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We have previously reported Lvm1 as a quantitative trait locus (QTL) on chromosome 13
that links to cardiac left ventricular mass (LVM) in a panel of AxB/BxA mouse recombi-
nant inbred strains (RIS). When performing a gene expression QTL (eQTL) analysis, we
detected 33 cis-eQTLs that correlated with LVM. Among the latter, a group of eight cis-
eQTLs clustered in a genomic region smaller than 6 Mb and surrounding the Lvm1 peak
on chr13. Co-variant analysis indicated that all eight genes correlated with the phenotype
in a causal rather than a reactive fashion, a finding that (despite its functional interest)
did not provide grounds to prioritize any of these candidate genes. As a complementary
approach, we performed weighted gene co-expression network analysis, which allowed
us to detect 49 modules of highly connected genes. The module that correlated best with
LVM: (1) showed linkage to a module QTL whose boundaries matched closely those of
the phenotypic Lvm1 QTL on chr13; (2) harbored a disproportionately high proportion of
genes originating from a small genomic region on chromosome 13 (including the 8 previ-
ously detected cis-eQTL genes); (3) contained genes that, beyond their individual level of
expression, correlated with LVM as a function of their inter-connectivity; and (4) showed
increased abundance of polymorphic insertion–deletion elements in the same region.Taken
together, these data suggest that a domain on chromosome 13 constitutes the biologic prin-
ciple responsible for the organization and linkage of the gene co-expression module, and
indicate a mechanism whereby genetic variants within chromosome domains may asso-
ciate to phenotypic changes via coordinate changes in the expression of several genes.
One other possible implication of these findings is that candidate genes to consider as
contributors to a particular phenotype should extend further than those that are closest to
the QTL peak.

Keywords: cardiac complex traits, genetics of gene expression, weighted gene co-expression network analysis,
mouse recombinant inbred strains, chromosome domain, cardiac left ventricular mass

INTRODUCTION
The identification of gene variants causally linked to complex phe-
notypic traits still remains difficult. Functional genomic studies,
which evaluate the functional consequences of genetic variations
on intermediate molecular traits, have been proposed as a means
to improve the power of detecting such gene variants (1, 2). The
importance of gene expression for complex traits is illustrated
by studies showing that trait-associated polymorphisms are more
likely to also be associated with expression of particular genes (3),
and that variants associated with common human diseases involve
predominantly regulatory DNA sequences (rather than protein-
coding regions) (4). Accordingly, gene expression constitutes one
type of intermediate molecular phenotypes that has been studied
often, with quantitative trait loci (QTLs) linked to gene expression
being called “expression QTLs (eQTLs)” (2). When the expression
of a given gene associates with a genetic polymorphism that maps
close to that gene’s locus, the corresponding eQTL is referred to as a

“cis-eQTL,” with the presumption that a cis-acting polymorphism
within the regulatory machinery of that gene affects its expres-
sion. Cis-eQTLs that both colocalize with the phenotypic QTL and
correspond to genes whose expression correlates with quantita-
tive variation of the phenotype have been called “c3-eQTLs,” and
have been used to prioritize genes to be considered as candidates
harboring causal mutations (5). However, there are several limita-
tions to this strategy: (1) dysregulation of single genes is believed
to account for only a minority of complex quantitative traits (6),
while epistatic interactions may represent important components
of the architecture of complex traits (7); (2) the abundance of
eQTLs and the strong correlation structure in the genome is such
that some of their overlaps with phenotypic QTLs may often be
coincidental and not driven by the same functional variants (8);
and (3) instead of representing the sum of the individual actions
of several independent biomolecules, biological systems are more
typically organized as modular networks (9, 10).
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Since functionally related genes are likely to show mutual
dependence in their expression network, one alternative to
the identification of c3-eQTLs has been to construct gene co-
expression networks, with the aim of defining highly inter-
connected gene modules and identify which ones correlate best
with variations in complex traits (9–11). One underlying assump-
tion of this strategy is that it may be easier to predict (on the basis
of concordant gene annotations) the function of a module rather
than that of individual genes (10, 11). Accordingly, it has been pos-
sible in some cases to find within modules enrichment for genes
originating from particular biologic pathways (11–14). However,
such genes usually represent only a small fraction of genes in the
module, and their identification is not sufficient to identify how
genetic determinants may lead to coordinate changes in the expres-
sion of all genes in the module. Alternatively, genetic mapping of
“eigengenes” (which represent the first principal component of all
expression profiles in modules) has shown that entire modules
could be linked to QTLs and that some of such “module-QTLs
(mQTLs)” may have profiles matching that of phenotypic QTLs
(15, 16). Although such findings suggest that the same genetic
determinants may link to both a phenotype and the expression
levels of genes within the associated module, the nature of such
variants remains to be elucidated.

Interestingly, by analyzing datasets of gene expression in several
tissues from mouse recombinant inbred strains (RIS), we found
recently that close to 30% of the gene co-expression modules
detected in such datasets showed genetic linkage to a mQTL (17).
For the majority of such modules, the mQTL was on the same
chromosome as the one contributing most genes to the module,
with genes originating from that chromosome showing higher
connectivity than other genes in the module. Along with the fact
that corresponding genomic regions contained increased abun-
dance of polymorphic structural variants, these data suggested
that such modules were driven by particular chromosome domains
(17, 18). Beyond individual c3-eQTLs, it is thus possible that such
chromosome domain-driven (CDD) mQTLs link to a quantita-
tive phenotype via coordinate changes in the expression of several
genes in proximity to the mQTL.

Using a panel of 24 AxB/BxA mouse RIS, we have also pre-
viously shown that chromosome 13 (chr13) harbors one major
QTL linked to cardiac left ventricular mass (LVM) (identified
as “Lvm1”) (19). LVM is a highly heritable quantitative complex
trait that constitutes an important and independent predictor of
cardiovascular mortality and morbidity (20, 21). To further test
whether genetic variants could link to changes in LVM via coor-
dinate changes in the expression of several genes, we used gene
expression data from the cardiac LVs of four male mice from
all 24 strains. We analyzed the data to establish an inventory of
all c3-eQTLs and to detect modules of inter-connected genes by
weighted gene co-expression network analysis (WGNCA). Within
the gene co-expression network, we found that 40% of detected
modules showed linkage to an mQTL. The module correlating
best with LVM had the characteristics of a CDD module, and
contained genes that correlated with the phenotype not just by
their individual expression level, but mostly as a function of
their inter-connectivity. These findings indicate a mechanism
whereby genetic variants may lead to phenotypic modifications

via coordinate changes in the expression of several genes within
particular chromosome domains.

MATERIALS AND METHODS
GENE EXPRESSION AND MAPPING ANALYSES
The AxB/BxA mouse RIS originate from reciprocal crosses
between the two parental C57BL/6J and A/J inbred strains (22).
We have previously used a set of 24 strains from that panel to
detect QTLs linked to normalized cardiac LVM (defined as LV
weight corrected for whole body weight, and simply referred here-
after as “LVM”) (19). Using four adult male individuals from each
of the same strains, we extracted total RNA from the cardiac
left ventricles of mice, and used them to profile gene expres-
sion using Illumina MouseRef-8 v2.0 BeadChip. All 96 samples
were randomized across all lanes in a total of 12 microarray
slides, as described previously (23), and hybridized in two sep-
arate batches. To avoid the possibility that polymorphisms within
probes used for the microarray could affect the gene expression
results, we used the Sanger website to verify whether the Illu-
mina probes corresponded to regions containing high-quality
SNP polymorphisms (score > 100 according to the Sanger web-
site): only 91 SNPs were detected within the probe sequences,
and the corresponding probes were removed for the purpose
of gene expression analysis. Possible batch effects were normal-
ized using the ComBat software (24). All processed data are
available for public access at GeneNetwork (accession number
GN421)1. Further analyses, involving genotyping of all 24 RIS
and mapping of eQTLs, were performed as described previ-
ously (18). All files with genotypes are available at the follow-
ing Website: https://github.com/raphg/iBMQ/blob/master/data_
application_note/data_application_note.R. Gene expression data
(corresponding for each strain to the average of values obtained
in four individuals per strain) were analyzed (along with genomic
maps) with the “QTL” R package (25), using a detection thresh-
old corresponding to a “logarithm-of-the-odds (LOD)” score of
3.3 (26). For each eQTL, we determined whether the transcrip-
tion was regulated in cis or in trans by defining cis-eQTLs as those
whose peak eQTL was within 1 Mb of the physical location of the
corresponding gene start. Confidence intervals were determined
by calculating the 1.5-LOD support interval (27). For of each cis-
eQTL, we calculated the Pearsons correlation coefficient of the
expression level of its corresponding gene with the value of LVM
in corresponding strains. To determine which cis-eQTL genes had
expression values that correlated significantly with LVM, Westfall–
Young adjusted p-values were calculated on the basis of 1,000,000
permutations, using R. To find a threshold corresponding to a
“false discovery rate (FDR)”= 0.1, adjusted p-values were then
transformed into q-values, using the “q-value” R package.

C3-eQTLs represent situations where a cis-eQTL and a pheno-
typic trait share linkage with a common QTL. Such cases represent
“triads” where statistical procedures based on the variance of the
traits can be applied to infer causality. In essence, the procedure
consists of running reciprocal QTL scans, i.e., scanning for either
the phenotypic traits with gene expression levels as covariates,

1http://www.genenetwork.org
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or for the gene expression traits using the phenotypic trait as a
covariate (14, 28, 29). The first test scans for cis-eQTLs that (when
expression levels of corresponding genes are used as covariates)
cause the largest drop in LOD score for the phenotypic QTL. The
larger the drop, the more likely it is that gene expression is causal to
the phenotype. Conversely, the second test analyzes whether using
the phenotype as a covariate causes such a drop in LOD score of
a cis-eQTL that it lowers its peak below the significance levels. In
such cases, cis-eQTLs are likely to be reactive (instead of causal) to
the phenotype (28).

GENE CO-EXPRESSION NETWORKS AND MODULES
On the basis of the expression data of all 8725 genes detected with
the Illumina microarray in the LVs of male individuals from all
24 strains, we used the WGCNA R package (30) to construct a
gene co-expression network. Network analyses were performed
on the basis of the following calculations: (1) estimation of a
particular β power value was performed by using the scale-free
topology criterion described previously (31), which led us to the
power β= 6 value for all groups; (2) measures of topological over-
lap between nodes were calculated on the basis of the number
of shared neighbors; and (3) a hierarchical clustering of the above
values was performed to produce dendrograms. Within a network,
each gene represents a node, and the connections between nodes
are defined as edges. To define modules (i.e., clusters of highly
inter-connected genes), branches of the hierarchical clustering tree
were cut using the dynamic tree cut algorithm implemented in the
dynamicTreeCut R package.

Since WGCNA is a network-based method that requires fine-
tuning of several parameters, we have tested the robustness of
the inferred co-expression modules to ensure the stability of the
results. To test the robustness of our network, we varied the val-
ues of four parameters used within network construction and
module identification: (1) the soft thresholding β value; (2) the
deepSplit and minClusterSize variables of the cutreeDynamic
function; and (3) the cutHeight variable (corresponding to the
maximum dissimilarity that qualifies modules for merging) of
the mergeCloseModules function. To compare our network (with
default parameters) to those obtained with varying parameters,
we used the ps.cluster function of the genefu R package (avail-
able at www.bioconductor.org) to calculate prediction strength
values (32) and reported the median prediction strength values
of all the clusters. We have also tested the robustness of inferred
co-expression modules by looking at the top 20 and 40% most
connected genes of each module and testing to which extent these
genes were retained in modules when varying the soft threshold-
ing value. We reported the mean percentage of all clusters for the
different soft thresholding β values.

“Eigengene” values (defined as the first principal component
of module-specific expression data) were then calculated for each
module. Since eigengenes can be considered as representatives of
the gene expression profiles in corresponding modules, eigengene
values can be used to either detect modules correlating with a
given phenotype, or to detect “mQTLs,” i.e., QTLs showing link-
age to entire gene co-expression modules. Mapping of mQTLs was
performed with the “QTL” R package (25), using the same crite-
ria described above. Modules whose eigengene value correlated

strongly with LVM (p < 0.01) were visualized graphically with the
Cytoscape software (33), using the values of connection strength
for the edges and that of connectivity (defined as the sum of con-
nection strengths of each node with all other network genes) for
each node, as calculated by WGCNA. In some cases, comparisons
were performed between several groups of genes within mod-
ules, using ANOVA tests followed by Tukey’s post hoc multiple
comparison tests.

ANALYSIS OF STRUCTURAL VARIANTS
A list of mouse genomic structural variants (including dele-
tions, insertions, and copy number variants) was obtained from
the Sanger database2. Structural variants defined as polymorphic
between the parental A/J and C57BL/6J strains were those show-
ing either “insertion” (i.e., present in C57BL/6J but absent in A/J)
or “deletion” (i.e., present in A/J but absent in C57BL/6J) vs. the
mm9 reference sequence of the whole genome from C57BL/6J.
The majority of insertion–deletions in mice are in fact transpos-
able elements, among which short interspersed nuclear elements
(SINEs) are the most abundant (34).

A list of SINEs that are polymorphic between the parental A/J
and C57BL/6J strains was obtained from a recent publication (35)
For certain mQTLs (see below), we examined the abundance of
both insertion–deletions (indels) and polymorphic SINEs in con-
secutive 2 Mb regions extending on both sides of the mQTL peaks
(up to total distances of 18 Mb). The profiles of abundance of these
elements were compared to those found in regions of similar size
surrounding a total of 500 polymorphic SNPs randomly selected in
the entire genome. Comparisons between groups were performed
by ANOVA followed by Tukey’s post hoc multiple comparison tests.

RESULTS
IDENTIFICATION OF c3-eQTLs IN HEARTS FROM AxB/BxA MOUSE RIS
Gene expression profiling with Illumina microarrays allowed us
to detect expression of a total of 8725 genes in extracts of car-
diac LVs from mouse AxB/BxA RIS and measure the abundance of
corresponding mRNAs. Genetic mapping of these gene expression
values revealed a total of 10,530 eQTLs above the 3.3 LOD thresh-
old. Among those, 777 loci had a peak that was located within
<1 Mb from the transcription start site of the gene whose expres-
sion was measured were defined as cis-eQTLs (Figure 1). Out
of those, only 33 corresponded to genes whose expression level
correlated significantly (FDR < 0.1) with the values of LVM. In
this dataset, the threshold corresponded to r2 values≥0.54. These
33 cis-eQTLs thus corresponded to c3-QTLs (Figure 1). Strik-
ingly, 8 of 33 c3-eQTLs were clustered between positions 59.74
and 64.53 Mb within an interval of 5.8 Mb on chr13 (i.e., the
same chromosome as Lvm1) (Table S1 in Supplementary Mate-
rial). Within that cluster, six cis-eQTL genes corresponded in fact
to six contiguous genes all contained within a 250 kb interval. All
eight c3-eQTLs had confidence intervals that overlapped with that
of Lvm1 (whose peak was located at position 57.8 Mb on chr13)
(Figures S1A,B in Supplementary Material). When scanning the
LVM QTL using the expression levels of all cis-eQTL genes as

2http://www.sanger.ac.uk/cgi-bin/modelorgs/mousegenomes/snps.pl
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FIGURE 1 |Top part: QTL mapping analysis of LVM in mouse AxB/BxA
RIS. The number of each chromosome is indicated on the x axis; the LOD
scores are indicated on the y axis; the horizontal plain and dashed lines
represent the threshold for significant and suggestive LOD scores,
respectively. The strongest QTL is Lvm1 on chr13. Middle part: c3-eQTL
analysis of cardiac cis-eQTLs in mouse AxB/BxA RIS. Similarly as in the
top figure, the number of each chromosome is indicated on the x axis.
Expression levels of 777 cis-eQTLS were correlated with values of
normalized LVM; the absolute values of Pearson correlation coefficients
are indicated on the y axis. The horizontal line represents significance

threshold level, as calculated by permutation tests (see Supplementary
Material). On chr13, there is a clustering of eight c3-QTLs, each having
their peak within the confidence interval of Lvm1 (see Figures S1A,B in
Supplementary Material). On chr17, there is a clustering of five c3-QTLs,
each having a profile matching closely that of a QTL showing weak linkage
with LVM (see Figure S2 in Supplementary Material). Bottom part:
amplitude of the drop in LOD score for Lvm1 observed when using the
expression level of each cis-eQTL gene as a covariate. The largest drops in
LOD scores are observed for the eight c3-QTLs on chromosome 13
whose profiles overlap with that of Lvm1.

covariates, the same 8 cis-eQTLs on chromosome 13 were the
ones that yielded the largest drops in LOD scores for the LVM
QTL (Figure 1). When QTL scanning was performed for these
eight cis-eQTLs using LVM values as a covariate, residual variance
was such that the eQTL peaks were still clearly detectable for all
genes (Figure S2 in Supplementary Material).

WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSES
On the basis of WGCNA, we detected a total of 49 modules, each
containing at least 40 genes and being identified by a color name.

We tested the robustness of the network by calculating the pre-
diction strength after varying four different parameters used for
network construction and module identification. The results of
the network were affected only to a minimal extent by varying
the deepSplit and minClusterSize variables (of the cutreeDynamic
function) and the cutHeight variable (of the mergeCloseModules
function) (Figure S3 in Supplementary Material). Since varying
the soft thresholding variable seemed to affect prediction strength
to a greater extent (Figure S3 in Supplementary Material), we ver-
ified the robustness of inferred co-expression modules by testing
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how variations of the soft thresholding β value affected the top
20 and 40% most connecting gene of each module. We found
that membership of the most connected genes was affected only
to a minimal extent by variations of the soft thresholding β value
(Figure S4 in Supplementary Material).

Additional analyses were performed using modules identified
with the default parameters of WGCNA. By correlating the values
of the eigengene of each module with that of the LVM values, two
distinct modules were found to correlate significantly (p < 0.01)
with LVM: (1) the module “thistle2” contained a total of 48 well-
annotated genes, and its correlation coefficient with LVM was 0.66
(p-value= 0.0004); (2) the module “plum2” contained 49 well-
annotated genes, and its correlation coefficient with LVM was
-0.57 (p-value= 0.004). QTL mapping analyses were performed
for the eigengene of these two modules to detect corresponding

mQTLs (Figure 2). The mQTL of thistle2 had a strong peak on
chr13 (LOD= 12.2) and a profile that matched closely that of
Lvm1. The mQTL of plum2 module had a strong peak on chr17
(LOD= 16); however, its profile matched only that of a minor
(and non-significant) LVM QTL on chr17.

PROPERTIES OF CO-EXPRESSION MODULES CORRELATING WITH LVM
A graphic representation of the thistle2 module, where the size
of each node/gene and the thickness of each edge is propor-
tional to their connectivity and strength, respectively, is shown
in Figure 3. We separated genes in the module into three dis-
tinct groups according to a combination of criteria that included
their connectivity, the physical position of their locus and/or their
genetic linkage with LVM. The first group comprised to a cluster
of 11 eQTL genes all comprised within a 8 Mb interval on chr

FIGURE 2 | QTL mapping of the thistle2 and plum2 modules.
The graphs represent the QTL mapping profiles for (1) LVM (top
graph), the thistle2 module (middle graph), and the plum2 module
(bottom graph), respectively. The major mQTL for thistle2 on chr13

(LOD=12.2) has a profile matching closely that of Lvm1 on chr13.
The major mQTL for plum2 on chr17 (LOD=16) had a profile that
matched closely that of a minor (and non-significant) LVM QTL
on chr17.
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FIGURE 3 | Diagram representation and properties of the thistle2
co-expression module. The size of each node is proportional to the
connectivity of each corresponding gene; the width of each edge is
proportional to the strength of correlation between the two corresponding
genes. Each node is color-coded in the following fashion: the red nodes
comprised a physical cluster of 11 eQTL genes all contained within a 8 Mb
interval on chr 13 (from positions 60.8–68.7 Mb); the green nodes
represent 5 trans-eQTL genes, each having a profile also matching that of
Lvm1 on chr13 (Figure S3 in Supplementary Material); the gray nodes

represent all other module genes. The linear regression shows that each
module gene correlates with LVM in a fashion that is directly proportional
to their connectivity index (defined as the log2 transformation of the
connectivity value calculated by WGCNA) (r 2

=0.49, p < 0.0001). The pie
chart shows that as much as 14 (out of the total 48) module genes
physically originated from chr13. The bar graphs (mean±SD) show that
the connectivity of module genes and their correlation with LVM is
proportional to their classification in the three respective groups
(**p < 0.01; ***p < 0.001).

13 (from positions 60.8–68.7 Mb), among which 10 genes corre-
sponded to the most connected genes in the module. The second
group in the module comprised five genes that were not physically
located on chr13, but are all trans-eQTL genes whose eQTL pro-
files matched that of Lvm1 (Figure S5 in Supplementary Material).
The third group comprised all other genes from the module, three
of which also belonged to chr13. Altogether, 14 (out of the total
48) genes originated from chr13, this number being much higher
than the number of genes expected to originate randomly from
chr13: given that the ENTREZ database reports that 808 out of
all 20,369 genes originate from chr 13, one expects only 1.9 genes
to originate from chr13 in a module of 48 genes. In addition,
another five trans-eQTLs also showed linkage to the same locus
chr13 (Figure S5 in Supplementary Material). A second important
observation was that the correlation coefficient of each gene with
LVM was directly proportional to its connectivity value (Figure 3).
Both connectivity and correlation decreased progressively across
groups in the following order: (1) the physical cluster of 11 genes
on chr13; (2) the group of five trans-eQTLs on chr13; and (3) all
other network genes.

Although the mQTL of the plum2 module did not match a
strong phenotypic QTL for LVM, its genes also correlated with
LVM in a manner that was directly proportional to their connec-
tivity. Its general organization was also similar to that of thistle2,
as its genes could be divided in three groups as a function of
their connectivity (Figure S6 in Supplementary Material). The
most connected genes corresponded to a cluster of 22 eQTL genes
all contained within a 6 Mb interval on chr 17 (from positions
21–26.5 Mb). These 22 genes were all comprised within the group
of the 31 most connected genes in the module.

COMPARISONS OF CO-EXPRESSION MODULES
We further tested whether other modules had properties similar
to that of thistle2 and plum2. Out of the 49 modules detected by
WGCNA, 27 had a clear genetic component, since they showed
linkage to one main mQTL [with, for 5 of them, at least one
additional mQTL that had a lower LOD score (Table S2 in Supple-
mentary Material)]. Out of the 27 “genetic” modules, 21 had their
mQTL on the same chromosome that contributed more genes
to the module, with the latter genes clustering within an interval
averaging 18.3± 10.3 Mb (Table 1). That value was significantly
smaller than that of the interval containing genes from the pre-
dominant chromosome in the six other modules (51.5± 12.1)
(Table 1). Since this suggested that genes in the above 21 mod-
ules originated from a restricted domain rather than from the
entire chromosome, we defined these modules as being “CDD.”
We further compared the properties of CDD and non-CDD
genetic modules to those of the other 22 “non-genetic” mod-
ules (Table 1) (Tables S2 and S3 in Supplementary Material).
Although the two types of genetic modules contained a higher
proportion of genes that could be defined as cis-eQTLs, the abun-
dance of cis-eQTLs was higher in CDD than in non-CDD modules
(Tables S2 and S3 in Supplementary Material). Both types of
genetic modules showed linkage to one main mQTL, but cor-
responding LOD scores were higher in CDD than in non-CDD
genetic modules. In all modules, we calculated the relative levels
of connectivity of genes from the predominant chromosome by
dividing their mean connectivity by that of module genes origi-
nating from other chromosomes, and found that that value was
higher in CDD modules than in non-genetic modules (Table 1).
Although non-CDD genetic modules also contained (compared
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Table 1 | Properties of different types of modules.

Characteristics CDD genetic

modules (a)

Genetic non-CDD

modules (b)

Non-genetic

modules (c)

ANOVA/post hoc

tests

Mean distance between genes

from pred. chrom. (Mb)

18.3±10.3 51.5±12.2 45.21±17 P =4.2e−08

Pab
=1.6e−05

Pac
=2.75e−07

Pbc
=5.97e−01

Percentage of cis-eQTL genes 24.3±10 6.09±3.96 2.7±1.7 P =3.76e−13

Pab
=1.84e−06

Pac < 2e−16

Pbc
=5.3e−01

Mean LOD of main mQTL 11.5±3.3 4.3±0.7 ~ P =2.24e−09

Percentage of genes from

predominant chromosome

41.3±11.5 12.3±2.08 11±2 P < 2e−16

Pab
=5.93e−10

Pac < 2e−16

Pbc
=9.1e−01

Relative connectivity of genes

from predominant chromosome

(ratios)

3.2±0.9 1±0.1 0.95±0.13 P =5.08e−15

Pab
=4.17e−09

Pac < 2e−16

Pbc
=9.91e−01

CDD, chromosome domain-driven. All values are mean±SD. The last column lists the P-values for the ANOVA tests, followed by those of the post hoc tests (when

more than three groups are tested; groups compared are represented by letters in superscript).

to non-genetic modules) a higher proportion of genes from one
predominant chromosome, these genes did not originate from
restricted domains, nor did they show increased levels of relative
connectivity (Table 1).

By analyzing gene expression in different tissues from several
mouse RIS, we have previously reported on the existence of chro-
mosome domains that contain genes that could all be linked as
cis-eQTLs to one same locus within these domains (which we
called “cis-eQTL clusters”) (18). On the basis of data from hearts
of AxB/BxA RIS mice, these domains corresponded to regions
averaging 221.9± 130 kb and contained in average a cluster of
4.23± 1.9 highly co-expressed cis-eQTL genes. We compared the
locations of the cis-eQTL clusters to that of the peaks of the
CDD modules mQTLs (Table S4 in Supplementary Material).
In 14 of 21 CDD modules, the peak of the mQTL coincided
very closely with the locus of the previously reported cis-eQTL
clusters. Five of these CDD modules also contained genes from
additional cis-eQTL clusters located on the same chromosome,
but at some further distance from the mQTL peak (Table S4
in Supplementary Material). In the thistle2 module, 6 out of
the 11 most connected genes corresponded to one of the cis-
eQTL clusters we identified in our previous work (18). This
cluster contained six contiguous genes within a 250 kb inter-
val on chr13 that we identified on the basis of eQTL analysis
(see above). In the plum2 module, among the 22 most con-
nected genes located within a 6 Mb interval on chromosome
17, 5 of them corresponded to a cluster of 5 neighboring genes
located within a 375 Kb interval on chromosome 17, as reported
previously (18).

STRUCTURAL VARIANTS IN CHROMOSOME DOMAINS
Given that a great number of genes in CDD modules appeared to
originate from restricted chromosome regions, we tested whether
the latter had particular physical properties. We thus examined
the abundance of either indels or polymorphic SINEs in regions
surrounding the mQTL peaks of CDD modules (Figure 4). In
CDD modules, both indels and polymorphic SINEs were signif-
icantly more abundant in regions of 10 Mb on both sides of the
mQTL peaks than in regions surrounding either the mQTL peak
of non-CDD genetic modules or 500 random polymorphic SNPs
from across the genome. The abundance of these polymorphic
elements was distributed in a progressively decreasing gradient
fashion around a maximum that coincided with the mQTL of the
CDD module.

DISCUSSION
Previous studies that explored gene expression as intermediate
links between genomic markers and quantitative phenotype have
focused mostly on c3-eQTLs linked to single genes. In particu-
lar cases where the effects of single allelic variants were highly
penetrant, this approach has made it possible to identify allelic
gene variants that are causal to cardiovascular quantitative traits,
including (among others) cardiac LVM (36, 37), fatty acid and
glucose metabolism (38), hypertension (39), and dystrophic car-
diac calcifications (40). In the current study, the analysis lead to
the identification of not just one, but eight c3-eQTLs that all clus-
tered within the confidence interval of the Lvm1 QTL. Moreover,
co-variant analysis showed that that for all c3-eQTLs, their rela-
tion to the LVM phenotype was more causal than reactive. The
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FIGURE 4 | Profiles of abundance of structural variants (top graph) or
polymorphic SINEs (bottom graph) in three types of regions. The zero
Mb position corresponds: (1) for CDD modules (black) and non-CDD genetic
modules (red), to the peak of their mQTL; and (2) for random regions (gray),
to random SNPs. On right side, the bar graphs represent the mean values
of abundance of either structural variants or polymorphic SINEs in regions
of 20 Mb centered on the “zero Mb” position. For structural variants, the
p-value for the ANOVA test was 0.000327 (post hoc black vs. gray:
p < 0.0001). For polymorphic SINEs, the p-value for the ANOVA test was
4.41e−09 (post hoc black vs. red: P =5.7e−04; post hoc black vs. gray:
P =2.9e−09).

findings, despite the functional utility, did not make it possible to
prioritize any of the eight c3-eQTLs over the others as a possible
causal variant.

As an alternative to c3-eQTL analysis, we used WGCNA to
detect modules of inter-connected genes. Two out of 49 detected
modules correlated with LVM. The one with the best correlation
contained all eight c3-eQTLs near Lvm1, and was linked itself to
a mQTL whose profile matched that of Lvm1. Although previous
studies have reported on modules linking to a QTL overlapping
with the interval of a phenotypic QTL (15, 16), these studies did
not explain why a genetic determinant could lead to coordinate
changes in the expression of genes in the module. In the present
study, 27 gene co-expression modules showed linkage to one main
mQTL; among them, 21 modules had their mQTL on the same
chromosome that contributed more genes to the module. Since the
latter genes clustered within a small genetic interval, we considered
that they belonged to “CDD modules.” The two modules correlat-
ing with LVM corresponded to such CDD modules. More detailed
analysis showed that the most connected genes in the module were
in fact the ones originating from the chromosome domain. Within
these modules, the functional importance of coordinate regulation
was highlighted by the fact that, beyond their individual level of

expression, genes in the module correlated with LVM as a function
of their inter-connectivity.

In mouse RIS, we have previously reported on the existence of
chromosome domains that contain genes that could all be linked
as cis-eQTLs to one same locus within these domains, and were
thus named “cis-eQTL clusters” (18). These domains: (1) did not
correspond to either haplotype blocks nor to regions with differ-
ent recombination rates; (2) showed enrichment for some (but not
all) types of transposable elements; (3) corresponded to regions
(as reported in several ENCODE projects) showing enrichment
for binding sites to several transcription factors; and (4) contained
cis-eQTLs that showed much higher levels of co-expression than
control regions with similar gene density and haplotypic structure.
Further comparisons of the gene co-expression modules detected
by WGCNA with our previous study showed that 14 of 21 of the
CDD modules had an mQTL peak that coincided very closely
with the locus previously reported to link to cis-eQTL clusters.
Of note, the power of detection of cis-eQTLs in the AxA/BxA RIS
(and of phenotypic QTLs in our previous study) may be partly
limited by the fact that the panel comprised only 24 strains. How-
ever, WGCNA represents an approach that is very different from
cis-eQTL analysis, and it is striking to observe that both analyses
detected many of the same genomic regions. Despite the potential
limitation in power of the cis-eQTL analysis, the results thus sug-
gest that the genomic regions detected by the combined analyses
correspond to chromosome domains harboring particular fea-
tures. Moreover, the overlap between one of such chromosome
domains with a phenotypic QTL indicates that changes in expres-
sion level of genes within one of such domains may associate with
quantitative differences in a complex trait.

Only a minority of complex traits are expected to result from
situations where the effect of a single allelic variant is so penetrant
that it can explain a large portion of the variance of the trait (6, 41).
The current findings indicate a mechanism whereby genetic vari-
ants within chromosome domains may associate to phenotypic
changes via coordinate changes in the expression of several genes.
Of note, since recent sequencing studies in humans have shown
that membership of genes in co-regulated modules is predicted
not only by linear proximity, but also by proximity due to three-
dimensional chromosomal configuration (as detected by Hi-C
analyses) (42), it is possible the coordinate changes in gene expres-
sion result from chromatin modifications induced by the polymor-
phic structural variants in these domains. However, most (if not
all) currently available ENCODE data were obtained using only
single mouse strains: one needs to acquire additional data across
several strains to fully understand whether chromosome-domains
result from polymorphisms affecting binding of transcription
factors and/or remodeling of chromatin.

Beyond the mechanisms leading to coordinate changes in the
expression of genes within domains, one remaining challenge is
to understand how such changes may lead to quantitative differ-
ences in phenotypic complex traits. Although polymorphisms may
affect expression of several genes within chromosome domains, it
remains possible that only one of the genes whose expression is
affected is causally linked to the phenotype. However, currently
available information about genes with altered expression within
the chr13 domain is not sufficient to incriminate one of them as
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causative to increased LVM. As summarized in Table S5 in Supple-
mentary Material, six out of eight of them are poorly annotated
and have little known role or function, and only two of them (Ctsl
and Cdk20) have been reported in the literature for their potential
role in the heart. In our panel of RIS, mice carrying the A/J allele
at the chr13 locus have higher LVM than their counterparts carry-
ing the C57BL/6 allele. Although Ctsl has been reported as having
anti-hypertrophic activities in genetically modified mice (43, 44),
this effect is contrary to that observed in our RIS mice, as its
expression is increased in mice that carry the A/J allele and display
higher LVM. In contrast, increased expression of Cdk20 has been
reported to promote hypertrophy in cardiomyocytes (45); how-
ever, its expression in hearts from in mice that carry the A/J allele
is only 13% higher than in their counterparts carrying the C57BL/6
allele. Thus, a full understanding of how genes in the domain on
chr13 may regulate LVM will require additional functional studies
on the properties of each gene. Alternatively, linkage of the locus to
the phenotype may implicate more than just one gene. In support
of this possibility, recent studies using zinc-finger nuclease muta-
genesis of six consecutive genes have shown that multiple genes
co-segregating at a single locus in a hypertension GWAS may all
have properties compatible with a blood pressure regulating role
(46). Regardless of whether the causative mechanism implicates
one or more genes, our findings suggest that candidate genes to
consider for complex traits should not be restricted to just those
genes in closest proximity to associated SNPs or linkage peaks, but
should include inter-connected genes as well.
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