatment of 
chronic myeloid leukemia in 2006 and for which recently gener-
ics have become available.  3   Dasatinib represents a promising 
candidate for potential next-line therapy in CLL, as CLL cells 
tend to be both dependent on B-cell receptor signaling for sur-
vival and highly responsive to Bruton ’ s tyrosine kinase targeting 
via ibrutinib.  4   Moderate results from previous clinical trials in 
relapsed/refractory CLL suggest that predictive biomarkers are 
needed to identify those patients who may benefi t most from 
dasatinib.  5-9   In this study, we therefore used RNA sequencing to 
characterize the gene-expression profi les of CLL cells sensitive 
and resistant to dasatinib and defi ne a specifi c gene-expression 
signature associated with drug sensitivity. Sample and method 
details are provided in the supplementary information ( http://
links.lww.com/HS/A124 ), raw and normalized gene expression 
data are accessible through Gene Expression Omnibus (acces-
sion number GSE151159). 

 To determine the spectrum of in vitro sensitivity of primary 
CLL cells to dasatinib, we isolated peripheral blood lympho-
cytes (PBLs) from newly diagnosed, previously untreated 
patients (n   =   16, Table S1,  http://links.lww.com/HS/A124 ) and 
performed cytotoxicity assays. In short, PBLs were exposed for 
48 hours to 180   nM dasatinib, refl ecting plasma drug concentra-
tions observed in a clinical setting,  10   and subsequent XTT and 
CellTiter-Blue assays were used to assess cell viability. Based on 
the cytotoxicity assay results ( Figure   1A    and Figure S1,  http://
links.lww.com/HS/A124 ), we split patients into two groups, 
responders (n   =   7) and nonresponders (n   =   9), using an arbitrarily 
chosen cutoff of 50% viability after dasatinib treatment. The 
average viability in responders and nonresponders was 26% 
(range 11%-37%) and 75% (range 51%-94%), respectively 
(unpaired one-tailed  t  test;  P     <    0.0001). Notably, patients who 
classifi ed as responders presented with clinical features of poor 
prognosis more frequently than nonresponders. Specifi cally, 
responders were associated with a more advanced stage of the 
disease, higher lymphocyte counts, and a higher frequency of 
unmutated immunoglobulin heavy chain variable status (Table 
S1,  http://links.lww.com/HS/A124 ).  

 To determine whether responders and nonresponders were 
associated with distinct gene expression signatures, we per-
formed RNA sequencing of all patients ’  treated and untreated 
samples on the Illumina HiSeq2000. We then used DESeq2 to 
test for differentially expressed genes (DEGs) between respond-
ers and nonresponders, with an absolute fold change of at least 
1.5 and a false discovery rate of at most 0.1. We detected 154 
such DEGs ( Figure    1B  and Table S2,  http://links.lww.com/
HS/A124 ). This initial comparison included all samples, both 
treated and untreated. However, since patients had been labeled 
as responders/nonresponders based on the treated cells ’  phe-
notype, treated responders and nonresponders were naturally 
expected to differ substantially. Of real interest was rather the 
question whether responders differed from nonresponders per 
se, even before the drug was added. We therefore performed the 
same analysis for the treated and untreated samples separately. 
There, we found 31/154 DEGs between the untreated respond-
ers and nonresponders ( Figure   1C  and Table S2,  http://links.lww.
com/HS/A124 ) and 20/154 DEGs in the analogous comparison 
of the treated samples ( Figure   1D  and Table S2,  http://links.lww.
com/HS/A124 ). Sixteen DEGs were shared between all three 
comparisons (Table S2,  http://links.lww.com/HS/A124 ). 

 To compare gene expression differences at the pathway 
level, we performed gene set enrichment analyses using gene 
set enrichment analysis and molecular signatures database hall-
mark gene sets.  11   We found that both treated and untreated 
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responders were associated with increased stress signaling 
(apoptosis, p53, unfolded protein/reactive oxygen species/
ultraviolet responses up), metabolic signaling (glycolysis, mam-
malian target of rapamycin complex 1 up), and immunologic 
signaling (inflammatory, complement, interleukins, interferons, 
tumor necrosis factor signaling up). In addition, treated but 
not untreated responders displayed an increased expression of 
genes implicated in oxidative phosphorylation and peroxisome 
signaling, allograft rejection, xenobiotic metabolism, and DNA 
repair. We thus found a gene expression signature distinguishing 
responders and nonresponders both before and after treatment. 
In general, responder PBLs seemed to be more stressed and more 
active than PBLs of nonresponders, both metabolically and 
immunologically, and treatment appeared to further augment 
these differences (Figure 2A).

To study the effect of treatment in more detail, we accounted 
for inter-individual heterogeneity in DESeq2’s regression model 
by performing a paired analysis to separately compare the 
treated versus untreated sample of responders and nonrespond-
ers. We detected 101 and 92 DEGs, respectively, and found 
that treated samples of both responders and nonresponders 
were associated with decreased stress signaling (apoptosis, p53, 
unfolded protein response down) and decreased immunologic 
signaling (allograft rejection, coagulation, complement, inflam-
matory response, interleukins, interferons, tumor necrosis factor 
signaling down). In addition, in treated but not untreated nonre-
sponders, we found decreased metabolic signaling, as indicated 
by the decreased expression of genes implicated in adipogenesis, 
fatty acid metabolism, oxidative phosphorylation, and glycoly-
sis (Figure 2A).

Figure 1.  Gene expression signatures in responders and nonresponders to dasatinib. (A), Viability of CLL cells isolated from responders (n = 7) and 
nonresponders (n = 9), treated with 180 nM dasatinib. Error bars represent a fraction of standard deviation in treated cells vs mean viability measurement in 
corresponding controls. XTT assay results are shown in the chart except for patients L and M (marked with asterisks) for whom XTT assay was inconclusive, 
and CellTiter-Blue assay results are shown. B–D, Hierarchical clustering of RNA sequencing data of all dasatinib-treated and dasatinib-untreated samples (B), 
all untreated samples only (C) and all treated samples only (D), each based on the Pearson correlation of DEGs between responders (n = 7) and nonresponders 
(n = 9). Heatmaps show row-/gene-wise Z scores; columns correspond to individual samples. Viability refers to the average cell viability observed in the in vitro 
cytotoxicity assays. Responders and nonresponders share distinct gene-expression signatures, both before and after treatment. CLL = chronic lymphocytic leukemia; 
DEG = differentially expressed gene; ID = patient identifier.

Figure 2.  Key pathways associated with response to dasatinib. (A), Schematic overview of the pathway level gene expression differences between responders 
and nonresponders, and treated and untreated cells. Results are based on GSEA analyses of the MSigDB Hallmark collection: Green pathways indicate related 
gene sets that tended to be upregulated in the respective group (arrowhead) relative to one of the others (arrow tail). Analogously, red pathways indicate downreg-
ulated gene sets. B and C, PCs 1 and 2 from PCA of all dasatinib-treated and dasatinib-untreated samples for genes of the MSigDB hallmark collection gene sets 
HALLMARK_NOTCH_SIGNALING (B) and HALLMARK_DNA_REPAIR (C). Responders and nonresponders share distinct gene-expression signatures involving both 
pathways. GSEA = gene set enrichment analysis; MSigDB = molecular signatures database; PC = principal component; PCAs = principal component analyses.
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We then checked whether differences between responders and 
nonresponders might be explained by differences at the genetic 
level. Specifically, we checked our samples for copy number vari-
ations and gene mutations in ATM, BIRC3, MYD88, NOTCH1, 
SF3B1, and TP53, which are all generally recurrent in CLL.12 
With the exception of MYD88 and TP53 mutations, each of 
these aberrations was found in at least one sample, though 
none were notably recurrent (Tables S3 and S4, http://links.lww.
com/HS/A124). We hypothesized that the associated signaling 
pathways might nonetheless be differentially deregulated at the 
RNA level. Accordingly, we performed two principal compo-
nent analyses (PCAs) of all our samples, based on those genes 
that make up the molecular signatures database HALLMARK_
NOTCH_SIGNALING and HALLMARK_DNA_REPAIR gene 
sets, respectively (Figure 2, B and C). While a perfect linear seg-
regation was not possible in either case, samples clearly did sep-
arate into responders and nonresponders on the first 2 principal 
components, indicating that the differential expression of these 
signaling pathways was not limited to the individual mutated 
cases and may instead represent a defining feature of our groups 
in general.

The main limitation of our study’s potential predictive value is 
its small sample size. We therefore validated our identified gene 
expression signature using the Library of Integrated Network-
Based Cellular Signatures L1000 database,13 which contains 
thousands of independent, drug-induced gene expression pro-
files (GEPs) from various cell lines, compounds, doses, and 
time points. Indeed, when queried for GEPs correlated with the 
“dasatinib treatment” signature, which we had identified in the 
comparison of treated versus untreated samples, the database 
returned several TKIs, and dasatinib itself was even among the 
top hits (Figure S2A, http://links.lww.com/HS/A124). We then 
repeated this experiment for our “dasatinib response” signature 
from the responder versus nonresponder comparison and iden-
tified multiple compounds predicted to increase treatment sen-
sitivity to dasatinib that may warrant follow-up investigations 
(Figures S2B and S3, http://links.lww.com/HS/A124).

Thus, our study serves as an important proof-of-principle, 
providing additional evidence that (1) dasatinib may represent a 
viable therapeutic option in a group of CLL patients and (2) GEP-
based markers can be used to predict response to TKI therapy in 
CLL and identify these patients before any treatment is given at 
all. Notably, such predictive signatures might also be generated 
for other kinase inhibitors currently approved for CLL treatment, 
similar to the BCL-2 homology domain 3 profiling recently sug-
gested as a biomarker of patient response to venetoclax.14 This 
is in line with a recent study on ibrutinib that also suggests the 
feasibility of transcriptome-based treatment monitoring in CLL.15 
In the future, respective markers could be used to indicate not 
only resistance to novel treatment strategies but also response to 
alternative drugs such as dasatinib, perhaps in combination with 
other “repurposed” drugs capable of reverting respective leuke-
mia signatures. While our study was based on only a limited num-
ber of treatment-naïve CLL patient samples, follow-up studies of 
larger, as well as more selected cohorts such as relapsed/refractory 
patients with failed first-line (ibrutinib) therapy are warranted. 
Novel gene expression profiling technologies applied in clinical 
routine, such as the Nanostring technology, could ensure transla-
tion of respective biomarkers into the clinic.
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