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Crowdsourcing digital health measures to predict Parkinson’s
disease severity: the Parkinson’s Disease Digital Biomarker
DREAM Challenge
Solveig K. Sieberts 1✉, Jennifer Schaff2, Marlena Duda3, Bálint Ármin Pataki4, Ming Sun5, Phil Snyder 1, Jean-Francois Daneault6,7,
Federico Parisi6,8, Gianluca Costante6,8, Udi Rubin9, Peter Banda10, Yooree Chae1, Elias Chaibub Neto1, E. Ray Dorsey11, Zafer Aydın12,
Aipeng Chen13, Laura L. Elo 14, Carlos Espino9, Enrico Glaab 10, Ethan Goan15, Fatemeh Noushin Golabchi6, Yasin Görmez12,
Maria K. Jaakkola14,16, Jitendra Jonnagaddala 17,18, Riku Klén14, Dongmei Li19, Christian McDaniel20,21, Dimitri Perrin 22,
Thanneer M. Perumal1, Nastaran Mohammadian Rad23,24,25, Erin Rainaldi 26, Stefano Sapienza6, Patrick Schwab27, Nikolai Shokhirev9,
Mikko S. Venäläinen 14, Gloria Vergara-Diaz6, Yuqian Zhang 28, the Parkinson’s Disease Digital Biomarker Challenge Consortium*,
Yuanjia Wang29, Yuanfang Guan 3, Daniela Brunner9,30, Paolo Bonato 6,8, Lara M. Mangravite 1 and Larsson Omberg 1✉

Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the
case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital
biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased
evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from
accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms:
tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved
predictive performance for PD status (best AUROC= 0.87), as well as tremor- (best AUPR= 0.75), dyskinesia- (best AUPR= 0.48) and
bradykinesia-severity (best AUPR= 0.95).
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INTRODUCTION
Digital measurements provided through clinical and consumer
devices such as wearables, phones, and smartwatches are
providing opportunities to monitor the disease, treatment effects,
and the daily lived experience of disease through the collection of
real-world evidence1. While most efforts to incorporate these
types of data have been in the context of exploratory and
feasibility studies, we are increasingly seeing evidence of their use
as digital endpoints in clinical trials2. Interpretation of the data
streams from these devices into sensitive ‘digital biomarkers’ and
endpoints requires the development of sophisticated analytical
algorithms, and vetting these algorithms requires extensive
validation against quality datasets, using unbiased evaluation
methods. Here we describe the use of an unbiased approach to
benchmark multiple approaches for deriving clinically relevant
features of disease through crowdsourcing and independent
evaluation.

One area of emerging digital biomarker development is
Parkinson’s disease (PD), a neurodegenerative disorder that
conspicuously affects motor function, along with other domains
such as cognition, mood, and sleep. Classic motor symptoms of
the disease include tremors, slowness of movement (bradykine-
sia), posture and gait perturbations, impaired coordination and
muscle rigidity, which can affect a patients’ ability to function in
daily life. Parkinson’s symptoms usually start gradually but get
more severe and usually lead to medical intervention to relieve
symptoms. As PD is exemplified by low brain dopamine levels, one
of the primary pharmacologic treatments for PD involves the use
of synthetic dopamine or dopamine agonists, such as levodopa.
Some patients exhibit motor side effects of medication, chiefly
involuntary movements, known as dyskinesia, which themselves
can also be disruptive to patients. The strong motor symptom
component of the disease and treatment side-effects makes PD
ideally suited to monitoring with motion sensors such as
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accelerometers and gyroscopes to understand the frequency and
severity of these symptoms in the patients’ daily life in order to
optimally treat them. Multiple approaches have leveraged
accelerometer and gyroscope data from wearable devices for
the development of digital biomarkers in PD (see for example3,4).
However, they have yet to be translated into clinical care as
outcome measures or as primary biomarkers in clinical trials.
The primary barrier to the incorporation of digital biomarkers in

clinical or regulatory settings, is the (deservedly) high bar for
validation of these complex algorithms, to show both the accuracy
and optimality of the measure. Unfortunately, validation work is
both expensive and difficult to perform, leading to often
underpowered validation studies evaluated by a single research
group and, hence, subject to the self-assessment trap5. Pre-
competitive efforts are underway such as Critical Path’s Patient
Reported Outcome (PRO) Consortium6 and the open wearables
initiative (OWI). Here we describe an open initiative to both
competitively and collaboratively evaluate analytical approaches
for the estimation of PD severity in an unbiased manner.
The Parkinson’s Disease Digital Biomarker (PDDB) DREAM

Challenge (https://www.synapse.org/DigitalBiomarkerChallenge)
benchmarked crowd-sourced methods of processing sensor data
(i.e., feature extraction), which can be used in the development of
digital biomarkers that are diagnostic of disease or can be used to
assess symptom severity. In short, the PDDB Challenge partici-
pants were provided with training data, which included sensor
data, as well as disease status or symptom severity labels. They
were also provided a separate test set, which contained sensor
data only. Given raw sensor data from two studies, participating
teams engineered features from the sensor data that were
evaluated on their ability to predict disease labels in models built
using an ensemble-based predictive modeling pipeline.
The challenge leveraged two different datasets. In order to

assess the ability to predict whether an individual has PD, we used
mPower7, a remote smartphone-based study. While a portion of
the mPower dataset had previously been released publicly, a
second portion of the data remained private to the challenge
organizers. This allowed challenge evaluations to be performed in
a blinded, unbiased manner. In this study, accelerometer and
gyroscope data from a gait and balance (walking/standing) test in
4799 individuals (76,039 total measures) were provided to
participants in order to engineer features to discriminate patients
with PD from controls.
In order to assess the ability to predict symptom severity, we

used the Levodopa (L-dopa) Response Study8,9, a multi-wearable
clinical study that included symptom severity assessment by
trained clinicians. This dataset had not been shared publicly at the
time of the challenge. In this study, accelerometer recordings from
GENEActiv and Pebble watches were captured on two separate
days from 25 patients exhibiting motor fluctuations10 (i.e., the side
effects and return of symptoms after administration of levodopa),
as they were evaluated for symptom severity during the execution
of short, 30 s, motor tasks designed to evaluate tremor,
bradykinesia, and dyskinesia. Data collection during the battery
of tasks was repeated six to eight times over the course of each
day in 30 min blocks, resulting in 3–4 h motor activity profiles
reflecting changes in symptom severity. In total 8239 evaluations
were collected across three different PD symptoms.

RESULTS
The Parkinson’s Disease Digital Biomarker DREAM Challenge
We developed four sub-challenges using the two datasets; one
using data from the mPower Study and three using data from the
L-dopa Response Study. Using the mPower data, we sought to
determine whether mobile sensor data from a walking/standing
test could be used to predict PD status (based on a professional

diagnosis as self-reported by the study subjects) relative to age-
matched controls from the mPower cohort (sub-challenge 1 (SC1))
(Supplementary Table 1). The three remaining sub-challenges
used the L-dopa data to predict symptom severity as measured
by: active limb tremor severity (0–4 range) using mobile sensor
data from six bilateral upper-limb activities (sub-challenge 2.1
(SC2.1)); resting upper-limb dyskinesia (presence/absence) using
bilateral measurements of the resting limb while patients were
performing tasks with the alternate arm (sub-challenge 2.2
(SC2.2)); and presence/absence of active limb bradykinesia using
data from five bilateral upper-limb activities (sub-challenge 2.3
(SC2.3)). Participants were asked to extract features from the
mobile sensor data, which were scored using a standard set of
algorithms for their ability to predict the disease or symptom
severity outcome (Fig. 1).
For SC1, we received 36 submissions from 20 unique teams,

which were scored using the area under the ROC curve (AUROC)
(see methods). For comparison, we also fit a ‘demographic’
baseline model, which included only age and gender. Of the
36 submissions, while 14 models scored better than the baseline
model (AUROC 0.627), only 2 were statistically significantly
better (unadjusted p-value ≤ 0.05), though this is likely due to
the relatively small size of the test set used to evaluate
the models. The best model achieved an AUROC score of
0.868 (Fig. 2a).
For SC2.1-SC2.3, we received 35 submissions from 21 unique

teams, 37 submissions from 22 unique teams, and 39 submissions
from 23 unique teams, respectively (Fig. 2b–d). Due to the
imbalance in severity classes, these sub-challenges were scored
using the area under the precision-recall curve (AUPR). For the
prediction of tremor severity (SC2.1), 16 submissions significantly
outperformed the baseline model developed using only meta-
data (specifically, device information, patient id, session number,
site, task type, visit number, and side device was worn on) at an
unadjusted p-value ≤ 0.05. The top-performing submission
achieved an AUPR of 0.750 (null expectation 0.432). For the
prediction of dyskinesia (SC2.2), eight submissions significantly
outperformed the baseline model. The top-performing submission
achieved an AUPR of 0.477 (null expectation 0.195). For the
prediction of bradykinesia (SC2.3), 22 submissions significantly
outperformed the baseline model. The top-performing submission
achieved an AUPR of 0.950 (null expectation 0.266). While this
score is impressive, it is important to note that in this case the
baseline model was also highly predictive (AUPR= 0.813).

Participant approaches
The top-performing team in SC1 used a deep learning model with
data augmentation to avoid overfitting (see “Methods” for details),
and four of the top five models submitted to this sub-challenge
employed deep learning models. In contrast, each of the winning
methods for SC2.1-SC2.3 used signal processing approaches (see
“Methods”). While there are differences in the data sets used for
the sub-challenges (e.g., size), which could contribute to
differences in which type of approach is ultimately most
successful, we surveyed the landscape of approaches taken to
see if there was an overall trend relating approaches and better
performance. Our assessment, which included aspects of data
used (e.g., outbound walk, inbound walk, and rest for the mPower
data), sensor data used (e.g., accelerometer, pedometer, or
gyroscope), use of pre- and post-data processing, as well as the
type of method used to generate features (e.g., neural networks,
statistical-, spectral- or energy-based methods), found no methods
or approaches which were significantly associated with perfor-
mance in any sub-challenge. This lack of statistical significance
could be attributed to the large overlap in features, activities, and
sensors for individual submissions in that most teams used a
combination of the different methods. We also clustered
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submissions by the similarity of their overall approaches based on
the aspects surveyed. While we found four distinct clusters for
each sub-challenge, no clusters associated with better perfor-
mance in either sub-challenge (Supplementary Fig. 1).

Analysis of individual features
We then turned our focus to the collection of features submitted
by participants to determine which individual features were best
associated with disease status (SC1) or symptom severity

Fig. 1 Parkinson’s Disease Digital Biomarker DREAM Challenge overview. For each sub-challenge, data were split into training and test
portions. Participants were provided with the mobile sensor data for both the training and test portions, along with the demographic (SC1
only) and meta-data, and diagnosis or severity labels for the training portion of the data only. Participants were asked to derive features from
the mobile sensor data for both the training and test portions of the data. These features were then used to train a classifier, using a standard
suite of algorithms, to predict disease status or symptom severity, and predict labels in the testing portion of the data. Submissions were
scored based on the accuracy of the resulting predictions.
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(SC2.1–2.3). For SC1, the 21 most associated individual features
were from the two submissions of the top-performing team
(which were ranked first and second among all submissions).
These 21 features were also individually more informative (higher
AUROC) than any of the other teams’ entire submissions
(Supplementary Fig. 2B). Among the runner-up submissions,
approximately half of the top-performing features were derived
using signal processing techniques (36 out of 78 top features, see
Supplementary Fig. 2A) with a substantial proportion specifically
derived from the return phase of the walk. Interestingly, the
performance of individual features in the runner-up submissions
did not always correspond to the final rank of the team. For
example, the best individual feature of the second-best perform-
ing team ranked 352 (out of 4546). In addition, a well-performing
individual feature did not guarantee good performance of the

submission (the best feature from runner-up submissions belongs
to a team with a ranking 22 out of 36).
We then performed a two-dimensional manifold projection and

clustered the individual features to better understand the similarity of
feature spaces across teams (Supplementary Fig. 3). One of the
expected observations is that the relation between features
associated with the same team and the cluster membership is
strongly significant (p-value~0, mean Chi-Square=8461 for t-
Distributed Stochastic Neighbor Embedding (t-SNE)11 and 5402 for
Multi-Dimensional Scaling (MDS)12 with k-means k> 2). This suggests
most of the teams had a tendency to design similar features such that
within-team distances were smaller than across-team distances (on
average 26% smaller for t-SNE and 16% smaller for MDS projections).
We also found that cluster membership was significantly associated
with submission performance (mean p-value= 1.55E-11 for t-SNE
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and 1.11E-26 for MDS with k-means k> 2). In other words, features
from highly performing submissions tended to cluster together. This
enabled us to identify several high-performance hot-spots. For
example, in Supplementary Fig. 3C a performance hot-spot is clearly
identifiable and contains 51% (respectively 39%) of the features from
the two best teams in SC1 (Yuanfang Guan and Marlena Duda, and
ethz-dreamers), both of which employed Convolutional Neural Net
(CNN) modeling. Interactive visualizations of the clusters are available
online at https://ada.parkinson.lu/pdChallenge/clusters.
For each of SC2.1–2.3, we found that the best performing

individual feature was not part of the respective sub-challenge
winning teams’ submission, and that these best performing
individual features were from submissions that have fewer
features (Supplementary Fig. 4B, D, F). For SC2.2, the individual
features were positively correlated with the overall submission
performance (Pearson correlation= 0.12, p-value= 1.5e–05),
however for SC2.1 and 2.3, a negative correlation was observed
(Pearson correlation=−0.22 and −0.08 for SC2.1 and SC2.3,
respectively, p-values= 1.8e−11 and 0.10). In general, individual
features with modest performance, when combined, achieved
better performance than feature sets with strong individual
features. For SC2.1 and SC2.3 (tremor and bradykinesia),
machine learning approaches showed higher performing
individual features than other methods, however, signal
processing-based methods showed better performing individual
features in SC2.2 which, in contrast to the other two, was
assessed on the resting limb (Supplementary Fig. 4A, C, E). We
also attempted to improve upon the best submissions by
searching among the space of submitted features for an optimal
set. Attempts to optimally select features from SC2.2 using
random forests or recursive feature elimination (RFE) resulted in
an AUPR of 0.38 and 0.35 and placing behind the top eight and
twelve individual submissions, respectively. An approach using
the top principal components (PCs) of the feature space, fared
slightly better, outperforming the best model in SC2.2 (AUPR=
0.504, above the top 5 feature submissions of 0.402–0.477), but
failing to outperform the top models in SC2.1 and SC2.3 (AUPR
= 0.674, below the top five submission scores for SC2.1; and
0.907 AUPR, within the range of the top 5 feature submissions of
0.903–0.950 for SC2.3).

Age, gender, and medication effects in mPower
Because rich covariates were available in the mPower data set, we
sought to explore the prediction space created by the top
submissions, in order to identify whether we could discern any
patterns with respect to available covariates or identify any
indication that these models could discern disease severity or
medication effects (Supplementary Fig. 5). To visualize this
complex space we employed topological data analysis (TDA)13

of the top SC1 submissions, to explore the grouping of subjects,
firstly based on the fraction of cases with presence or absence of
PD. The algorithm outputs a topological representation of the data
in network form (see “Methods”) that maintains the local
relationship represented within the data. Each node in the
network represents a closely related group of samples (indivi-
duals) where edges connect nodes that share at least one sample.
Next, we used TDA clustering to explore whether the top models
showed any ability to discern symptom severity, as possibly
captured by medication status (Supplementary Fig. 6). Specifically,
we sought to identify whether PD patients ‘on-meds’ (right after
taking medication) are more similar to controls as compared to
patients who were ‘off-meds’ (right before taking medication or
not taking at all). To this end, we created a topological
representation for both cases, treating on-med and off-med states
separately for each individual and comparing each case with the
controls. Here we considered only subjects with both on-meds
and off-meds sessions, to ensure the comparison was between the

same population of subjects, and using only three of the top six
submissions (ethz-dreamers 1, ethz-dreamers 2, and vmoroz),
whose features values varied between sessions for each individual.
We observed no differences in the on-meds versus off-meds TDA
networks. This was consistent with the statistical analysis which
showed no significant difference in the predicted PD status for
patients who were on-meds versus off-meds at the time they
performed their walking/balance test for any of the top models,
even among patients who have previously been shown to have
motor fluctuations14,15.
We then explored whether the ability of the predictive models

to correctly predict PD status is influenced by factors associated
with the study participants’ demographics, such as their sex, age,
or the total number of walking activities they performed. We
evaluated the relative performance of the top feature sets when
applied to specific subsets of the test data. When comparing the
predictive models’ performances in female subjects and male
subjects aged 57 or older, we found that the predictive models’
were on average more accurate in classifying female subjects than
male subjects with an average increase AUROC of 0.17 (paired t-
test p-value= 1.4e−4) across the top 14 models (i.e., those scoring
strictly better than the model using only demographic data). We
note that the magnitude of the relative change is likely driven by
the class balance differences between male and female subjects in
the test set. In particular, a larger fraction of the female subjects
aged 57 or older had a prior professional PD diagnosis than the
male subjects. 80% of female subjects aged 57 or older (n= 23)
had PD, and 64% of male subjects aged 57 or older (n= 66). And
indeed, when compared to the demographic model, several of the
top submissions are actually performing worse than the demo-
graphic model in the female subjects, while almost all are
outperforming the demographic model in the male subjects
(Supplementary Fig. 7). Generally, it appears that mobile sensor
features are contributing more to prediction accuracy in male
subjects than female subjects.
We also compared the performance of the top 14 feature sets

when applied to subjects in various age groups, and found that
the models performed similarly across age groups (Supplementary
Fig. 7). However, in comparison to the demographic model, the
top submissions perform relatively better in younger age groups
(57–65) than in older age groups (65 and up), and in particular, the
demographic model outperforms all of the top submissions in the
highest age bracket (75 and up). This implies that the mobile
features do not contribute and actually add noise in the older age
brackets. Of note, the winning model by Yuanfang Guan and
Marlena Duda performed well across most age and gender
subgroups, but performed especially poorly in the oldest
subgroup, which has the fewest samples.
To assess whether the total number of tasks performed by a

subject had an impact on predictive performance, we attempted
to compare subjects that had performed more tasks with those
that had performed fewer. However, we found that in the mPower
dataset the number of walking activities performed was predictive
in itself, i.e., PD cases on average performed more tasks than the
corresponding controls. We could therefore not conclusively
determine whether having more data from walking activities on
a subject increased the performance of the predictive models,
though, related work has shown that repeatedly performed
smartphone activities can capture symptom fluctuations in
patients3.

Task performance across L-dopa sub-challenges
While the L-dopa data set had a small number of patients, and
thus was not powered to answer questions about the models’
accuracy across demographic classes, the designed experiment
allowed us to examine the predictive accuracy of the different
tasks performed in the L-dopa data to understand which tasks

S.K. Sieberts et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021)    53 

https://ada.parkinson.lu/pdChallenge/clusters


showed the best accuracy with respect to predicting clinical
severity. We scored each submission separately by task applying
the same model fitting and scoring strategies used on the
complete data set. For the prediction of tremor (SC2.1) and
bradykinesia (SC2.3), the different tasks showed markedly different
accuracy as measured by improvement in AUPR over null
expectation (Supplementary Fig. 8). We observed statistically
significant differences in improvement over the expected value for
tremor and bradykinesia (Supplementary Tables 3–4). For tremor,
activities of everyday living, such as ‘folding laundry’ and
‘organizing papers’, perform better than UPDRS-based tasks such
as ‘finger-to-nose’ and ‘alternating hand movements’ (Supple-
mentary Fig. 8, Supplementary Table 3), for which the baseline
model outperformed participant submissions in almost all cases.
While the ‘assembling nuts and bolts’ task showed the highest
improvement over the null expectation, the baseline model also
performed well, outperforming a substantial proportion of the
submissions. For bradykinesia, the expected AUPR varied widely
(from 0.038 for ‘pouring water’ to 0.726 for ‘alternating hand
movements’). For most tasks, the participant submissions out-
performed the baseline model, except in the case of the
‘alternating hand movements task’. For dyskinesia, there was no
statistical difference between ‘finger-to-nose’ or ‘alternating hand
movements’, but since these tasks were assessed on the resting
limb, it is to be expected that this is not affected by the task being
performed on the active limb.

DISCUSSION
Given the widespread availability of wearable sensors, there is
significant interest in the development of digital biomarkers and
measures derived from these data with applications ranging from
their use as alternative outcomes of interest in clinical trials to
basic disease research1. Even given the interest and efforts toward
this end, to-date there are very few examples where they have
been deployed in practice beyond the exploratory outcome or
feasibility study setting. This is partially due to a lack of proper
validation and standard benchmarks. Through a combination of
competitive and collaborative effort, we engaged computational
scientists around the globe to benchmark methods for extracting
digital biomarkers for the diagnosis and estimation of symptom
severity of PD. With this challenge, we aimed to separate the
evaluation of the methods from the data generation by using
datasets that were generated but not shared with researchers and
as such all participants in the challenge were naive to the data. As
a resource to the community, we have shared results of the
challenge, including submission rankings, methods descriptions
and code, and full feature sets, as well as the specific
segmentation and training/test splits of the data used in the
challenge, so that other researcher can continue to improve on
these methods (www.synapse.org/DigitalBiomarkerChallenge).
Participants in this challenge used an array of methods for

feature extraction spanning unsupervised machine learning to
hand-tuned signal processing. We did not, however, observe
associations between types of methods employed and perfor-
mance with the notable exception that the top two teams in the
diagnostic biomarker challenge based on the mPower data (SC1)
generated features using CNNs while top-performing teams in
SC2.1–2.3 that used the smaller L-Dopa dataset used signal
processing-derived features (though a CNN-based feature set did
rank 2nd in SC2.3). The top-performing team in SC1 significantly
outperformed the submissions of all remaining teams in the sub-
challenge. This top-performing team was unique in its use of data
augmentation, but otherwise used similar methods to the runner-
up team. Consistently, deep learning has previously been
successfully applied in the context of detecting Parkinsonian
gait16. However, given CNNs’ relatively poorer performance in SC2,
which utilized a substantially smaller dataset, we speculate that

these methods may be most effective in very large datasets. This
was further supported by the observation that the top SC1 model
did not perform well in the oldest study subjects which
correspond to the smallest age group. If the sample size is indeed
a driver of the success of CNNs, this suggests that applying these
methods to most digital validation datasets will not be possible as
they currently tend to include dozens to hundreds of individuals
in contrast to the thousands available in the SC1 data and the
typical deep learning dataset17.
Traditionally, clinical biomarkers have a well-established biolo-

gical or physiological interpretation (e.g., temperature, blood
pressure, serum LDL) allowing a clinician to comprehend the
relationship between the value of the marker and changes in
phenotype or disease state. Ideally, this would be the case for
digital biomarkers as well, however, machine learning models vary
in their interpretability. In order to try to understand the features
derived from machine learning models, we computed correlations
between the CNN-derived features submitted by teams with
signal processing-based features, which are often more physiolo-
gically interpretable. We were unable to find any strong linearly
related signal processing analogs. Further work is necessary to try
to interpret the effects being captured, though previous work has
identified several interpretable features including step length,
walking speed, knee angle, and vertical parameter of ground
reaction force18, most of which are not directly measurable using
smartphone-based applications.
Understanding the specific tasks and aspects of those activities

which are most informative helps researchers to optimize
symptom assessments while reducing the burden on study
subjects and patients by focusing on shorter, more targeted
tasks, ultimately aspiring to models for tasks of daily living instead
of prescribed tasks19. To this end, given the availability of multiple
tasks in SC2, we analyzed which tasks showed the best accuracy.
For the tremor severity for example, the most informative tasks
were not designed to distinguish PD symptoms specifically
(‘pouring water’, ‘folding laundry’ and ‘organizing papers’) but
mimic daily activities. However, ‘finger-to-nose’ and ‘alternating
hand movements’ tasks, which are frequently used in clinical
assessments, showed the lowest predictive performance, and top
models did not outperform the baseline model for these tasks. For
the assessment of bradykinesia, the ‘finger-to-nose’, ‘organizing
paper’ and ‘alternating hand movements’ tasks showed the best
model performance. However, in the case of ‘alternating-hand-
movements’, the improved performance could be fully explained
by the baseline model.
We believe that there are opportunities to improve the

submitted models further, specifically in the sub-populations
where they performed worse. For example, we observed
differences in performance between males and females in the
top submissions, as well as the relatively better performance in
younger patients (57–65). This can be due to imbalances in the
dataset such as more young participants or more data from male
participants leading to better-fitting models in those populations,
but could also be due to disease etiology and symptoms. We
know from previous work that models can be affected by
confounders20,21 and that there are gender effects of the
disease22,23. If the latter is true, it is possible that different models
and features might be necessary to capture different aspects of
the disease as a function of age and gender. In the extreme, we
might even consider personalized models15. For example, it stands
to reason that the standard for normal gait differs in older people
relative to younger people. Given the heterogeneity of symptom
manifestation in PD, there might be many sub-populations or
even idiosyncratic differences in symptom severity14. That is, the
changes in disease burden as explored in SC2 might best be
learned by personalized models. To help answer this question and
to explore further the use of data collected in free-living
conditions, we have recently launched a follow-up challenge
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looking at predicting personalized differences in symptom burden
from data collected passively during free-living conditions.

METHODS
The mPower Study
mPower7 is a longitudinal, observational iPhone-based study developed
using Apple’s ResearchKit library (http://researchkit.org/) and launched in
March 2015 to evaluate the feasibility of using mobile sensor-based
phenotyping to track daily fluctuations in symptom severity and response
to medication in PD. The study was open to all US residents, above the age
of 18 who were able to download and access the study app from the Apple
App Store, and who demonstrated sufficient understanding of the study
aims, participant rights, and data-sharing options to pass a 5-question quiz
following the consent process. Study participants participated from home
and completed study activities through their mobile devices.
Once enrolled, participants were posed with a one-time survey in which

they were asked to self report whether or not they had a professional
diagnosis of PD, as well as demographic (Table 1) and prior-treatment
information. On a monthly basis, they were asked to complete standard PD
surveys (Parkinson Disease Questionnaire 824 and a subset of questions
from the Movement Disorder Society Universal Parkinson Disease Rating
Scale instrument25). They were also presented daily with four separate
activities: ‘memory’ (a memory-based matching game), ‘tapping’ (measur-
ing the dexterity and speed of two-finger tapping), ‘voice’ (measuring
sustained phonation by recording a 10-s sustained ‘Aaaahhh’), and
‘walking’ (measuring participants’ gait and balance via the phone’s
accelerometer and gyroscope). For the purpose of this challenge, we
focused on the ‘walking’ test, along with the initial demographic survey
data.
The walking test instructed participants to walk 20 steps in a straight

line, turn around, and stand still for 30 s. In the first release of the app
(version 1.0, build 7), they were also instructed to walk 20 steps back,
following the 30 s standing test, however subsequent releases omitted this
return walk. Participants could complete the four tasks, including the
walking test, up to three times a day. Participants who self-identified as
having a professional diagnosis of PD were asked to do the tasks (1)
immediately before taking their medication, (2) after taking their
medication (when they are feeling at their best), and (3) at some other
time. Participants who self-identified as not having a professional diagnosis
of PD (the controls) could complete these tasks at any time during the day,
with the app suggesting that participants complete each activity three
times per day.

The Levodopa Response Study
The L-dopa Response Study8,9 was an experiment with in-clinic and at-
home components, designed to assess whether mobile sensors could be
used to track the unwanted side-effects of prolonged treatment with L-
dopa. Specifically, these side-effects, termed motor fluctuations, include
dyskinesia and waning effectiveness at controlling symptoms throughout
the day. In short, a total of 31 PD patients were recruited from 2 sites,
Spaulding Rehabilitation Hospital (Boston, MA) (n= 19) and Mount Sinai
Hospital (New York, NY) (n= 12). Patients recruited for the study came to
the laboratory on Day 1 while on their usual medication schedule where
they donned multiple sensors: a GENEActiv sensor on the wrist of the most
affected arm, a Pebble smartwatch on the wrist of the least affected arm,
and a Samsung Galaxy Mini smartphone in a fanny pack worn in front at
the waist. They then performed section III of the MDS-UPDRS25. Thereafter,
they performed a battery of motor tasks that included activities of daily
living and items of section III of the MDS-UPDRS. This battery of tasks
lasted ~20min and was repeated 6–8 times at 30-min intervals throughout
the duration of the first day. Study subjects returned 3 days later in a
practically defined off-medication state (medication withheld overnight for
a minimum of 12 h) and repeated the same battery of tasks, taking their
medication following the first round of activities. This study also included
data collection at home, between the two study visits, but these data were
not used for the purposes of this challenge.
During the completion of each motor task, clinical labels of symptom

severity or presence were assessed by a clinician with expertise in PD for
each repetition. Limb-specific (i.e., left arm, left leg, right arm, and right leg)
tremor severity score (0–4), as well as upper-limb and lower-limb presence
of dyskinesia (yes or no) and bradykinesia (yes or no) were assessed. For
the purposes of this challenge, we used only the GENEActiv and Pebble
sensor information and upper limb clinical labels for a subset of the tasks:
‘finger-to-nose’ for 15 s (repeated twice with each arm) (ftn), ‘alternating
hand movements’ for 15 s (repeated twice with each arm) (ram), ‘opening a
bottle and pouring water’ three times (drnkg), ‘arranging sheets of paper in
a folder’ twice (orgpa), ‘assembling nuts and bolts’ for 30 s (ntblt), and
‘folding a towel’ three times (fldng). Accelerometer data for both devices
were segmented by task repetition prior to use in this challenge.

Ethics
The mPower Study was conducted remotely through an iPhone
application. Participants provided consent through an interactive e-
consent process, which included a quiz evaluating their understanding
of the consent provided. The study and consent procedure were approved
by the Western Institutional Review Board (WIRB 20181960).

Table 1. mPower Study demographics.

Training Test

PD Control PD Control

Age 60.6 ± 10.7 34.7 ± 14.2 60.4 ± 11.9 34.9 ± 14.4

Sex

Male 439 (66.5%) 1755 (81.4%) 377 (61.4%) 1071 (78.2%)

Female 219 (33.2%) 397 (18.4%) 226 (36.8%) 285 (20.8%)

Unspecified 2 (0.3%) 3 (0.1%) 11 (1.8%) 14 (1.0%)

Race

Caucasian 586 (88.8%) 1521 (70.6%) 533 (86.8%) 870 (63.5%)

Other or mixed 74 (11.2%) 634 (29.4%) 81 (13.2%) 500 (36.5%)

Marital status

Single 30 (4.5%) 993 (46.1%) 17 (2.8%) 628 (45.8%)

Married/domestic partnership 534 (80.9%) 1022 (47.4%) 271 (44.1%) 571 (41.7%)

Divorced/separated/widowed 87 (13.2%) 112 (5.2%) 41 (6.7%) 68 (5.0%)

Other/unreported 9 (1.4%) 28 (1.3%) 285 (46.4%) 103 (7.5%)

Education

High school or less 45 (6.8%) 278 (12.9%) 44 (7.1%) 224 (16.4%)

College or college degree 281 (42.6%) 1227 (56.9%) 270 (44.0%) 727 (53.1%)

Graduate school or degree 334 (50.6%) 650 (30.1%) 300 (48.9%) 419 (30.6%)
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Levodopa Response Study subjects were recruited and enrolled at two
study sites: Spaulding Rehabilitation Hospital and Mount Sinai Hospital. All
subjects signed an informed consent form. All procedures were approved
by the Institutional Review Board of both study sites (Spaulding
Rehabilitation Hospital IRB # 2014P000847; Mount Sinai Hospital IRB #
14-1569).

The PD Digital Biomarker Challenge
Using a collaborative modeling approach we ran a challenge to develop
features that can be used to predict PD status (using data from the
mPower study) and symptom severity (using data from L-dopa Response
Study). The challenge was divided up into four sub-challenges, based on
different phenotypes in the two different data sets. Sub-challenge 1 (SC1)
focused on the extraction of mobile sensor features that distinguish
between PD cases and controls using the mPower data. Sub-challenges
2.1, 2.2, and 2.3 (SC2.1-SC2.3) focused on the extraction of features that
reflect symptom severity for tremor, dyskinesia, and bradykinesia,
respectively, using the L-dopa data. In each case, participants were
provided with a training set, containing mobile sensor data, phenotypes
for the individuals represented, and all available meta-data for the data set
in question. Using these data they were tasked with optimizing a set of
features extracted from the mobile sensor data, which best predicted the
phenotype in question. They were also provided a test set, containing only
mobile sensor data, and upon challenge deadline was required to return a
feature matrix for both the training and test sets. Participants were allowed
a maximum of two submissions per sub-challenge, and could participate in
any or all of posed sub-challenges.
For extracting features that predict PD status using the mPower data,

participants were provided with up to 30-s long recordings (sampling
frequency of ~100 Hz) from an accelerometer and gyroscope from 39,376
walking tasks as well as the associated 30-s recordings of standing in place,
representing 660 individuals with self-reported PD and 2155 control
subjects, as a training set. They were also provided with self-reported
covariates, including PD diagnosis, year of diagnosis, smoking, surgical
intervention, deep brain stimulation, and medication usage, as well as
demographic data, including age, gender, race, education and marital
status (Table 1)7. As a test data set, they were provided the same mobile
sensor data from 36,664 walking/standing tasks for 614 patients with PD
and 1370 controls which had not been publicly available previously, but
were not provided any clinical or demographic data for these individuals.
Participants were asked to develop feature extraction algorithms for the
mobile sensor data which could be used to successfully distinguish
patients with PD from controls, and were asked to submit features for all
walking/standing activities in the training and test sets.
For the prediction of symptom presence or severity (sub-challenges

2.1–2.3), participants were provided with bilateral mobile sensor data from
the L-Dopa challenge study for up to 14 repetitions of 12 separate tasks
(‘drinking’ (drnkg), ‘organizing papers’ (orgpa), ‘assembling nut and bolts’
(ntblts), ‘folding laundry’ (fldng), and 2 bilateral repetitions of ‘finger-to-
nose’ (ftn) and ‘(rapid) alternating hand movements’ (ram)) from
27 subjects from the L-dopa data who had sufficient quality data and
completed the full protocol (Supplementary Table 2). For 19 subjects,
symptom severity (tremor) or presence (dyskinesia and bradykinesia) were
provided to participants as a training data set for a total of 3667
observations for tremor severity (2332, 878, 407, 38, and 12 for severity
levels of 0, 1, 2, 3, and 4, respectively), 1556 observations for dyskinesia
presence (1236 present), and 3016 observations for bradykinesia presence
(2234 present). The data also included meta-data about the experiment
such as site, device (GeneAcvtiv or Pebble), side that the device was on
(left or right), day, session, and task. No demographic data was available on
the study subjects at the time of the challenge. Participants were asked to
provide extracted features that are predictive of each symptom for the
training data, as well as 1500, 660, and 1409 observations, for tremor,
dyskinesia, and bradykinesia, respectively, from the 8 test individuals for
which scores were not released.
It is important to note that for each data set, the training and test sets

were split by individual, that is, all tasks for a given individual fell
exclusively into either the training or test set to avoid inflation of
prediction accuracy from the non-independence of repeated measures on
the same individual26.
The challenge website (https://www.synapse.org/DigitalBiomarkerChallenge)

documents the challenge results, including links to teams’ submission write-
ups and code, and links to the public repositories for the mPower and
L-dopa data.

Submission scoring
For all sub-challenges, feature set submissions were evaluated by fitting an
ensemble machine learning algorithm to the training observations, and
predicting the test observations. The ensemble method and other metrics
were chosen to process the teams’ submissions were selected to cover
most major classification approaches, to avoid any bias in favor of
particular modeling choices.
For SC1, we sought to minimize the undue influence from subjects who

completed large numbers of walking/standing tests, by first summarizing
features using the median of each feature across all observations per
subject. Thus, each subject appeared only once in the training or the test
set. Aggregation via the maximum showed similar results like that for the
median. For each submission, elastic net (glmnet), random forests, support
vector machines (SVM) with linear kernel, k-nearest neighbors, and neural
net models were optimized using 50 bootstraps with AUROC as the
optimization metric, and combined using a greedy ensemble in the
caretEnsemble package in R. Age and sex were added as potential
predictors in every submission. A subset of the provided data was used to
minimize age differences between cases and controls as well as to
minimize biases in study enrollment date, resulting in a training set of 48
cases and 64 controls and a testing set of 21 cases and 68 controls
(Supplementary Table 1). Feature sets were ranked using the AUROC of the
test predictions.
For SC2.1-2.3, the feature sets were evaluated using a soft-voting

ensemble—which averages the predicted class probabilities across models
—of predictive models consisting of a random forest, logistic regression
with L2 regularization, and SVM (RBF kernel) as implemented in the scikit-
learn Python package (0.20.0)27. The random forest consisted of 500 trees
each trained on a bootstrapped sample equal in size to the training set, the
logistic regression model used threefold cross-validation, and the SVM
trained directly on the training set with no cross-validation and outputted
probability estimates, rather than the default behavior of class scores.
Other parameters were set to the default value as specified in the scikit-
learn v0.20 documentation. Due to the imbalance of the class labels, we
adopted the AUPR as the performance metric for the L-dopa sub-
challenges. Non-linear interpolation was used to compute AUPR28. SC2.1
represents a multiclass classification problem. In order to calculate a
multiclass AUPR we transformed the multiclass problem into multiple
binary classification problems using the ‘one-vs-rest’ approach (where we
trained a single classifier per class, with the samples of that class as positive
cases and remaining samples as negative cases). For each of these binary
classification problems, we computed AUPR values and combined them
into a single metric by taking their weighted mean, weighted by the class
distribution of the test set. SC2.2 and SC2.3 are binary classification
problems, and we employed the AUPR metric directly.
For all four sub-challenges, 1000 bootstraps of the predicted labels were

used to assess the confidence of the score, and to compute the p-value
relative to the baseline (demographic, or meta-data) model.

Winning method sub-challenge 1: Team Yuanfang Guan and
Marlena Duda
The winning method by team ‘Yuanfang Guan and Marlena Duda’ used an
end-to-end deep learning architecture to directly predict PD diagnosis
utilizing the rotation rate records. Separate models were nested-trained for
balance and gait data, and the predictions were pooled by average when
both are available. Rotation rate x, y and z were used as three channels in
the network. Each record was centered and scaled by its standard deviation,
then standardized to contain 4000-time points by 0-padding. Data
augmentation was key to prevent overfitting to the training dataset, and
was the primary difference in performance compared to the next ranking
deep learning model by ‘ethz-dreamers’. The following data augmentation
techniques were included to address the overfitting problem: (a) simulating
people holding phones in different directions by 3D random rotation of the
signal in space based on the Euler rotation formula for a standard rigid
body, vertex normalized to unit= 1, (b) time-wise noise-injection (0.8–1.2)
to simulate different walking speeds, and (c) magnitude augmentation to
account for tremors at a higher frequency and sensor discrepancies when
phones were outsourced to different manufacturers.
The network architecture was structured as eight successive pairs of

convolution and max pool layers. The output of the last layer of prediction
was provided as features for the present challenge. Parameters were batch
size= 4, learning rate= 5 × 10−4, epoch= 50*(~half of sample size). This
CNN was applied to OUTBOUND walk and REST. The networks were
reseeded 10 times each. In each reseeding, half of the examples were used
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as training, the other half were used as validation set to call back the best
mode by performance on the validation set. This resulted in multiple,
highly correlated features for each task.

Winning method sub-challenge 2.1 (Tremor): Balint Armin
Pataki
The creation of the winning features by team ‘Balint Armin Pataki’ was
based on signal processing techniques. As PD tremor is a repetitive
displacement added to the normal hand movements of a person, it can be
described well in the frequency space via Fourier transformation. The main
created features were the intensities of the Fourier spectrum at frequencies
between 4 and 20 Hz. Observing high intensities at a given frequency
suggests that there is a strong hand movement that repeats at that given
frequency. In addition, hundreds of features were extracted from the
accelerometer tracks via the tsfresh package29. Finally, clinical feature
descriptors were created by mean-encoding and feature-binarizing the
categorical clinical data provided via the scikit-learn package27. This
resulted in 20 clinically derived features, 99 Fourier spectrum-based
features, and 2896 features derived from tsfresh. In order to eliminate
those which were irrelevant, a Random Forest classifier was applied, which
selected 81 features (3 clinically derived, 6 Fourier-derived and 72 tsfresh-
derived) from the ~3000 generated.

Winning method sub-challenge 2.2 (Dyskinesia): Jennifer
Schaff
Data were captured using GENEActivand Pebble watch devices along
several axes of motion, including the horizontal movement (side-to-side or
Y-axis). Because either of these devices could be worn on the right or left
wrist, an additional ‘axis’ of data was created to capture motion relative to
the movement towards or away from the center of the body. This Y-axis-alt
data was calculated by multiplying the Y-axis by −1 in patients that wore
the device on the wrist for which the particular device (GENEActiv or
Pebble) occurred less frequently. In other words, if the GENEActiv was most
frequently worn on the right wrist, Y-axis measurements for left-worn
measurements were multiplied by −1.
To distinguish between choreic and purpose-driven movements,

summary statistics of movement along each axis per approximate second
were generated, and a selection process to identify features that had the
predictive potential for dyskinesia was applied. For each separately
recorded task (set of patient, visit, session, and task), the absolute value
of the lagged data point for each axis was calculated, and the standard
deviation, variance, minimum value, maximum value, median, and sum
were recorded for all variables over each approximate rolling one-second-
window (51 data points). Additional features were derived by log
transformation of the previously generated one-second features. To
summarize across the 51 one-second values for a given task, the features
were aggregated using the mean, median, sum, standard deviation, the
median absolute deviation, the maximum, as well as each statistic taken
over the absolute value of each observation for each variable (both original
and calculated), resulting in ~1966 variables as potential features.
Random Forest model selection, as implemented within the Boruta

package30 in R, was used to reduce the number of features while still
retaining any variable the algorithm found to have predictive value. Any
feature that was chosen by Boruta in more than 10 of 25 Boruta iterations
was selected for submission, resulting in 389 variables. ‘Site’, ‘visit’,
‘session’, ‘device’, and ‘deviceSide’ as well as an indicator of medication
usage were included, bringing the number of variables to 395. Features
were calculated and selected for each device separately (to reduce
dependency on computational resources).

Winning method sub-challenge 2.3 (Bradykinesia): Team
Vision
The method by team ‘Vision’ derived features using spectral decomposi-
tion for time series and applied a hybrid logistic regression model to adjust
for the imbalance in number of repetitions across different tasks. Spectral
analysis was chosen for its ability to decompose each time series into
periodic components and generate the spectral density of each frequency
band, and determine those frequencies that appear particularly strong or
important. Intuitively, the composition of frequencies of periodic
components should shed light on the existence of bradykinesia, if certain
ranges of frequencies stand out from the frequency of noise. Spectral
decomposition was applied to the acceleration data on three axes: X

(forward/backward), Y (side-to-side), Z (up/down). Each time series was first
detrended using smoothing spline with a fixed tuning parameter. The
tuning parameter was set to be relatively large to ensure a smooth fitted
trend, so that the detrended data kept only important fluctuations.
Specifically, the ‘spar’ parameter was set to 0.5 in smooth.spline function in
R. It was selected by cross validation, and the error was not sensitive with
spar bigger than 0.5. The tuning parameter was set the same across the
tasks. The detrended time series were verified to be consistent with an
autoregressive-moving-average (ARMA) model to ensure process statio-
narity. Following spectral decomposition, the generated features were
summarized as the maximum, mean and area of estimated spectral density
within five intervals of frequency bands: [0, 0.05), [0.05, 0.1), [0.1, 0.2), [0.2,
0.3), [0.3, 0.4), [0.4, 0.5]. These intervals cover the full range of spectral
density. Because the importance of each feature is different for each task,
features were normalized by the estimated coefficient derived by fitting
separate multivariate logistic regression models for each task. The class
prediction was then made based on the normalized features using logistic
regression.

Analysis of methods used by participants
We surveyed challenge participants regarding approaches used. Questions
in the survey pertained to the activities used (e.g., walking outbound,
inbound or rest for the mPower data), the sensor data used (e.g., device
motion, user acceleration, gyroscope, pedometer, etc), and the methods
for extracting features from the selected data types, including pre-
processing, feature generation and post-processing steps. A one-way
ANOVA was conducted to determine if any use of a particular sensor,
activity or approach was associated with better performance in the
challenge. Significance thresholds were multiple tests corrected using a
Bonferroni correction factor of 4, and no significant associations were
found in any sub-challenge (p-value > 0.05 for all comparisons). We further
clustered teams based on overall approach incorporating all of the
dimensions surveyed. Hierarchical clustering was performed in R using the
ward.d2 method and Manhattan distance. Four and three clusters were
identified in SC1 and SC2, respectively. One-way ANOVA was then used to
determine whether any cluster groups showed significantly different
performance. No significant difference in mean scores across clusters was
identified (p-value > 0.05 for all tests).

Univariate analysis of submitted features
A univariate analysis of all submitted features was performed by, on a
feature-by-feature basis, fitting a generalized linear model (GLM), either
logistic for SC1, SC2.2, and SC2.3 or multi-class logistic model for SC2.1,
using the training samples, and predicting in the test samples. AUROC was
used to measure accuracy in SC1 whereas AUPR was used in SC2.1-2.3. For
SC2.1-2.3 only features from the top 10 models were assessed. Features
occurring in multiple submissions (e.g., present in both submissions from
the same team) were evaluated only once to avoid double counting.

Identification of optimal feature sets
In total, thousands of features were submitted for each challenge. To
determine if an optimal subset of features (as defined by having a better
AUPR than that achieved by individual teams) could be derived from the set
of all submitted features, two different feature selection approaches were
taken to identify whether choosing from all the submitted features could
result in better predictive performance. These feature selection approaches
were applied using only the training data to optimize the selection, and
were evaluated in the test set according to the challenge methods.
First, the Boruta random forest algorithm30 was tested on the entire set

of submitted features for SC2.2 (2,865), and 334 all-relevant features were
selected in at least ten of 25 iterations. RFE (i.e., simple backward selection)
using accuracy as the selection criteria as implemented in the caret
package31 of R was then applied to the downsized feature set and selected
four of the 334 features as a minimal set of features. The feature sets were
then scored in the testing set per the challenge scoring algorithms,
achieving AUPR of 0.38 and 0.35 for the larger and smaller sets,
respectively, placing behind the top eight and twelve individual
submissions for SC2.2.
A second approach applied PCA (principal component analysis) to the

entire sets of features submitted for sub-challenges 2.1, 2.2, and
2.3 separately. Non-varying features were removed prior to the application
of PCA. Each PC imparted only an incremental value towards the cumulative
proportion of variance (CPV) explained ([maximum, 2nd, 3rd,…, median]
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value: [14%, 7%, 4%,…, 0.0027%], [15%, 13%, 5%,…, 0.0014%] and [15%, 7%,
6%,…, 0.00039%] for SC2.1, SC2.2, and SC2.3, respectively), suggesting wide
variability in the feature space. The top 20 PCs from each sub-challenge
explained 49%, 66% and 61% of the cumulative variance for SC2.1, SC2.2, and
SC2.3, respectively. We then used the top PCs, which explained ~2/3 of the
variation, as meta-features in each sub-challenge (50, 20, and 30 for SC2.1,
SC2.2, and SC2.3, respectively), scoring against the challenge test set. These
achieved an AUPR of 0.674 for SC2.1 (below the top five submission scores of
0.730–0.750), an AUPR of 0.504 AUPR for SC2.2 (above the top 5 feature
submissions of 0.402–0.477) and an AUPR of 0.907 for SC2.3 (within the range
of the top 5 feature submissions of 0.903–0.950).

Clustering of features
We performed a clustering analysis of all the features from SC1 using k-
means and bisecting k-means with random initialization to understand the
landscape of features. To map the input feature space to two dimensions
for visualization while preserving the local distances, we employed two
manifold projection techniques: metric MDS12 and t-Distributed Stochastic
Neighbor Embedding (t-SNE)11 with various settings for perplexity, PCA
dimensions, and feature standardization. The outcomes of these projec-
tions were then clustered with k-means and bisecting k-means with k= 2,
5, 10, and 20, using silhouette width32 as a cluster validity index to select
the optimal number of clusters. A Kruskal–Wallis rank-sum test was used to
associate cluster membership with a feature’s submission score taken as
the performance of it’s associated feature set, however individual feature
scores were also examined. Hot-spots were identified by binning the
projected plane and smoothing the performance by a simple mean. The
significance of the association between the team associated with a feature
(as well as the predictive performance) with the cluster membership tends
to generally increase with the number of clusters used. Clustering without
PCA gives more compact and well-separated clusters and the optimal k
tested by the silhouette validity index is estimated to be around 10. The
clusters visualized as interactive charts are available online at https://ada.
parkinson.lu/pdChallenge/clusters and the correlation networks at https://
ada.parkinson.lu/pdChallenge/correlations. Visualizations of feature clus-
ters and aggregated correlations were carried out by Ada Discovery
Analytics (https://ada-discovery.github.io), performant and highly custo-
mizable data integration and analysis platform.

TDA of mPower features
To construct the topological representation, we leveraged the open
source R implementation of the mapper algorithm13 (https://github.com/
paultpearson/TDAmapper). As a preprocessing step, we considered only
the features (median value per subject) from the six top-performing
submissions in SC1, and centered and scaled each feature to obtain a z-
score. We then reduced the space to two dimensions using MDS and
binned the space into 100 (10 × 10) equally sized two-dimensional
regions. The size of the bins was selected so that they have 15% overlap in
each axis. A pairwise dissimilarity matrix based on Pearson correlation was
calculated as 1-r from the original multi-dimensional space, and used to
cluster the samples in each bin individually (using hierarchical single-
linkage clustering). A network was generated considering each cluster as a
node while forming edges between nodes that share at least one sample.
Finally, we pruned the network by removing duplicate nodes and terminal
nodes which only contain samples that are already accounted for (not
more than once) in a paired node. We used the igraph R package (http://
igraph.org/r/) to store the network data structure and Plotly’s R graphing
library (https://plot.ly/r/) to render the network visualization.

Medication effects in mPower
For each submitted model to SC1, PD status was predicted for all individual
walking tests in the mPower Study, regardless of reported medication
status. We tested whether predicted PD status differed between patients
with PD on medication (self-reported status: ‘Just after Parkinson
medication (at your best)’) or off medication (self-reported status:
‘Immediately before Parkinson medication’ or ‘I don’t take Parkinson
medications’) using a linear mixed model with healthCode (individual) as a
random effect to account for repeated measures. We also obtained a list of
individuals for whom medication status could reliably be predicted (at 5
and 10% FDR)14,15, and repeated the analysis in this subset of individuals.
Results were not significant using the full set, as well as the two subsets, for
any of the top 10 models, which implies that the models optimized to

predict PD status could not be immediately extrapolated to predict
medication status.

Demographic subgroup analysis in mPower
For each feature set, the predicted class probabilities generated by the
scoring algorithm (see ‘Submission Scoring’) were used to compute AUROC
within demographic subgroups by subject age group (57–60, 60–65,
65–70, and 75+) and gender (female and male). The same approach was
used to assess the demographic model against which the feature sets were
compared. For the purposes of this analysis, we only considered
submissions that outperformed the demographic model.

Analysis of study tasks in L-dopa
For SC2.1-SC2.3, each feature set was re-fitted and rescored within each
task. 1000 bootstrap iterations were performed to assess the variability of
each task score for each submission. On each iteration, expected AUPR was
computed based on the class distributions of the bootstrap sample. For
comparison of two tasks for a given submission, a bootstrap p-value was
computed as the proportion of bootstrap iterations in which AUPR(task1)-E
[AUPR(task1)] > AUPR(task2)-E[AUPR(task2)]. The overall significance of the
comparison between task1 and task2 was assessed via one-sided
Kolmogorov–Smirnov test of the distribution, across submissions, of the
p-values vs a U[0,1] distribution.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Data, predictions, feature scores, and methods descriptions used and generated in
this challenge are available through Synapse (https://doi.org/10.7303/syn8717496).
The mPower (https://doi.org/10.7303/syn4993293) and MJFF Levodopa Response
Study (https://doi.org/10.7303/syn20681023) data are also available.

CODE AVAILABILITY
Code used to evaluate submissions are available through https://github.com/Sage-
Bionetworks/PDbiomarkerChallengeScoring. Methods descriptions and code for all
available submissions is available through Synapse (https://doi.org/10.7303/
syn8717496).
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