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Abstract 

New developments in single cell genomics have transformed developmental biology 
in recent years by enabling systematic analysis of embryonic cell types and 
differentiation trajectories. Ongoing efforts in experimental and computational 
method development aim to reveal gene-regulatory mechanisms and to provide 
additional spatio-temporal information about developmental cell fate decisions. Here, 
we discuss recent technological developments as well as biological applications of 
single cell genomics, with a particular focus on analysis of developmental cell fate 
decisions. While the approaches described here are generally applicable to a broad 
range of model systems, we focus our discussion on applications in zebrafish, which 
has proven to be a particularly powerful model organism for establishing novel 
methods in single-cell genomics. 
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Highlights 

• Single-cell transcriptomics allows systematic identification of cell types and
the differentiation trajectories that produce them.

• The zebrafish has served as a powerful model organism for establishing novel
methods in single-cell genomics.

• Spatial information can be added to single-cell transcriptomics data by three
different approaches: Computational image reconstruction, high-throughput
fluorescent in situ hybridization, and spatial barcoding of tissue sections prior
to sequencing analysis.

• Explicit temporal information can be added by high-throughput lineage tracing
based on CRISPR/Cas9 induced lineage barcodes.
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Main text 

One of the main outcomes of embryonic development is the acquisition of cell identity 
and function. Identifying and categorizing the many cell types present in an organism 
has been a slow and laborious process in the past. Single-cell genomics technologies 
constitute an important advancement for the characterization of the cellular 
heterogeneity in a sample by allowing identification of transcriptomic and chromatin 
accessibility profiles in thousands of single cells. Importantly, these approaches not 
only enable systematic identification of embryonic cell types, but they also yield insight 
into developmental differentiation trajectories, lineage trees, and regulatory 
mechanisms 1–3. Single cell transcriptomics is by far the most advanced of the single 
cell omics technologies and will hence take up the largest part of this review. The 
zebrafish has been one of the protagonist models in the emergence of the single-cell 
technologies. In this review, we summarize the applications used to this day in this 
model organism.  

Technologies for single-cell transcriptomics 

Single-cell genomics experiments typically start with dissociation of the tissue of 
interest into a single cell solution, and the quality of the single cell suspension is a 
decisive factor for the success of the downstream experiment. Incomplete 
dissociation, loss of specific cell types, and triggering of cellular stress response are 
typical challenges in single-cell genomics experiments. The use of a psychrophilic 
protease during this critical step has been reported to alleviate possible artifacts 4. 
Once dissociation has been optimized, individual cells need to be processed into 
sequencing libraries. The two most widely used experimental approaches are plate-
based processing using liquid handling robotics and droplet microfluidics. Most early 
studies in single-cell transcriptomics were plate-based, i.e. cells are sorted into and 
lysed in individual wells of a microwell plate 5,6. Droplet-based methods, in which cell 
lysis and reverse transcription happen in nanoliter-sized droplets containing reagents 
and cellular barcodes, have gained prominence in recent years due to their higher 
throughput and lower cost per cell 7,8. However, both approaches have distinct 
advantages and disadvantages: while plate-based methods are limited to lower 
numbers of cells, they typically provide higher quality data and full transcript coverage, 
while current droplet microfluidics approaches capture only 3’ or 5’ tags of transcripts. 

Understanding cell fate decisions by single-cell genomics 

Single cell RNA sequencing (scRNA-seq) has emerged as a powerful method for 
systematic identification of cell types 9: single cell profiles can be clustered by 
transcriptome similarity, and the identified clusters correspond to the different cell 
types in the sample. However, clustering results may differ depending on the algorithm 
and the metrics that used, which leads to a certain level of ambiguity in cell type 
identification. Characterizing cell fate dynamics during embryogenesis is an ongoing 
endeavor. By sampling embryos at different stages, and by ordering single cell 
transcriptomic profiles by similarity, a systematic landscape of developmental 
differentiation trajectories can be reconstructed (Figure 1A) 10,11. In this way, the 
transcriptional changes that cells undergo during differentiation can be measured in a 



systematic and continuous way, which may lead to identification of marker genes for 
previously uncharacterized intermediate states. By tracing back the earliest origin of 
an embryonic structure, the likely progenitors of this cell type and the branch points of 
cell fate decisions can be determined 10. 

 
Identifying the gene regulatory mechanisms that underlie cell fate decisions is 

one of the major questions in developmental biology, and single-cell genomics data is 
a powerful basis for computational prediction of regulatory networks. However, 
inference of gene regulatory networks remains a challenging task, and methods based 
purely on transcriptomic data have only moderate performance 12. Therefore, 
approaches that include transcription factor binding information or open chromatin 
data 13,14 are required for reliable identification of the gene regulatory networks that 
underlie developmental cell fate decisions.  
 
 Beyond analysis of wildtype animals, single-cell genomics also provides the 
means to better understand mutant phenotypes by comparing their cell state 
composition to wild-type in a systematic manner. Interestingly, no emergence of new 
transcriptomic profiles in the mutant cells was observed in Farrell et al. 10 and Wagner 
et al. 11, only the cell state frequencies changed and some of them were enriched, 
indicating that cell fates stay canalized in mutant individuals. However, it is likely that 
in most cases, perturbation leads not only to differences in cell type composition, but 
also to transcriptional changes within cell types (i.e. cells move to a different cell state). 
Detection of activated cell states can be challenging, since transcriptional changes 
may be too subtle to be detected, or they may be so massive that the cell type of origin 
is unclear. We anticipate that establishing new experimental and computational 
methods for identification of activated cell states in e.g. disease conditions will be a 
major focus of method development in single-cell genomics in the next few years. 
Another important finding from these studies is the the observation that independent 
lineages can give rise to cells exhibiting the same transcriptomic profile 11. This 
convergence is a phenomenon also observed in the Caenorhabditis elegans atlas 15. 
 
 While methods for pseudo-temporal ordering of single cell transcriptomics 
efficiently orient cells along continuous trajectories, the directionality of the 
differentiation process cannot be inferred from this data. However, the recently 
developed method “RNA velocity” 16 aims to determine the direction of cells in gene 
expression space based on unspliced vs. spliced (i.e. “new” vs “old”) transcript 
molecules. Another emerging method for looking into the immediate future of cells is 
RNA metabolic labeling 17,18 which allows separation of old from new transcripts by 
experimentally introducing labels into RNA molecules during a defined time window. 
While single-cell RNA labeling is so far mostly based on cultured cells, it is likely that 
the method will be established in model organisms, including the zebrafish, in the 
future. RNA labeling coupled to single-cell readout has great potential in improving 
reconstruction of differentiation trajectories 19 as well as in regulatory network 
inference 20. 
 
 In summary, single-cell genomics has to potential to systematically reveal the 
differentiation trajectories as well as the gene regulatory mechanisms that underlie 
embryonic development. Furthermore, these approaches constitute a powerful 
framework for dissecting the effects of perturbations based on measurement of cell 
type and cell state changes. The zebrafish has served as an excellent model for 



establishing experimental and computational approaches due to its experimental 
accessibility coupled to an extensive literature on mechanisms of cell fate decisions. 
As these technologies mature, we anticipate that the zebrafish will become a favorite 
model organism for studying developmental variability and mechanisms of robustness 
using single-cell approaches. 
 
 
Lineage tracing 
 
While pseudo-temporal ordering is a great approach for analyzing cell differentiation, 
it is important to consider its limitations: 1) Continuous sampling of time points is 
required, which makes it very challenging and costly to identify the embryonic origin 
of cells that are generated at later stages. 2) The approach is based on the assumption 
that differentiation trajectories are smooth (no sudden “jumps” in gene expression 
space) and that trajectories do not cross each other. 3) In complex systems, it is 
important to properly adjust computational parameters in order to match the 
reconstruction outcome to known developmental principles. While this works well in 
well-characterized systems like early development, the approach may be limited in 
situations where less ground-truth information is available. In many cases it is 
therefore important to directly measure the lineage origin of individual cells in addition 
to the transcriptome. 
 

The tracking of the cellular relations during embryogenesis is one of the most 
important questions in developmental biology to this day. The superbly detailed 
description of the lineage tree in Caenorhabditis elegans 21 is difficult to match in 
vertebrates, due to the higher cell numbers and complexity of cellular behaviors, which 
makes it practically impossible to measure lineage trees by microscopy over extended 
periods of time: cell labeling has been used in zebrafish to establish fate maps, but 
the resolution and the information per sample are limited 22. The use of reporters 
activated by recombination has offered substantial improvement in precision and 
efficiency compared to earlier approaches, but remains limited by the amount of 
possible color combinations 23. Furthermore, these approaches cannot be directly 
combined with cell type identification by single cell transcriptomics. 

 
Lineage reconstruction based on genome recording has proven to be an 

effective way to surpass these technical issues. Recording can be achieved by 
transposon-based barcoding 11 during early development, lentiviral delivery of 
barcodes 24 or by using CRISPR/Cas9-mediated genome editing. In the latter, 
insertions and deletions (indels) are generated at target sites in either reporter genes 
25,26, engineered recording cassettes 27,28, or endogenous loci (using a list of selected 
suitable genomic sites 29). These changes in the sequence can be used as cellular 
‘barcodes’ that are stably transmitted to daughter cells upon cell division, and hence 
give information about cell identify that can be retrieved at a later point by sequencing 
and the lineage relations between individual cells can then be established by 
computational methods (Figure 1B). Furthermore, since the target ‘barcodes’ used in 
these systems are expressed as messenger RNA (mRNA), these methods offer the 
possibility of simultaneously obtaining the transcriptomic profile, and hence the cell 
type, of individual cells. Typically, the targeted sequences are amplified by PCR from 
the whole transcriptome library in order to generate a barcode library that can be 
sequenced very deeply. In practice, there are several important factors to consider 



when designing a CRISPR/Cas9 lineage recording experiment: 1) The design of the 
target sequences needs to take gene coverage bias into account. Barcodes are 
typically created at the 3’ end of transcripts, since many experimental methods in 
single-cell transcriptomics have a 3’ bias. 2) Dropouts lead to loss of information, i.e. 
not all barcode sequences are detected. Computational analysis strategies need to be 
optimized to deal with sparse detection. 3) Indels might affect the degradation of a 
transcript, and depending on the promoter used there may be cell type dependent 
differences in detection efficiency. Careful data analysis is need to detect such effects, 
which otherwise might lead to artefacts in lineage tree reconstruction. 

 
A limitation for these approaches is that in order to have a complete picture of 

the lineage trees, new ‘barcodes’ should be generated every cell division and the 
information from all the cells should be captured. So far, this has not been possible 
with current designs of genomic recording systems, since the diversity of possible 
barcodes and the number of target sites per cell are limiting factors. By computer 
simulations, assuming ideal conditions, it has been calculated that between 30-100 
targets would be needed in order to reconstruct a lineage for a zebrafish embryo with 
65,000 cells (pharyngula stage) with good accuracy 30. Furthermore, the temporal 
control of lineage recording is suboptimal in most published approaches, since it is 
determined by injection of the reagent into the zygote or driven by stimuli such as 
heatshock, both of which provide only a small window of activity. However, the 
simoultaneous use of different CRISPR/Cas and anti-CRISPRs systems, activated by 
a different set of promoters, might provide a good strategy to regulate the timing and 
increase the complexity of the lineage recording 31.  

 
Despite these remaining limitations, methods for lineage recording have great 

potential for improving our understanding of cell fate decisions. For instance, a recent 
study of haematopoiesis combining lineage barcodes and scRNA-seq readout 
revealed clonal fate biases not detectable by single cell transcriptomics 32, suggesting 
that scRNA-seq alone is not sufficient for determining when a cell takes a decision. 
Furthermore, CRISPR lineage tracing has recently been used to measure the origin 
of transient cell types that are generated during zebrafish heart regeneration 33 and to 
reconstruct metastatic dissemination of cancer 34. In summary, we expect that the 
combination of single-cell RNA-seq with lineage recording will develop into a general 
approach for identifying not only the origin of cell types, but also the time point of cell 
fate decisions. 
 
 



 
 
Figure 1. Cell fate dynamics and lineage. (A) A cell atlas of early development: 
shield (6 hpf, blue), Bud (10 hpf, green) and 10-somite (14 hpf, red) embryos are 
dissociated into a single cell suspension and the transcriptomics profiles are used to 
build cell fate trajectories for some embryonic structures. (B) Workflow of a linage 
tracing experiment: a 1-cell stage embryo is injected with Cas9/gRNA to introduce 
indels in specific loci of the genome during the first cell divisions (colored lines). These 
cellular barcodes will give information about the history of each cell to construct a 
lineage tree.  
 
 
Spatial transcriptomics 
 
An obvious requirement for single cell genomics is the dissociation of the sample, and 
hence, spatial information is lost. However, a remedy to this barrier is to map individual 
cell transcriptomic profiles to an approximate location by computationally inferring the 
position in the embryo using known landmark genes obtained by whole-mount in situ 
hybridization as reference35. As a proof of principle, the authors of this study used a 
two-dimensional space for 50% epiboly stage embryos (anteroposterior/dorsoventral, 
since the right-left axis has not been established and genes are expressed 
homogenously in the depth axis) to successfully map the transcriptomic profile of the 
individual cells (Figure 2A). Another method (novoSpaRc) reported to use fewer 
landmark genes to reconstruct the expression patterns from the same data set by 
matching similarities in the transcriptomic profile to the physical neighborhood in a 
virtual embryonic space 36. Even a coarse de novo reconstruction (with no landmark 
genes) for a two-dimensional space is possible, as shown for an example using the 
Drosophila embryo. 
 

However, for samples with a more complex or more variable spatial 
architecture, methods that provide direct experimental measurements of spatial 
information are required. A variety of technologies have been developed in recent 
years, ranging from direct in-situ sequencing 37 to microdissection of tissue (Figure 
2B) 38. Other methods add molecular barcodes encoding spatial information directly in 
tissue slices. These approaches are either based on arrays of barcoded polyT primers 



spotted on a surface 39 or on barcoded beads that are positioned on a surface 40. 
Another class of methods uses sequential rounds of single-molecule FISH to detect 
transcript molecules by microscopy. While these methods were previous limited to low 
numbers of genes, transcriptome-wide transcription imaging was recently reported 41. 
Importantly, imaging-based techniques have much higher transcript recovery rates 
than sequencing based approaches, as they are based on probe hybridization rather 
than on the relatively inefficient reverse transcription reaction. Which approach is most 
suitable for a given biological question depends on the required spatial resolution, the 
necessary transcript recovery rate, and on the expected complexity of the spatial 
patterns. Furthermore, approaches based on landmark genes are suitable for 
reproducible samples like embryos, but are less useful for variable structures like 
tumors. Finally, these methods are vastly different in experimental complexity. 

 
The different approaches in spatially-resolved transcriptomics allow us to 

identify the location of cell types in the tissue and to analyze spatial tissue remodeling 
in disease conditions, which is important for a large range of questions. However, as 
the technologies for spatial transcriptomics are maturing, applications beyond 
descriptive spatial atlases are becoming possible. In particular, we anticipate that 
transcriptome-wide spatial methods will soon allow detailed insights into cell-cell 
communication, by enabling a systematic analysis of ligand-receptor interactions 
between pairs of cells that are in direct physical contact. 
 
Remaining challenges and emerging technologies 
 
Analysis at the single-cell level has emerged as a powerful tool to address 
fundamental biological questions. However, being a relatively new technique, it is 
understandable that there is still a lot of room for improvement. One prevalent issue 
with scRNA-seq is the low transcript detection efficiency: typically, only around 1% of 
the cellular mRNA are recovered in a large-scale scRNA-seq experiment, which leads 
to considerable sampling noise 42. While, state-of-the-art plate-based methods can 
have detection efficiencies that are one order of magnitude higher 43, hybridization-
based approaches are the method of choice if precise quantification of lowly 
expressed genes is required. However, it is important to note that, to some degree, 
low transcript recovery can be compensated by analyzing large numbers of cells by 
scRNA-seq. For example, a large single-cell atlas of 2 million mouse embryo cells 
offers superb cell type resolution despite very sparse transcript coverage 44. 
 

Some notable discrepancies in the Ensembl and RefSeq zebrafish annotations 
have been described and the source is an incomplete or lack of annotation on the 3’ 
untranslated region (UTR) of many genes: 20% and 6%, respectively 45. Since scRNA-
seq usually relies on 3’ end-sequencing, this is a relevant issue to have in mind. The 
authors of this work generate a more complete zebrafish transcriptome annotation with 
higher 3’ UTR coverage using existing bulk RNA-seq datasets at several stages of 
embryogenesis. They demonstrate that this new annotation helps identify more 
clusters and capture information of more cells in scRNA-seq datasets when compared 
to the Ensembl annotation.  

 



 
 
Figure 2. Spatial transcriptomics in the zebrafish embryo. (A) A 50% epiboly stage 
embryo is dissociated and the transcriptomic profile of the individual cells is compared 
to known gene expression patterns to map their approximate location. (B) Tomo-seq: 
embryos from the same stage are sliced along the three main axis and the individual 
slices are sequenced. The information can be used to reconstruct the spatial pattern 
of any gene, e.g. the dorsally expressed goosecoid (gsc). 

 
 
 Except for a few cases, cell type annotation after cluster identification remains 
a challenging task: The differentially expressed genes in detected cell type clusters 
often do not correspond to established cell type marker genes, partially because the 
low transcript detection rate impedes capture of informative transcription factors, as 
their expression is generally lower than that of structural genes. Furthermore, the 
identification of new cell types is hindered by the ambiguous definition of “cell type” 
versus “cell state”. Relying on the activity of transcription factors or gene regulatory 
networks more than the whole set of differentially expressed genes to identify cell 
types might offer an alternative to approach this issue 32,13. But an evolutionary 
definition and characterization of cell types would help in this matter 46: just like the 
sequencing of many genomes allowed the identification of orthologous genes, finding 
the same cell types in closely related species would provide a good validation for their 
existence, especially for rare cell types, and would provide a more precise blueprint of 
their transcriptomic profile. Recent efforts in this direction comparing the cellular 
composition of the hypothalamus of the zebrafish to the cavefish Mexican tetra have 
reported interesting findings on how orthologous cell types can exhibit a different 
regulatory network of effector genes, such as neuropeptides 47. 
 

While scRNA-seq is by far the most advanced technology in single cell 
genomics, measurement of other parameters is rapidly catching up. Besides DNA 
methylation and protein detection, single cell open chromatin profiling is becoming 
particularly widely used. Single cell ATAC-seq, a transposase-based method for open 
chromatin profiling, can now routinely be performed in thousands of cells due to new 
protocols for combinatorial barcoding of single cells as well as droplet based methods 
48. Applications include atlases of chromatin accessibility in mouse 49 and in drosophila 



development 50. Recently, scATAC-seq was applied to zebrafish embryos at 24 hours 
post fertilization 51. This data can also be directly used for transgenic reporter gene 
design by allowing a more rational choice of which genomic fragment to use to drive 
expression of fluorescent reports. 

 
Conclusions 
 
The emergence and adoption of single-cell technologies by many laboratories around 
the world in the last few years has been a very rapid process. Within a few years, 
single cell genomics, and in particular single cell transcriptomics, has turned from a 
highly specialized method into a widespread approach. As the cost of single-cell 
sequencing decreases, and as computational analysis tools become easier to use, 
single-cell genomics will become even more widely used. We anticipate that future 
developments regarding inclusion of spatial and temporal information in single cell 
genomics will make this approach even more attractive for studying developmental 
cell fate decisions, and the zebrafish will certainly continue to have a prominent place 
in the ongoing single-cell revolution.  
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