
 
Repository of the Max Delbrück Center for Molecular Medicine (MDC) 
in the Helmholtz Association  
 
https://edoc.mdc-berlin.de/20119/ 
 
 
 
 
 
Quantitative spectroscopy of single molecule interaction times. 
 
Boltz H.H., Sirbu A., Stelzer N., Lohse M.J., Schütte C., Annibale P. 
 
 
 
This is a copy of the original article as published under the Copyright Transfer and Open Access 
Publishing Agreement (OAPA) of the Optical Society (OSA). The original article was first published 
in: 
 
Optics Letters 
2021 APR 01 ; 46(7): 1538-1541 
2021 FEB 22 (first published online) 
doi: 10.1364/OL.413030  
 
Publisher: The Optical Society (OSA) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © 2021 Optical Society of America. Users may use, reuse, and build upon the article, or 
use the article for text or data mining, so long as such uses are for non-commercial purposes and 
appropriate attribution is maintained. All other rights are reserved. 

https://edoc.mdc-berlin.de/20119/
https://doi.org/10.1364/OL.413030
https://www.optica.org/en-us/home/


1538 Vol. 46, No. 7 / 1 April 2021 /Optics Letters Letter

Quantitative spectroscopy of single molecule
interaction times
H.-H. Boltz,1,2,5 A. Sirbu,2 N. Stelzer,2 M. J. Lohse,2,3 C. Schütte,1,4 AND P. Annibale2,6

1Zuse Institute Berlin (ZIB), 14195 Berlin, Germany
2MaxDelbrück Center forMolecularMedicine, 13125 Berlin, Germany
3University ofWürzburg, Institute of Pharmacology and Toxicology, 97078Würzburg, Germany
4Freie Universität Berlin, Institut fürMathematik, 14195 Berlin, Germany
5e-mail: boltz@zib.de
6e-mail: paolo.annibale@mdc-berlin.de

Received 9 November 2020; revised 22 February 2021; accepted 22 February 2021; posted 22 February 2021 (Doc. ID 413030);
published 19 March 2021

Single molecule fluorescence tracking provides information
at nanometer-scale and millisecond-temporal resolution
about the dynamics and interaction of individual molecules
in a biological environment. While the dynamic behavior of
isolated molecules can be characterized well, the quantita-
tive insight is more limited when interactions between two
indistinguishable molecules occur. We address this aspect
by developing a theoretical foundation for a spectroscopy
of interaction times, i.e., the inference of interaction from
imaging data. A non-trivial crossover between a power law
to an exponential behavior of the distribution of the inter-
action times is highlighted, together with the dependence of
the exponential term upon the microscopic reaction affinity.
Our approach is validated with simulated and experimental
datasets. © 2021 Optical Society of America under the terms of
theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OL.413030

Recent progresses in the field of fluorescence single molecule
methods [1] have made single molecule tracking (SMT) of
membrane receptors in a widefield microscope a technique
within reach of many laboratories. This has benefited signifi-
cantly those researching cell membrane receptor biophysics
and pharmacology since these methods offer the opportunity
to probe dynamic processes such as oligomerization [2], inter-
action with downstream signaling partners [3], and trafficking
[4], as well as conformational changes at the level of the iso-
lated receptor [5]. Combinations of efficient and photo-stable
labeling strategies with advanced optical imaging methods
yield spatial-temporal resolutions that allow for nanometer
(nm)-level detection [6–8] and millisecond-temporal resolution
tracking of individual molecules [9]. Despite the apparent rela-
tive simplicity of experimental preparation and data acquisition,
data analysis and interpretation remain fraught with signifi-
cant caveats. In particular, given the continuous nature of the
molecular point-spread-function (PSF), defining the duration
of a molecular interaction is not trivial: as two identically labeled
particles approach each other, their PSFs become unresolvable.
While this issue was addressed in static datasets exploiting

the notion of stochastic activation and localization [10], for
dynamic datasets, where all molecules present are visible at the
same time, the problem is still present. The answer to this ques-
tion will allow us to address the important problem of whether
and how these particles are (constructively) interacting, reveal-
ing details on microscopic interaction rates. This ultimately
pertains to data interpretation and, therefore, is conceptually
independent of the experimental detection quality achieved.

Previous work [2,3,11,12] has addressed this issue by gener-
ating and evaluating a histogram (or distribution) of molecular
overlap (or colocalization) times. As the identification of colo-
calized particles is fundamentally easier, if they are labeled
differently, we will only address the (more complex, but also
more typical) monochromatic case. Furthermore, we are limited
to a density regime, where trimers and higher order clusters are
irrelevant and particles are found as either monomers or dimers.

We begin by considering a related problem that can be han-
dled analytically: the distribution pfp of first-passage times of a
freely diffusing particle through a circular boundary. We focus
on standard Brownian diffusion, but extension to anomalous
diffusion is possible and may be relevant [13]. This serves as a
continuum reference theory to understand the overall shape
and dependencies of the overlap time distribution. We denote
the particle’s diffusion constant by D and the radius of the
circle (approximating the PSF) by R . Dimensionally, the only
time scale in the problem is τ = R2/D. Hence, one expects an
asymptotically exponential large time tail. For very small times,
the particle is blind to the scale of the region, and one expects
[14] a scale-free distribution. This can be summarized as

pfp(t)∼
{

t−3/2 for 0< t� τ
exp(−t/τfp) for t� τ with τfp ≈ τ/5.78. (1)

Details of this calculation have been discussed earlier [15,16]
and are also provided in Supplement 1. Similar findings have
been made using approaches with explicit model interaction
potentials [17]. Graphically, these two behaviors can be inter-
preted as two “classes” of trajectories, as summarized in Fig. 1:
short trajectories (purple) that only explore the rim and long tra-
jectories (blue) that traverse the whole colocalization area/PSF.
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Fig. 1. A, simulation setup highlighting the difference between the first-passage time and the colocalization time at finite acquisition time1. For
some1, the particle will be considered to never have passed, even though the parts (gray) of the trajectory are outside. B, distribution of colocalization
times generated computationally for various1. When the temporal resolution is adequate, the distribution of colocalization times has two functional
components: a rapid power law and a slower exponential decay. C, numerically recovered time scale from the exponential part. The straight line corre-
sponds to τk ∼

√
1 as a guide to the eye. D, dependence of the distribution of colocalization times as a function of koff and, E, as a function of the kon.

Both use1= 0.05R2/D. The dependence of the resulting slope of the exponential component of the colocalization time distributions in D and E is
displayed, respectively, in F and G, highlighting the τk ∼ k−1

off + const and τk ∼ kon + const behavior, respectively.

As we will show below, the overall description provided by
Eq. (1) holds quite generally.

Experimental observation is stroboscopic: images are taken
at a finite acquisition rate. Thus, a trajectory that ventures out-
side the region of interest, cp. the gray segment in Fig. 1A, may
be considered within the region at every time of observation.
The actual problem is to determine the first-observed passage
when considering snapshots (the effective PSF has contribu-
tions from imaging as well as motion blur and finite detection
precision; this is discussed in Supplement 1) taken at a fixed
acquisition time interval 1. Thus, we need to determine how
the distribution p1 inferred from the discrete acquisition will
deviate from the continuous first-passage analysis presented
in the previous paragraph. We shall note here that the dimen-
sional arguments still hold, since the first-passage tail time
scale τfp is a lower bound to the observed time scale τ1 with
p1(τ )∼ exp(−t/τ1), i.e., τ1 ≥ τfp, as the discrete observation
can only extend the apparent colocalization time. Analogously,
we expect monotony and, ultimately, τ(1)∼

√
1 as the prob-

ability within the colocalization region becomes uniformly
spread for large times and, thus, the probability to be observed
outside grows with1 as the size of the zone at the rim that can
reach the outside with one step. We validated this intuitive argu-
ment by numerical simulations of diffusing particles using direct
integration of the Langevin equation, d x n

i /dt =
√

2Dη(t),
with i = x , y indexing spatial dimensions, n = 1 . . . N index-
ing particles, and η(t) denoting a Gaussian random force
with 〈η(t)〉 = 0 and 〈η(t)η(t ′)〉 = δ(t − t ′). The particles are
considered colocalized if their distance is not larger than R ,
as depicted in Fig. 1B. We show empirical cumulative distri-
butions, CDF(t)= 1/Nt

∑Nt
i 2(t − ti ); intuitively one can

think of 1−CDF(t) as the fraction of colocalization events
lasting longer than t . Figure 1B illustrates the time spent inside

the circle as a function of the acquisition time. If the acquisition
time is adequate, we observe the expected combination of a
rapid power law decay and a slower exponential behavior of
the distribution. The slope of the exponential part will reflect
the presence of an interaction between the particles, if any.
Interestingly, Fig. 1C highlights how the recovered time scale of
the exponential tail depends on the acquisition time. As the time
1 grows higher, the time scale increases, suggesting “apparent
interactions” also in this negative control. This increase is in
line with our expectation τ(1)∼

√
1 and stresses the impor-

tance of a careful examination of the behavior of freely diffusing
particles under actual experimental conditions.

We then extended this approach to interacting molecules
using a Doi-like model [20] in which the interaction is described
by three parameters: a binding rate kon, an unbinding rate koff,
and an interaction range `. Pairs of molecules i, j whose dis-
tance is within the range, r ij < `, bind with constant rate kon.
Rather than introducing an explicit new construct formed this
way, we let bound particles continue to diffuse while enforcing
a constraint r ij < `, corresponding to soft molecules. This is
justified by noticing that our point particle description neglects
most of the internal degrees of freedom. From the bound state,
molecule pairs unbind with constant rate koff, after which
they can leave each other’s vicinity again. Previously, the tail
behavior of the overlap time distribution (or the excess time
compared to a freely diffusing background) has been identified
with k−1

off . Intuitively, the typical time spent in the bound state
should also depend on the binding rate and the range, as those
control the probability to be bound and, thus, the number of
unbinding events, each of which takes a time∼k−1

off . We recover
the expected dependence on koff, as illustrated in Fig. 1D,
i.e., the higher koff, the shorter the lifetime of the interaction.
Interestingly, however, also the kon plays a role, indicating the
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importance of recaptures on the observed distribution of inter-
action times, as shown in Fig. 1E. If we look at the dependence of
the recovered lifetime of the interaction τk (Fig. 1F), we observe
that, at very high koff, there is a residual lifetime that agrees
with the result for a freely diffusing monomeric particle that is
observed also in the negative control (Fig. 1A). Furthermore, as
the interaction becomes stronger (smaller koff), the recovered
lifetime scales linearly with k−1

off and kon (see Figs. 1F and 1G).
We can formalize this intuition (see Supplement 1) by calculat-
ing the typical time spent within the colocalization region as a
function of the affinity K = konk−1

off as

τ(K )= τ(0)+ const · K . (2)

The proportionality factor depends on the size of the interac-
tion region. We conclude that introducing an interaction adds
a term scaling as k−1

off to the time scale τ(0)= τ1 observed in
the exponential tail, but one cannot identify these with each
other, in particular there is a dependence on the binding rate
kon. This dependence is relevant in comparative studies where
the observed time scales might be used to assess the difference in
unbinding rate as a proxy for different dimerization behavior.
Furthermore, the overall gestalt of the overlap time distribu-
tion is basically unaltered, i.e., we see the same algebraic initial
behavior crossing over into an exponential tail with a time
scale that follows Eq. (2). The reasoning behind this is that
the practically relevant regime is `� R , i.e., the interaction
range is small compared to the colocalization range. Thus, the
scale-free behavior, formed by trajectories that explore a small
region close to the edge of the colocalization range, will be
unaffected by the interaction. Within the graphical approach
used earlier (Fig. 1A), it is rather intuitive that the overall shape
of the overlap time distribution remains unchanged: short
trajectories on the rim (purple) corresponding to the algebraic
beginning remain unchanged, long trajectories (blue) will
eventually hit the interaction region and therefore get extended.

As a byproduct, the non-exponential behavior for short times
gets more pronounced when the excess time due to interaction
is large. For practical purposes, typical order of magnitudes
for the kind of membrane receptors we are considering are
R ≈ 300 nm, D≈ 0.1(µm)2/s , implying a typical time scale
of τ = R2/D< 1 s. The length scale R as well as the time scale
τ are large compared to typical interaction scales of up to tens
of nm and seconds for strongly interacting molecules. This
highlights the great importance of carefully evaluating and
subtracting background diffusion.

We then moved to performing actual SMT on simulated
datasets, mimicking real experimental conditions. We simulated
movies (see Visualization 1 for an exemplary movie) of 104

frames, containing 102 particles each, with an acquisition time
of1= 0.05R2/D. Figure 2 illustrates the results of the u-track
package [21], where the interaction between the particles is
arbitrarily modulated. Figures 2A–2D display the distribution
of colocalization times detected by the software on the simulated
dataset (green), the ground truth (i.e., the true distribution of
colocalization times from the simulated particle positions), and
the fit to the detected data in the exponential tail. We generated
the ground truth by employing a simple thresholding procedure
that identifies every pair with a distance below Rc ≈ 1.5R as
colocalized (see Supplement 1). The detected distribution of
colocalization times matches the “true” values for the non-
interacting sample (Fig. 2A), and samples displaying increasing
interaction strength (Figs. 2B–2D). Once the apparent koff
(from the fit to the distribution of detected interaction times)
is plotted against the simulated koff, Fig. 2E illustrates that the
detected and true values are in excellent agreement. The offset
due to the random interaction is clearly visible in the data. When
the random colocalization offset is subtracted, the recovered koff
correlates with the simulated one, as displayed in Fig. 2F.

We then moved to apply this analysis framework to exper-
imental datasets. We chose to analyze the behavior of the two

Fig. 2. Distribution of colocalization times obtained running a commercial single-particle tracking software on simulated datasets. A–D, recov-
ered distribution of colocalization times for a non-interacting control. Displayed are the true interaction values (known from the simulated centers of
each molecule at any given time) and the output of the tracking software (detected), as indicated in the legend. The slope of the exponential compo-
nent of the detected colocalization time distribution is fit to extract the apparent lifetime of the interaction τ . Shaded bands highlight 95% confidence
level for the detected distribution [18,19]. Fits were performed with gnuplot in the region for which 1−CDF(t) ∈ [0.05 : 0.3]. E and F, recovered
apparent lifetimes as a function of the interaction strength (koff). In F, the background contribution is subtracted.
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Fig. 3. Analysis of inter-molecular interaction for the SNAP-β1-AR and SNAP-β2-AR GPCRs in CHO cells labeled with SnapSurface 549. A, dis-
tribution of overlap times for the two β-AR. Inset, empirical PDF (using Kernel density estimation) of distances of merging particles (larger than the
PSF) in the frame before merging. B, mean-square displacement indicating no trivial difference in diffusivities as the origin of the different overlap
behavior. The inferred values of diffusion constant and threshold distances were used to obtain a suitable reference.

well-characterized G protein-coupled receptors (GPCRs)
β1- adrenergic (AR) and β2-AR [2,22,23]. Figure 3 illustrates
the result of our analysis of single-particle TIRF movies of
N-terminally SNAP-tagged (a fusion construct allowing extra-
cellular labeling with a bright organic fluorophore of choice;
see Supplement 1 for more experimental details) β1-AR and
β2-AR diffusing on the basolateral membrane of CHO cells.
Figure 3A displays the detected distribution of colocalization
times, together with the distribution from a randomly diffusing
control. The higher dimer lifetime of the β2-AR is in line with
previous observations from our group of a higher steady-state
dimerization for this receptor [2]. The lifetime of the β1-AR is
close to the reference of the non-interacting, reference control.
The diffusivities in Fig. 3B indicate that the difference in overlap
time is not due to a trivial difference in the free dynamics.

In this Letter, we addressed to what extent a characterization
of inter-molecular interactions is possible by means of single
molecule imaging with a focus on fundamental interpretation
issues rather than technical aspects of detection or tracking. We
have derived the shape of the distribution of overlap times both
with and without an interaction providing a solid theoretical
foundation to this important methodology. This analysis reveals
that there is a non-exponential, algebraic behavior for small
overlap times and an exponential tail for large times, whose
time scale depends on the acquisition time. For interacting
molecules, we find that the quantity accessible from the expo-
nential tail is the affinity, i.e., the ratio of binding and unbinding
rates. This would only allow quantitative comparisons between
molecules imaged under the same experimental conditions and
poses an intriguing challenge for future work to extract the indi-
vidual rates. These determinations were confirmed when using
a common software on simulated datasets. We finally applied
our framework to address the difference in dimerization kinetics
between two GPCRs, theβ1- andβ2-adrenergic receptors.
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