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Survival differences and associated 
molecular signatures 
of DNMT3A‑mutant acute myeloid 
leukemia patients
Chris Lauber1, Nádia Correia2, Andreas Trumpp2, Michael A. Rieger3, Anna Dolnik4, 
Lars Bullinger4, Ingo Roeder1,5 & Michael Seifert  1,5*

Acute myeloid leukemia (AML) is a very heterogeneous and highly malignant blood cancer. Mutations 
of the DNA methyltransferase DNMT3A are among the most frequent recurrent genetic lesions 
in AML. The majority of DNMT3A-mutant AML patients shows fast relapse and poor survival, but 
also patients with long survival or long-term remission have been reported. Underlying molecular 
signatures and mechanisms that contribute to these survival differences are only poorly understood 
and have not been studied in detail so far. We applied hierarchical clustering to somatic gene mutation 
profiles of 51 DNMT3A-mutant patients from The Cancer Genome Atlas (TCGA) AML cohort revealing 
two robust patient subgroups with profound differences in survival. We further determined molecular 
signatures that distinguish both subgroups. Our results suggest that FLT3 and/or NPM1 mutations 
contribute to survival differences of DNMT3A-mutant patients. We observed an upregulation of 
genes of the p53, VEGF and DNA replication pathway and a downregulation of genes of the PI3K-
Akt pathway in short- compared to long-lived patients. We identified that the majority of measured 
miRNAs was downregulated in the short-lived group and we found differentially expressed microRNAs 
between both subgroups that have not been reported for AML so far (miR-153-2, miR-3065, miR-95, 
miR-6718) suggesting that miRNAs could be important for prognosis. In addition, we learned gene 
regulatory networks to predict potential major regulators and found several genes and miRNAs with 
known roles in AML pathogenesis, but also interesting novel candidates involved in the regulation 
of hematopoiesis, cell cycle, cell differentiation, and immunity that may contribute to the observed 
survival differences of both subgroups and could therefore be important for prognosis. Moreover, 
the characteristic gene mutation and expression signatures that distinguished short- from long-lived 
patients were also predictive for independent DNMT3A-mutant AML patients from other cohorts 
and could also contribute to further improve the European LeukemiaNet (ELN) prognostic scoring 
system. Our study represents the first in-depth computational approach to identify molecular factors 
associated with survival differences of DNMT3A-mutant AML patients and could trigger additional 
studies to develop robust molecular markers for a better stratification of AML patients with DNMT3A 
mutations.

Acute myeloid leukemia (AML) is a highly malignant cancer of myeloid blood cells affecting about one million 
people globally in 20151,2. It most frequently occurs in older adults and shows a relatively poor five-year survival 
rate of about 25%, which is worsening with increasing age of a patient at diagnosis3. AML is characterized by 
a rapid growth of abnormal, immature myeloblasts that lost their ability to differentiate, which replace normal 
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cells in the bone marrow and blood. At the level of underlying genetic aberrations, AML is very heterogeneous. 
Mutations in several genes are required for leukemic transformation affecting multiple steps of the differentia-
tion pathway4,5. In addition, different cytogenetic abnormalities of significant prognostic relevance, ranging 
from translocations (t(8;21), t(15;17)) and inversions (inv(16)) with relatively good prognosis to deletions of 
whole chromosomes (5, 7) or chromosomal arms (5q) and abnormalities on the q-arm of chromosome 3 (3q) 
associated with high risk, have been observed in AML patients6–8.

The first genome of a cytogenetically normal AML patient was sequenced in 20089. The Cancer Genome Atlas 
(TCGA) Research Network made enormous efforts to perform whole-genome or exome sequencing, transcrip-
tome and microRNA (miRNA) sequencing, and DNA methylome analysis of a large cohort of adult AML cases 
in 201310. These and other sequencing-based studies (e.g.11–14) enabled the identification of several genetic and 
genomic alterations acquired during AML pathogenesis. Subtypes of AML are associated with distinctive patterns 
of altered gene expression (e.g.15–17). Likewise, a prognostic and functional role of widespread dysregulation of 
miRNAs has emerged18,19. Regarding somatic mutations, it was found that only about a dozen genes are affected 
on average in an AML patient, which is considerably less than in most other human cancers10. The by far top-
ranking recurrently mutated genes in AML are FLT3, NPM1 and DNMT3A10.

The DNA methlytransferase 3A (DNMT3A) forms a gene family of DNA methyltransferases together with 
DNMT3B and DNMT1, where the encoded proteins DNMT3A and DNMT3B add methyl groups to unmodi-
fied DNA by conversion of cytosine to 5-methylcytosine, while DNMT1 maintains existing DNA methylation 
after cell division20. DNMT3A is highly expressed in embryonic stem cells21,22. A DNMT3A deletion in mouse 
hematopoietic stem cells has been shown to inhibit differentiation23 and a deletion of DNMT3A in human 
hematopoietic stem cells resulted in increased self-renewal and blockage of differentiation24. This importance of 
DNMT3A for normal hematopoiesis is in line with its high frequency of somatic mutations in AML, which are 
found in about 20% of patients9,25. It is assumed that DNMT3A mutations are acquired months or years before a 
potential onset of AML from hematopoietic stem cells or multipotent precursor cells leading to a pre-leukemic 
state that potentially leads to the development of AML26,27. In addition, significant associations of DNMT3A 
mutations with IDH1/2 mutations, FLT3 internal tandem duplications (ITD) and tyrosine kinase domain muta-
tions (TKD), and NPM1 mutations have been reported9,28.

Notably, around two-thirds of the DNMT3A mutations affect the R882 codon in the methyltransferase domain 
of DNMT3A9,25. Moreover, DNMT3A mutations in general or those affecting the R882 residue have been linked 
to shorter survival rates of patients9,14,25,29–31, but there is also an ongoing debate about the prognostic values of 
R882 and non-R882 DNMT3A mutations. This debate is fueled by the fact that, in contrast to generally poor 
prognosis, some DNMT3A-mutant patients show relatively long survival or even go into long-term remission 
with DNMT3A mutations remaining stable32,33. Molecular characteristics associated with such prognosis differ-
ences of DNMT3A-mutant patients have not been intensively studied so far.

Here, we initially analyzed genome-wide somatic mutation profiles of DNMT3A-mutant patients from the 
TCGA AML cohort by hierarchical clustering. Our analysis revealed two patient subgroups with profound dif-
ferences in overall survival rates. Additional analyses of gene and miRNA expression data in combination with 
inference of gene regulatory networks enabled us to identify molecular patterns of expression dysregulation as 
well as gene modules that distinguish both subgroups. The characteristic gene mutation and expression signa-
tures also enabled to separate DNMT3A-mutant AML patients of two independent cohorts into a short- and 
long-lived group. The results of our computational analysis point toward several genetic regulators and cellular 
processes that are potentially involved in a manifestation of apparent survival differences of AML patients with 
DNMT3A mutations.

Results
Two subgroups of DNMT3A‑mutated AML patients differ in overall survival.  Considering the 
gene mutation data from TCGA for all 197 AML patients, we found that 51 of them had a DNMT3A mutation. 
We observed in total 5 frame-shift, 43 missense, 6 nonsense and 3 splice site DNMT3A mutations including 6 
patients that had two of these mutations. For 29 (57%) of the patients, the mutation affected the R882 codon 
at second (n=22) or first (n=7) codon position (Supplementary Table 1). The 51 DNMT3A-mutated patients 
had on average 13.3 mutated genes (min=2, max=24) from 1,890 genes analyzed in total. Hierarchical cluster-
ing of the 51 DNMT3A-mutated patients based on binary mutational profiles of the 1,890 genes revealed two 
well-separated subgroups of nearly equal size (24 vs. 27 patients; Fig. 1A). Importantly, the two subgroups of 
DNMT3A-mutant patients showed a significant difference in overall survival (P < 0.013; Fig. 1B, Supplementary 
Table 2). Compared to 138 AML patients without a DNMT3A mutation, only the subgroup with shorter overall 
survival (short-lived subgroup from here on) showed a statistically significant difference in survival (P < 0.0001), 
while the other (long-lived subgroup) did not (P < 0.345), although a considerable deviation of its survival curve 
from that of the non-mutated patients was observed (Fig. 1B). Generally, DNMT3A-mutant patients showed 
significantly shorter survival than patients without a DNMT3A mutation (Fig. 1B, P = 0.004). Further, the short-
lived subgroup was enriched with patients harboring a R882 DNMT3A mutation (n=17, 71%) compared to 
patients with non-R882 mutations (n=7, 29%), while the long-lived subgroup was composed of 12 patients with 
R882 (44%) and 15 patients with non-R882 mutations (56%). However, this difference in the proportion of R882 
mutations of both subgroups was not significant (Chi-squared test, P = 0.106). We further compared the num-
ber of mutated genes and cytogenetic abnormalities between the short- and long-lived subgroup. The median 
number of mutated genes of short-lived patients was significantly smaller than for long-lived patients (Supple-
mentary Fig. 5; U-Test: P < 0.004; short-lived: 10.5; long-lived: 17). The majority of short- (71%) and long-lived 
patients (59%) had normal cytogenetic profiles. Interestingly, the long-lived group contained 7 patients (26%) 
with duplications or rearrangements of chromosome 8 that have not been observed in the short-lived group.
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To evaluate the robustness of the grouping of the 51 DNMT3A-mutated patients into two subgroups that 
differ in survival, we repeated the clustering for data subsets obtained by excluding different randomly selected 
fractions of patients considering 10,000 repetitions of this procedure (see Methods for details). For the vast 
number of subsets, the difference in patient survival between the subgroups remained significant or stayed close 
to the level of significance obtained for the full data set, although p-values of the log-rank tests increased with 
increasing number of excluded patients (Fig. 1C). The latter is not unexpected considering the limited number 
of DNMT3A-mutated AML patients.

For the analysis in which two patients were excluded at random, we observed that few subsets showed excep-
tionally high p-values of the corresponding log-rank tests. The patients excluded from these subsets exclusively 
belonged to a set of in total 4 members of the short-lived subgroup (TCGA case identifiers: TCGA-AB-2931-03, 
TCGA-AB-2824-03, TCGA-AB-2896-03, TCGA-AB-2945-03). Each of these four patients died, and their sur-
vival times were, respectively, 0, 30, 214, and 243 days after diagnosis. The four patients showed mutations in 13, 
5, 3 and 13 genes, respectively; all four had an NPM1 and two of them an FLT3 mutation, while the remaining 
mutations were found only once among the four patients.

Frequent FLT3 and NPM1 mutations distinguish short‑ and long‑lived DNMT3A‑mutated 
patients.  In order to understand whether and how patients from the two identified subgroups differ at the 
molecular level, we first searched for somatic mutations of specific genes that were enriched in one subgroup 

Figure 1.   Clustering of DNMT3A-mutated AML patients into two subgroups that differ in survival. (A) 
Hierarchical clustering of 51 DNMT3A-mutated AML patients; tip labels indicate TCGA identifiers (left subtree: 
short-lived, right subtree: long-lived). (B) Kaplan-Meier survival curves for the patients from (A) (black) and 
the two subgroups (short-lived: red, left subtree in A, survival data available for all 24 patients; long-lived: 
blue, right subtree in A, survival data available for 23 of 27 patients) as well as for 138 AML patients without a 
DNMT3A mutation (gray). Log-rank tests: P < 0.013 for red vs. blue, P < 0.0001 for red vs. grey, P = 0.345 for 
blue vs. grey, P = 0.004 for black vs. grey. (C) Robustness of clustering the DNMT3A-mutated patients into two 
subgroups that differ in survival, as assessed by randomly excluding patients and performing a hierarchical 
clustering and subsequent log-rank test on the data subset. Each boxplot shows the distributions of p-values of 
the log-rank tests for 10,000 data subsets. (D) Kaplan-Meier survival curves analyzing the impact of FLT3 and 
NPM1 co-mutations for all 17 affected patients of the short-lived subgroup (red) and all 12 affected patients of 
the 138 patients without a DNMT3A-mutation (grey). Log-rank test: P < 0.094.
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compared to the other. We found that each patient of the short-lived subgroup had at least one of either FLT3 
(20 of 24 patients) or NPM1 (21 of 24 patients) mutated, with 17 (71%) of them showing mutations in both of 
these genes. In sharp contrast, FLT3 and NPM1 were mutated in only one and seven patients of the 27 patients 
from the long-lived subgroup, respectively. We did not find any gene with strong enrichment of mutations in 
patients from the long-lived subgroup. Instead, we only observed slightly increased numbers of five IDH2 and 
four MT-CYB mutations in this subgroup. These two genes were not mutated in any of the patients from the 
short-lived subgroup.

To test whether or not the short survival of patients from the short-lived subgroup is mainly driven by FLT3-
NPM1 co-mutations, we separately analyzed a subset of in total 29 AML patients from the TCGA AML cohort, 
which had these two genes mutated. Seventeen of them also had a DNMT3A mutation and showed a considerably 
shorter survival compared to the remaining 12 patients without a DNMT3A mutation (Fig. 1D; Log-rank test, 
P < 0.094). Although not statistically significant but considering the small sample size, this points towards an 
effect of DNMT3A mutations on survival that is independent of FLT3 and NPM1 co-mutations.

Also patients either having a FLT3 mutation or a NPM1 mutation in combination with a DNMT3A mutation 
showed shorter overall survival than patients without a DNMT3A mutation (Supplementary Fig. 2). Further, 
the overall survival of patients with NPM1-DNMT3A co-mutations was very similar to those of patients with 
FLT3-NPM1-DNMT3A co-mutations. Co-mutations of DNMT3A with FLT3, NPM1 or both genes were gener-
ally associated with poor survival.

In addition, we determined the specific type of FLT3 mutation for each patient and analyzed if FLT3-ITD and 
FLT3-TKD differ in their impact on survival of DNMT3A-mutant AML patients from TCGA (Supplementary 
Table 1, Supplementary Fig. 6). The 20 FLT3 mutations in the short-lived subgroup were split into 11 FLT3-ITD 
and 9 FLT3-TKD mutations. The one FLT3 mutation in the long-lived group was a FLT3-ITD mutation. There 
was no significant difference in survival of DNMT3A-mutant AML patients distinguished by their type of FLT3 
mutation. Both groups did also not significantly differ in survival in comparison to DNMT3A-mutant AML 
patients without FLT3 mutations.

We further analyzed the gene mutation profiles within the short- and long-lived group by additionally dividing 
each corresponding subtree in Fig. 1A into its two major patient subgroups (Supplementary Fig. 3). Both derived 
short-lived subgroups strongly differed in the number of co-mutations of DNMT3A with FLT3 or NPM1. The 
two derived long-lived subgroups strongly differed in the number of co-mutations of DNMT3A with IDH1 or 
IDH2 and also in the number of NPM1 mutations.

Since DNMT3A-R882 mutations were increased in the short-lived group, we analyzed if mutations of FLT3 
or/and NPM1 are found more frequently in AML patients with DNMT3A-R882 mutations compared to patients 
with other DNMT3A mutations. We therefore considered a large independent cohort of AML patients34 and 
found a significant enrichment of DNMT3A-R882 and NPM1 co-mutations and a significant enrichment of 
concurrent DNMT3A-R882, NPM1, FLT3 mutations compared to the corresponding groups of patients with 
other DNMT3A mutations (Supplementary Fig. 4, Fisher’s exact test: P < 0.01), whereas no significant difference 
in the proportion of FLT3 mutations was found. We also observed systematic differences considering the per-
centage of peripheral blood blasts, white blood cell counts, platelet counts, and the hemoglobin level indicating 
that differentiation capabilities of AML cells with R882 and non-R882 DNMT3A mutations may differ at least 
to some extent (Supplementary Fig. 4).

A gene expression signature discriminates short‑ and long‑lived DNMT3A‑mutated 
patients.  Next, we used RNA-Seq gene expression data from TCGA for the 51 DNMT3A-mutated patients 
and conducted a differential gene expression analysis to search for genes that differ in their expression levels 
between the short- and long-lived subgroup. We identified 260 differentially expressed genes (DEGs) using an 
FDR-corrected p-value (q-value) cut-off of 0.1 (Fig. 2A, Supplementary Table 3).

When grouping the 260 DEGs into different functional categories (transcription factors, oncogenes, tumor 
suppressor genes, kinases, phosphatases, signaling and metabolic pathway genes, etc.35), we only found a sig-
nificant enrichment for known cancer-relevant signaling pathway genes. This included four genes involved in 
cytokine receptor interactions (CCL23, FAS, KITLG, TSLP) that were upregulated in the short-lived relative to 
the long-lived subgroup, two genes of the p53 signaling pathway (FAS, TP53I3) that were also upregulated, six 
genes involved in PI3K-Akt signaling (EFNA1, FGF9, GNG11, GNG2, GNG7, ITGA6) that were downregulated, 
two genes of the VEGF signaling pathway (PIK3CB, PLA2G4A) that were upregulated, and two genes involved 
in DNA replication (POLE4, RNASEH2C) that were also found to be upregulated in the short-lived subgroup 
(Fig. 2B).

Since we compared expression profiles of two relatively large groups, individual genes can also vary in their 
expression within a group while still being differentially expressed between both groups. This can result in 
additional subgroups that are masked by the global differential expression analysis. We therefore performed 
a hierarchical clustering of the patients based on expression profiles of the 260 DEGs, which resulted in four 
expression groups (EGs, Supplementary Table 2) of patients with characteristic large-scale expression differ-
ences for the 260 genes (Fig. 2C). EG1 exclusively contained 15 patients from the long-lived subgroup, while 
EG3 included 16 short-lived and a single long-lived patient (Fig. 2C, Table 1). These two groups with evident 
differences in gene expression thus strongly resemble the long- and short-lived subgroup clustering based on 
the somatic mutation data. The other two groups of patients (EG2a and EG2b) represented a mixture of in total 
five patients from the short-lived and ten patients from the long-lived subgroup with intermediate expression 
levels for most of the 260 DEGs (Fig. 2C, Table 1).

When inspecting additional meta-information from TCGA for the patients of the different expression groups, 
we observed no systematic differences regarding cytogenetic abnormality types. Instead, there was a notable 
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tendency that patients of EG2b and EG3, the two groups with a high or very high fraction of short-lived patients, 
were more frequently classified to have FAB type M4 (acute myelomocytic leukemia) or M5 (acute monoblastic 
leukemia or acute monocytic leukemia) (Table 1). The FAB types M4 and M5 have previously been associated 
with a high mutational burden at diagnosis36. This was not confirmed for our cohort, where the median number 
of mutated genes for patients within EG2b and EG3 was significantly smaller than for patients within EG1 and 
EG2a (U-Test: P < 0.002; EG2b and EG3: 11; EG1 and EG2a: 17; Supplementary Fig. 1).

A miRNA expression signature discriminates short‑ and long‑lived DNMT3A‑mutated 
patients.  To further analyze differences between the short- and the long-lived subgroup with respect to gene 
regulation, we considered miRNA expression data from TCGA available for 42 of the 51 DNMT3A-mutated 
AML patients. As for the gene expression data, we conducted a differential expression analysis and identified 25 
differentially expressed miRNAs discriminating patients from the two subgroups using a q-value cut-off of 0.1 
(Fig. 3A, Supplementary Table 3).

Interestingly, the relative fractions of up- and downregulated miRNAs in the short-lived compared to the 
long-lived subgroup were highly uneven. The large majority of miRNAs (21 out of 25) were downregulated in the 
short-lived subgroup, while only four miRNAs were upregulated. An altered miRNA expression can have different 
reasons: (i) it could be caused by the altered expression of a host gene that contains the affected miRNA, or (ii) the 
expression of a miRNA can be altered directly and independent of its host gene or in the absence of a host gene 
(e.g. a miRNA encoded in an intergenic chromosomal region). Therefore, we tested whether or not the expression 
of a miRNA is significantly correlated with the expression of its host gene across all DNMT3A-mutant patients.

Figure 2.   Genes differentially expressed between patient subgroups and enrichment analysis. (A) Volcano plot 
showing the relative expression change of the 15,623 genes between patients from the short-lived and long-lived 
subgroup. Genes with a significant change in expression (q < 0.1) are in black, others in gray. (B) Signaling 
pathways enriched with genes that are differentially expressed between the short- and the long-lived subgroup; 
separately shown for genes upregulated (red) and downregulated (blue), respectively, in the short-lived relative 
to the long-lived subgroup. (C) Gene expression heatmap of 260 differentially expressed genes. Rows are Z 
score-scaled. Column coloring indicates patients from the short-lived (red) and the long-lived (blue) subgroup. 
Row coloring highlights known transcription factors (yellow), genes involved in signaling pathways (green) and 
genes showing both of these annotations (black).
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Based on this correlation analysis, we found that the first category, e.g. miRNAs with significant host gene 
expression correlation, contained 6 of the 25 differentially expressed miRNAs (Fig. 3B). The expression of miR-
199a-2, whose gene co-localizes with the dynamin gene DNM3, was positively correlated with DNM3 expres-
sion (r = 0.432, P = 0.004). Also the expression of miR-3154 and miR-199a-1, which co-localize with the other 
two dynamin genes, were positively correlated with the expression of their host genes (miR-3154 vs. DNM1: 
r = 0.390, P = 0.011; miR-199a-1 vs. DNM2: r = 0.266, P = 0.089), although not statistically significant after 
correction for multiple testing (i.e., q > 0.1). Comparing short- to long-lived patients, the expression of DNM1 
and DNM3 was moderately decreased, whereas the expression of DNM2 did not differ between both subgroups 
(Supplementary Table 3). The other five miRNAs that had significantly positive expression correlations with 
their host genes were miR-10a (host gene HOXB3), miR-126 (EGFL7), miR-362 (CLCN5), miR-26a-1 (CTDSPL) 
and miR-551b (EGFEM1P).

The second category contained 19 of 25 differentially expressed miRNAs that did not show coexpression 
with their host genes or are encoded in inter-genic regions and do not have a host gene (Fig. 3B). An associa-
tion with AML has been reported previously for 13 of them (Supplementary Table 4). For instance, miR-181a-2, 
miR-181b-2 and miR-30a are known to be associated with a favorable prognosis upon up-regulation of their 
expression19,37, which is in line with a strong down-regulation of these three miRNAs in the short-lived relative 
to the long-lived subgroup. Similarly, we could reconfirm an up-regulation of let-7b in the context of NPM1 
mutations and a down-regulation of miR-130a in the context of FLT3 mutations37 in the short-lived subgroup. 
Further, we found a down-regulation of miR-331 in the short-lived subgroup, which differs from19 reporting 
that the up-regulation of miR-331 was associated with poor prognosis. We also observed decreased expression 
of miR-98 in the short-lived subgroup, which differs from previous findings that miR-98 is up-regulated in the 
background of NPM1 mutations (Supplementary Table 4). In addition, no direct associations with AML have 
been reported so far for the 4 miRNAs (miR-153-2, miR-3065, miR-6718, miR-95) (Supplementary Table 4), but 
associations with other types of cancer suggest that differences in their expression between short- and long-lived 
DNMT3A-mutant AML patients could also be important for prognosis (see “Discussion”).

Regulatory networks reveal potential molecular major regulators distinguishing short‑ from 
long‑lived DNMT3A‑mutated patients.  In order to investigate the combined effect of gene and miRNA 
expression on gene regulation we integrated these two types of data using a regulatory network-based approach. 
We started by reconstructing a signature gene-specific network to reveal potential regulators that distinguish 
short- from long-lived patients. Considering the 260 differentially expressed genes observed between both 
groups (Fig. 2A, Supplementary Table 3), we modeled the expression of a signature gene as a linear combina-
tion of the expression levels of the other 259 signature genes distinguishing short- from long-lived patients 

Table 1.   Assignment of short- and long-lived patients to our revealed gene expression groups in combination 
with meta-information about cytogenetic abnormality types and FAB types of the DNMT3A-mutant AML 
patients from TCGA. See also Supplementary Fig. 1 for an overview of the number of mutated genes per 
subgroup.

Expression group

EG1 EG2a EG2b EG3

Group composition

Short-lived patients 0 2 3 16

Long-lived patients 15 7 3 1

Cytogenetic abnormality types

n.a. 1 1 0 2

8+ 3 1 0 0

7q- 1 1 0 0

Complex 1 0 0 1

Complex 5p- 1 0 0 0

Normal 7 6 4 14

Normal 8+ 1 0 1 0

Normal 7q- 0 0 1 0

FAB types

n.a. 0 1 0 0

M0 2 0 0 0

M1 5 3 0 3

M2 4 3 0 3

M3 0 0 0 1

M4 3 2 1 6

M5 0 0 5 4

M7 1 0 0 0
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(see “Methods” for details). The prediction of robust links between genes during reconstruction of the network 
was complicated due to the small number of DNMT3A-mutated patients. Therefore, we repeated the network 
inference 100 times with different, randomly selected training sets of patients to identify network links that 
robustly occurred in at least two-thirds of the networks with a q-value of 0.1 or smaller. This enabled to predict 
the expression values of on average 18.3% of the 260 signature genes. In a second step, we further added the 
expression values of all 514 miRNAs as additional predictors to the network model and repeated the analysis. 
This slightly improved the fraction of signature genes with predictable expression levels to 21.9%. The predic-
tion accuracy of those genes, quantified by computing correlation coefficients between measured and predicted 
expression levels on the network-specific test sets, was high and significantly shifted into the positive range 
(mean correlation: 0.805, Wilcoxon signed rank test: P < 0.0001, Supplementary Fig. 5).

The resulting consensus network included 76 genes and 9 miRNAs (Fig. 4, Supplementary Table 5). This 
network consisted of several modules that were composed of two to eight genes. Two of the larger network 
modules were up-regulated in the short-lived subgroup and contained, respectively, four HOXA and three HOXB 
genes which are well-known major regulators of cell development and that have frequently been reported to be 
dysregulated in cancers including AML38–40. Six additional network modules with at least three genes and their 
components are summarized in Table 2. Each of the potential regulators in these network modules (labeled nodes 
in Fig. 4) was down-regulated in the short-lived compared to the long-lived subgroup. Interestingly, two of the 
six modules (network modules 1 and 4) contained genes that code for proteins expressed in erythrocytes or other 
blood components (HBM, RHD, GYPA, GYPC, CA1), or have been implicated in blood-associated diseases like 
anemia (GYPA) (Table 2). In addition, RPS19 of network module 6, encoding a ribosomal protein, has been 
linked to anemia, too (Table 2). Genes of the remaining three modules (network modules 2, 3, and 5) are involved 
in innate or adaptive immunity (ZAP70, CD3D, IFITM1, TNFRSF17, IGKV4-1, IGKC, C1QTNF4) (Table 2).

We further analyzed the protein-coding genes that were directly connected to one of the nine miRNAs in the 
network representing potential targets for miRNA-based post-transcriptional regulation (Fig. 4). Among them 
were five genes with known transcription factor activity (PBX3, HOXB3, LEF1, HOXA7, LBH) and three genes 
with oncogenic potential (PAPD7, PBX3, LEF1) for which a role in other cancers has been suggested previously 
(Table 3). Interestingly, a role during leukemogenesis and/or implications for clinical prognosis in AML has 
been reported for eight of the nine miRNAs (Supplementary Table 4). This included the differential regulation 
of let-7b and miR-130a already mentioned above as well as of miR-10a and miR-486 in the context of NPM1 or 
FLT3 mutations, effects on prognosis upon differential regulation of miR-128-1 and miR-150, an increased cell 
survival and proliferation prompted by expression changes of miR-196b targeting HOXB8, and regulation of 
miR-628 by cytokines18,19,37,41,42.

Table 2.   Non-HOX network modules and potential major regulators.

Regulator gene GeneCards annotation summary

Network module 1

SLC4A1 Anion exchanger; role in O2/CO3 exchange in erythrocytes

HBM Hemoglobin subunit Mu; iron ion and oxygen binding

RHD Rh blood group D antigen; ammonium transmembrane transporter activity

GYPA erythrocyte membrane protein; MN blood group receptor; hematopoietic stem cell differentiation; associated with 
Anemia, Autoimmune Hemolytic

CA1 Carbonate dehydratase and hydro-lyase activity; highest concentration in erythrocytes; nitrogen metabolism

Network module 2

ZAP70 T cell receptor associated kinase; T cell development; lymphocyte activation

CD3D Part of T cell receptor/CD3 complex; associated with immunodeficiencies

EVL Enhances actin nucleation and polymerization; actin and profilin binding

IFITM1 Interferone-induced transmembrane protein; antiviral activity; cell adhesion and control of cell growth and migra-
tion; regulates osteoblast differentiation

Network module 3

TNFRSF17 TNF receptor of major B lymphocytes; autoimmune response; transduces signals for cell survival and proliferation

IGKV4-1 V segment of variable domain of immunoglobulin light chain

IGKC Constant region of immunoglobulin heavy chains

Network module 4

GYPC Erythrocyte membrane protein; Gerbich blood group; response to elevated platelet cytosolic Ca2+; regulation of 
mechanical cell stability

MREG Melanoregulin; incorporation of pigments into hair; membrane fusing

Network module 5

SORL1 Transmembrane signaling receptor activity; low-density lipoprotein binding

C1QTNF4 Pro-inflammatory cytokine; activation of NF-kappa-B; IL6 up-regulation

Network module 6

RPS3 Ribosomal protein; mRNA activation

RPS19 Ribosomal protein; mRNA activation; associated with anemia
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Validation based on independent DNMT3A‑mutant AML patients.  We considered gene muta-
tion and gene expression data of independent DNMT3A-mutated AML patients from the German-Austrian 
AML Study Group34,43–45 to analyze whether the characteristic gene mutation and expression profiles that dis-
tinguished short- and long-lived DNMT3A-mutated TCGA AML patients are also of potential prognostic rel-
evance for other patients.

To analyze the transferability of the prognostic relevance of our initial grouping of gene mutation profiles 
of DNMT3A-mutated TCGA AML patients into a short- and long-lived subgroup (Fig. 1A, Supplementary 
Table 1), we considered gene mutation data of 208 DNMT3A-mutant AML patients from the German-Austrian 
AML Study Group that were initially treated in a similar manner followed by a bone marrow transplantation. We 
determined for each of these new patients the most similar DNMT3A-mutated TCGA AML patient and assigned 
its corresponding label (short- or long-lived) to the new patient. We found that the gene mutation profiles of 
short- and long-lived DNMT3A-mutated TCGA AML patients enabled to separate the 208 DNMT3A-mutant 
AML patients from the German-Austrian AML Study Group into a short- and long-lived subgroup that differed 
significantly in survival (Fig. 5A, log-rank test: P < 0.003).

Table 3.   Network miRNAs and potentially directly or indirectly regulated protein-coding genes. The logFC-
column quantifies the expression level of the miRNA within the short-lived subgroup relative to the long-lived 
subgroup.

miRNA logFC Connected gene GeneCards annotation summary

hsa-let-7b 1.01 PAPD7 Poly(A) RNA polymerase; oncogenic MAPK signaling; DNA repair; sister chromatin adhe-
sion

hsa-mir-10a 2.97 PBX3 Astrocytoma association; misregulation in cancer; transcription factor activity

hsa-mir-10a 2.97 HOXB3 Transcription factor in development, host gene of hsa-mir-10a

hsa-mir-128-1 − 0.54 ARPP21 cAMP-regulated phosphoprotein; nucleic acid and calmodulin binding; enriched expression 
in CNS

hsa-mir-130a − 1.88 FAM69B Cysteine-rich type II transmembrane protein of unknown function

hsa-mir-150 − 0.81 LEF1 T cell receptor binding; Wnt signaling, cancer association; transcription factor activity

hsa-mir-196b 1.16 HOXA7 Transcription factor in development

hsa-mir-486 − 0.93 LBH transcriptional activator in mitogen-activated protein kinase signaling pathway

hsa-mir-628 − 0.60 BEND2 participation in protein and DNA interactions during chromatin restructuring or transcrip-
tion

hsa-mir-6718 2.61 LRMDA Leucin-rich; melanocyte differentiation

Figure 3.   Differentially expressed miRNAs and co-expression of miRNAs and their host genes. (A) Volcano 
plot showing the relative expression change of 514 miRNAs between patients from the short-lived and long-
lived subgroup. miRNAs with a significant change in expression (q < 0.1) are colored, others in gray. (B) 
Correlation of miRNA and corresponding host gene expression values across 42 DNMT3A-mutated patients. 
Pearson correlation coefficients were set to zero (dashed vertical line, yellow coloring) for miRNAs without a 
protein-coding host gene. For both figure panels, triangles indicate miRNAs that show (white) or do not show 
(turquoise) a significant coexpression (positive correlation) with their respective host gene (q < 0.1).
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In addition, we also analyzed the transferability of the prognostic relevance of the characteristic gene expres-
sion signature that distinguished short- and long-lived DNMT3A-mutated TCGA AML patients (Fig. 2A, Sup-
plementary Table 2, q < 0.1). We therefore considered gene expression data of 63 DNMT3A-mutant AML patients 
from the University Hospital of Ulm that were also part of two clinical trials of the German-Austrian AML Study 
Group44, 45. The majority of these patients received a bone marrow transplantation (47 of 63). We determined for 
each of these new patients the similarity to the TCGA-based short- and long-lived signature and assigned to each 
patient the label of the most similar class (short- or long-lived). We found that the characteristic gene expres-
sion signature that distinguished short- and long-lived DNMT3A-mutated TCGA AML patients also enabled to 
separate the 63 DNMT3A-mutant AML patients from the University Hospital of Ulm into a short- and long-lived 
subgroup that differed significantly in survival (Fig. 5B, log-rank test: P < 0.03). This separation significance 
was further improved when we only considered the 47 patients that received a bone marrow transplantation 
(log-rank test: P < 0.016).

Further, we also analyzed if our short- and long-lived classification of DNMT3A-mutant AML patients can 
help to improve the widely considered European LeukemiaNet (ELN) prognostic scoring systems46,47. Risk clas-
sifications according to the ELN 2010 system46 were publicly available for 192 of 208 patients of the German-
Austrian AML Study Group considered for the gene mutation-based validation34. Our additional stratification 
into short- and long-lived patients significantly improved the risk stratification of patients of the ELN 2010 

Figure 4.   Gene and miRNA regulatory network. Nodes represent either genes that are differentially expressed 
between the two patient subgroups or miRNAs selected as predictors during network inference. Nodes are 
colored according to whether a gene/miRNA shows an increase or decrease in expression in the short-lived 
relative to the long-lived patient subgroup. Gene/miRNA names are shown for putative regulator nodes (out-
degree > 0) with node sizes being proportional to their out-degree. Potential activating and repressing links 
are shown in yellow and green color, respectively; only links present in at least two-thirds of the networks were 
considered. Note that links can represent direct or indirect regulatory dependencies or may only represent 
correlations.
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intermediate-1 risk category (Fig. 6A, log-rank test: P = 0.0008). Also patients of the ELN 2010 adverse risk 
group could potentially benefit from our additional stratification (Supplementary Fig. 7). Further, our additional 
stratification had no impact on the stratification of patients of the ELN 2010 intermediate-2 or favorable risk 
categories (Supplementary Fig. 7). We also analyzed the impact of our short- and long-lived stratification on 
the revised ELN 2017 risk classification47. This was possible for 134 of 208 patients, but excluded patients with 
a FLT3-ITD mutation, because the FLT3-ITD-to-wild-type allelic ratios required for a reclassification were not 
publicly available48. In this limited analysis, we found that our additional stratification had no impact on the 
ELN 2017 favorable risk category, but there were too few patients to interpret the additional stratification of the 
other risk categories (Supplementary Fig. 9A-B).

In addition, the ELN 2010 risk classification was also available for 62 of 63 patients of the Ulm cohort con-
sidered for the gene expression-based validation34. We found that our additional stratification into short- and 
long-lived patients again significantly improved the risk stratification for patients of the ELN 2010 intermediate-1 
risk category (Fig. 6B, log-rank test: P = 0.0011). Interestingly, there was also a clear tendency that patients of 
the ELN 2010 favorable risk category could potentially benefit from our additional stratification (Supplementary 
Fig. 8). Further, our additional stratification had no impact on patients of the ELN 2010 intermediate-2 or adverse 
risk categories (Supplementary Fig. 8). We also analyzed the impact of our additional stratification on the revised 
ELN 2017 risk classification that was available for 37 of 63 patients48. We observed that patients of the ELN 2017 
favorable risk group can potentially benefit from our additional stratification (Supplementary Fig. 9C,D). Similar 
trends were also present for the ELN 2017 intermediate and adverse risk categories. However, there were too few 
patients within the different ELN 2017 risk categories to analyze the significance of these trends.

Nevertheless, all these results round off our different computational studies for the TCGA cohort and indicate 
that the characteristic discriminative gene mutation and expression signatures that distinguished short- from 
long-lived DNMT3A-mutated TCGA AML patients are also predictive for other independent patient cohorts 
and potentially useful to improve patient stratification.

Discussion
A somatic mutation of DNMT3A occurs in about one fourth of adult AML cases. Mutations of this gene have 
frequently been associated with poor survival9,14,25,30,31, but also substantially longer survival or long-term remis-
sions have been reported for some DNMT3A-mutant AML patients32,33. Detailed molecular differences that 
may contribute to these survival differences have not been characterized so far. This motivated us to analyze all 
DNMT3A-mutant patients of the TCGA AML cohort with the help of well-established computational tools. We 
identified two robust subgroups of DNMT3A-mutant patients purely based on clustering of somatic gene muta-
tion profiles and further found that both subgroups showed significant survival differences.

Further comparisons showed that the short-lived subgroup had a strong enrichment of mutations of the R882 
codon of the catalytic methyltransferase domain of DNMT3A, whereas the number of R882 and non-R882 muta-
tions was nearly equal within the long-lived subgroup. This mutation type-specific effect on prognosis has been 

Figure 5.   Validation based on independent DNMT3A-mutant AML patients. (A) Gene mutation based 
validation. Kaplan-Meier curves for an independent cohort of 208 DNMT3A-mutated AML with bone marrow 
transplantation from the German-Austrian AML Study Group. For each of these patients, the most similar 
DNMT3A-mutated AML patient of the TCGA cohort was determined by counting mismatches between the 
corresponding gene mutation profiles. Each patient was assigned to the short-lived or to the long-lived group 
based on the class label of the most similar TCGA patient (short-lived: red, 79 patients; long-lived: blue, 129 
patients). Log-rank test for short- vs. long-lived: P < 0.003. (B) Gene expression based validation. Kaplan-Meier 
curves for an independent cohort of 63 DNMT3A-mutated AML patients from the University Hospital of Ulm 
that were also part of the German-Austrian AML Study Group. For each of these patients, correlations between 
its signature gene expression profile with the average short-lived and long-lived signature gene expression 
profiles of the DNMT3A-mutated AML patients from TCGA were computed. Each patient was assigned to the 
short-lived or to the long-lived group based on the maximum of both correlations (short-lived: red, 43 patients; 
long-lived: blue, 20 patients). Log-rank test for short- vs. long-lived: P < 0.03.
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noted before25, but was not sufficient for a full discrimination of our two subgroups. Thus, additional molecular 
factors are likely to contribute to the observed survival differences.

Mutated DNMT3A has been shown to induce genomic instability in a human leukemic cell line model49. We 
therefore compared the short- and long-lived subgroup in terms of mutated genes and cytogenetic rearrange-
ments. Interestingly, the number of mutated genes was significantly smaller in the short-lived subgroup. In addi-
tion, the majority of patients of both subgroups had normal cytogenetic profiles, but especially some patients of 
the long-lived subgroup showed duplications or rearrangements of chromosome 8 that have not been observed 
within the short-lived subgroup. Thus, the overall shorter survival of patients in the short-lived group cannot be 
explained by a greater mutational burden or increased rates of abnormal cytogenetic profiles.

We found NPM1 and/or FLT3 mutations in every short-lived patient but only in few long-lived patients. This 
overrepresentation of NPM1 and/or FLT3 mutations in the short-lived subgroup is not unexpected, because 
DNMT3A, NPM1, and FLT3 are the most frequently mutated genes found in AML10. The co-occurrence of muta-
tions of all three genes has previously been suggested to define a specific subtype of AML with unique epigenetic 
features10 and frequent mutations of NPM1 and FLT3 in DNMT3A-mutant patients have also been observed in 
other AML studies9,25,50. Importantly, NPM1 and FLT3 are both established prognostic markers in routine clinical 
practice47. FLT3 mutations (ITD: internal tandem duplication of the juxtamembrane region, TKD: point muta-
tions in the second tyrosine kinase domain) have been associated with increased relapse risk and poor outcome 
of AML patients51,52. The frequency of FLT3-ITD and FLT3-TKD mutations was nearly identical in the short-
lived subgroup and an additional stratification according to the specific type of FLT3 mutation did not further 
improve our classification of DNMT3A-mutant AML patients from TCGA. NPM1 mutations frequently co-occur 
together with FLT3-ITD mutations, which counteracts a favorable prognosis that is observed for AML patients 
that only have a NPM1 mutation but no FLT3 mutation12,47,53. This is also supported by our two subgroups. The 
majority of short-lived patients had co-mutations of NPM1 and FLT3, whereas long-lived patients did not show 
NPM1 mutations in the background of FLT3 mutations. Thus, our study clearly indicates that NPM1 and/or 
FLT3 mutations are likely to contribute to the prognosis of DNMT3A-mutant patients. This is supported by the 
previous findings that DNMT3A mutations jointly act with FLT3 and NPM1 mutations to promote resistance 
to anthracycline chemotherapy54 and that concurrent mutations of DNMT3A, FLT3, and NPM1 have also been 
associated with poor prognosis of AML patients55. In addition, all our survival analyses in combination with 
the presence or absence of DNMT3A mutations further support that DNMT3A mutations have an additional 
negative impact on survival that is independent of FLT3 and/or NPM1 mutations or co-mutations of both genes. 

Figure 6.   Improvement of ELN 2010 risk classification by additional short- and long-lived stratification. (A) 
Gene mutation-based validation of the 81 independent validation patients from the German-Austrian AML 
Study Group of the ELN 2010 risk category intermediate-1 (Inter-1). For each of these patients, the most similar 
DNMT3A-mutated AML patient of the TCGA cohort was determined by counting mismatches between the 
corresponding gene mutation profiles. Each patient was assigned to the short-lived or to the long-lived subgroup 
based on the class label of the most similar TCGA patient. Kaplan-Meier curves of this additional stratification 
are shown in red for the 49 Inter-1-short-lived patients and in blue for the 32 Inter-1-long-lived patients. The 
basic Kaplan-Meier curve without additional stratification of these patients is shown in grey. Log-rank test 
for Inter-1-short- vs. Inter-1-long-lived: P = 0.0008. A global overview of the additional stratification of all 
ELN 2010 risk categories is shown in Supplementary Fig. 7. (B) Gene expression based validation of the 35 
independent validation patients from the Ulm cohort of the ELN 2010 risk category intermediate-1 (Inter-1). 
For each of these patients, correlations between its signature gene expression profile with the average short-lived 
and long-lived signature gene expression profiles of the DNMT3A-mutated AML patients from TCGA were 
computed. Each patient was assigned to the short-lived or to the long-lived subgroup based on the maximum 
of both correlations. Kaplan-Meier curves of this additional stratification are shown in red for the 25 Inter-1-
short-lived patients and in blue for the 10 Inter-1-long-lived patients. The basic Kaplan-Meier curve without 
additional stratification of these patients is shown in grey. Log-rank test for Inter-1-short- vs. Inter-1-long-
lived: P = 0.0011. A global overview of the additional stratification of all ELN 2010 risk categories is shown in 
Supplementary Fig. 8.
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This is supported by findings for the presence or absence of DNMT3A mutations in AML patients with FLT3 
mutations50. Additional experiments should be done to elucidate whether the DNMT3A mutation cooperates 
with FLT3 and NPM1 co-mutations.

Since an increased rate of DNMT3A-R882 mutations was observed for our short-lived subgroup, we also 
analyzed a large independent cohort of AML patients34 and observed an enrichment of DNMT3A-R882 and 
NPM1 co-mutations and an enrichment of concurrent DNMT3A-R882, NPM1, and FLT3 mutations compared 
to AML patients with DNMT3A mutations that did not affect the R882 codon. Interestingly, the blood composi-
tion of these groups differed in dependency of the type of the DNMT3A mutation indicating an impact on the 
differentiation capabilities of AML cells. Additional experiments are required to validate the accumulation of 
NPM1 and/or FLT3 mutations and to analyze the differentiation capabilities of AML cells in the background of 
specific DNMT3A mutations.

We further compared the gene expression profiles of the short- and long-lived subgroup revealing a molecular 
signature of 260 protein-coding genes that distinguished both subgroups. This signature included many transcrip-
tion factors and genes of cancer-associated pathways like p53, VEGF and PI3K-Akt signaling and DNA replica-
tion. Importantly, a clustering of the patients based on these signature genes largely recapitulated the short-lived 
and long-lived subgroup and further revealed a set of patients with mixed expression levels. This indicates that 
at least three different transcriptional programs are associated with survival differences of DNMT3A-mutant 
AML patients. Further, it is important to note that NPM1 or FLT3 mutations or co-mutations of both genes that 
were observed for each short-lived patient also contribute to the observed expression differences. Therefore, 
our comparison of short- and long-lived gene expression profiles does not allow to disentangle the individual 
contributions of DNMT3A, FLT3, or NPM1 mutations. Still, all our survival analyses comparing the presence or 
absence of DNMT3A mutations in the background of NPM1 and/or FLT3 mutations suggest an additional contri-
bution of DNMT3A mutations. This additional contribution is also included in the gene expression signature and 
further supported by our gene expression-based classification of independent DNMT3A-mutant AML patients.

Alterations of miRNA expression profiles play an important role in AML18,19. We therefore compared the 
miRNA expression profiles of the short- and long-lived subgroup. We revealed a dominant trend of miRNA 
downregulation in the short-lived subgroup suggesting a wide-spread activation of otherwise repressed protein-
coding genes, including known AML oncogenes and other oncogenes that were not associated with AML before. 
Further, associations with AML prognosis and/or mutation of NPM1 and FLT3 have already been reported for 
most miRNAs, but we also identified four miRNAs that have not been reported for AML so far. This included 
three miRNAs that were downregulated in the short-lived subgroup (i) miR-153-2 implicated in brain, lung, 
liver and epithelial cancers56–59, (ii) miR-3065 for which an association with altered gene expression regulation 
in breast tumors was suggested60, and (iii) miR-95 known to be differentially expressed in different human 
cancers61–63 with shown impacts on cell proliferation, invasion, migration, and apoptosis in a pancreatic tumor 
cell line and in hepatocellular carcinoma61,63. We did not find cancer-associated reports for the fourth miRNA 
miR-6718, but its strong 2.6-fold upregulation in the short-lived subgroup and the selection by our regulatory 
network approach suggests an association with prognosis. In addition, we discovered a downregulation of all 
three dynamin genes in the short-lived subgroup based on their co-localized miRNAs. This may have an impact 
on endocytosis, asymmetric cell divisions, and blockage of immune signals64–67. This suggests that these miRNAs 
could represent important biomarker candidates to discriminate between short- and long-lived DNMT3A-mutant 
AML patients. Additional experimental studies should be done to validate these potential markers and to better 
understand how they alter molecular mechanisms in DNMT3A-mutant AML patients.

We also learned gene regulatory networks to identify potential major regulators and to delineate modules 
of protein-coding and miRNA genes that were altered between the short- and long-lived subgroup. Due to the 
relatively small number of AML patients with DNMT3A mutations, our consensus network contained only rela-
tively few genes compared to networks from similar studies of other cancers68,69. Still, those genes present in the 
network and the links between them were inferred with high confidence. It is important to note that the inferred 
links between genes can reflect direct or indirect regulatory dependencies or only represent correlations, because 
our network reconstruction method is based on correlations between gene expression levels. Yet, larger sub-
networks can still point toward cellular pathways that are altered between both subgroups. Our revealed modules 
suggest alterations of several cellular processes in short-lived relative to long-lived patients. This included genes 
of the PI3K-Akt and p53 signaling pathway involved in AML70,71 and an upregulation of HOX genes altered in 
leukemia38,40. In addition, we also identified genes that are expressed in different blood components. This included 
three genes downregulated in the short-lived subgroup - SLC4A1, GYPA and RPS19 - that have previously been 
associated with anemia72–74. Notably, SLC4A1 and its co-factor GYPA play a major role in oxygen and carbon 
dioxide exchange in erythrocytes75,76 and their downregulation in the short-lived subgroup could be associated 
with less differentiated leukemic cells. Further, we found three gene modules with immunity-related functions 
downregulated in the short-lived subgroup and an increased number of differentially expressed cytokine receptor 
signaling pathway genes suggesting that immune evasion might be more effective in the short-lived subgroup, 
but immunosuppression in AML is still poorly understood77. The identified putative major regulators potentially 
represent important candidates for the development of biomarkers that could distinguish between short- and 
long-lived patients. Additional experimental validation studies are required to test their prognostic potential 
and to further characterize their functional role in DNMT3A-mutant AML patients.

Moreover, we also showed that the characteristic gene mutation and expression signatures that distinguished 
short- from long-lived DNMT3A-mutant TCGA AML patients contain relevant information that can be used 
to classify other independent DNMT3A-mutant AML patients as short- or long-lived. We demonstrated this for 
DNMT3A-mutant AML patients from the German-Austrian AML Study Group. Thus, our revealed molecular 
signatures could potentially provide a useful basis to enable a better stratification of DNMT3A-mutant AML 
patients to more precisely identify patients that are of high risk for a fast relapse. This is also supported by the 
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interpretation of our results with respect to the cytogenetic and molecular risk classification provided by TCGA, 
which assigned more than 82% of the DNMT3A-mutant patients to the intermediate risk group, whereas the 
remaining patients were assigned to the poor risk group, except one unclassified patient. Since our approach 
significantly improved the stratification of these TCGA patients, this also clearly indicates that our approach can 
improve this cytogenetic and molecular risk classification. The value of our approach is further supported by 
the significant improvement of the stratification of patients that were assigned to intermediate-1 risk category 
according to the ELN 2010 prognostic scoring system46. Further, we also observed potential benefits of our 
additional stratification for the ELN 2010 risk categories favorable and adverse, but more patients would have 
been required for a robust significance analysis. In addition, an analysis of the revised ELN 2017 risk categories47 
indicated that the favorable and intermediate risk groups could potentially benefit from our additional stratifica-
tion, but this should be taken with caution, because this analysis was only possible for a subset of our validation 
patients. Additional validation studies are necessary to analyze how our findings generalize to other patient 
cohorts and how they impact on patient outcome. Future studies should include an extended comparison to the 
revised ELN 2017 scoring system. This was only partly possible in our study, because molecular data such as the 
FLT3-ITD-to-wild-type allelic ratio required for a reclassification were not publicly available for the patients 
considered in our study. However, a recent study has shown that DNMT3A-mutant AML patients have a worse 
prognosis than DNMT3A wild type patients for individual ELN 2017 risk categories48. Our study indicates that 
an improved stratification of individual risk categories might even be possible within the group of DNMT3A-
mutant AML patients.

Our study represents the first in-depth computational approach to identify molecular factors associated with 
survival differences of DNMT3A-mutant AML patients. This may provide a basis to develop molecular markers 
for improved patient stratification. Future studies are required to further analyze and validate the findings of 
our computational study.

Methods
Molecular data.  Gene and miRNA expression data and somatic mutations of patients from the TCGA AML 
cohort were obtained from the TCGA data portal (gdc.cancer.gov). After excluding lowly expressed genes with 
a counts per million value smaller one in two-thirds or more of the patients, we normalized the raw expression 
data using the R/Bioconductor package limma with normalization method cyclic loess78. By using information 
on the DNMT3A mutational status from the somatic mutation data, we determined 51 DNMT3A-mutated AML 
patients and derived corresponding gene expression (47 of 51 patients, 15,623 genes) and miRNA (42 of 51 
patients, 514 miRNAs) data sets. Details to DNMT3A-mutations and processed data sets are provided in Sup-
plementary Table 1.

Clustering based on somatic mutation data.  We considered each of the 51 AML patients with a 
DNMT3A mutation and created for each patient its binary gene mutation profile by setting the entry of each 
gene to one (mutated) or to zero (not mutated) in dependency of the patient-specific gene mutation status. 
Next, we performed a hierarchical clustering of tumors based on binary profiles of the somatic mutation data 
using R with 1 minus Pearson correlation as distance measure with distances ranging from zero (two completely 
identical mutation profiles) to one (two completely different mutation profiles) in combination with Ward’s 
clustering method (ward.D2)79. Note that the Pearson correlation coefficient of two binary variables is equal 
to the phi coefficient80. Hierarchical clustering initially considers each patient as a separate cluster and then 
repeats the following two steps until all clusters are merged together: (i) identification of the two clusters with 
the smallest distance followed by (ii) merging of these two clusters into a joint cluster. These iterative merging 
steps enable to reveal the hierarchical relationships between the clusters that are stored in a tree-structure called 
dendrogram. Two tumor subgroups were derived by cutting the resulting clustering dendrogram into two sub-
trees. These subgroups were named ’short-lived’ and ’long-lived’ according to survival differences between the 
subgroups (see below). The TCGA identifiers for patients of the short- and long-lived subgroup are provided 
in Supplementary Table 2. To assess the robustness of this patient clustering, we excluded k randomly selected 
patients, repeated the clustering into two groups as described above, and performed a log-rank test for survival 
differences between the groups (see below). We tested k = 2, 4, 6, 8, 10 , and repeated the analysis 10,000 times 
for each k. We did not test larger values of k owing to the relatively small number of DNMT3A-mutated AML 
patients in the data set.

Survival analysis.  Information about days to death (for patients with status ’Dead’) or days to last follow-up 
(for patients with status ’Alive’) was taken from the TCGA clinical data (Supplementary Table 2). Last follow-up 
events were considered as non-informative censoring events. We generated survival curves and performed log-
rank tests using the R package survival81.

Identification of differentially expressed genes and miRNAs.  Differential gene and miRNA expres-
sion analysis between the short- and long-lived subgroup was done following limma’s standard workflow78. 
Results of the gene and miRNA expression analysis are provided in Supplementary Table  3. Differentially 
expressed (signature) genes or miRNAs were selected using an FDR-adjusted p-value (q-value) cut-off of 0.1.

Gene and pathway annotation enrichment analysis.  Gene, signaling pathway, and metabolome 
annotations were obtained from35. The number of signature genes per annotation category was counted sepa-
rately for up- and downregulated genes and their significance of enrichment per category was calculated using 
Fisher’s exact test.
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Signature‑specific regulatory network inference.  We inferred transcriptional regulatory networks 
that model the expression of a signature gene as a linear combination of weighted expression values of the other 
signature genes and, optionally, of miRNAs. Mathematical details to the underlying linear model are provided 
in35,82. This approach has further been applied in similar studies of other human cancers68,69,83,84. We learned 
two types of networks using (i) the expression values of signature genes and (ii) the expression values of signa-
ture genes and miRNAs as predictors. miRNA expression values were set to zero for patients without available 
miRNA profiles. Lasso regression85 in combination with a significance test for lasso86 were used to estimate 
the coefficients and their corresponding significance of the predictors for each signature gene-specific linear 
model82. This sparse regression approach selects the most relevant predictors that best explain the observed 
expression levels of a signature gene across the DNMT3A-mutant AML patients.

Both network approaches were validated through cross-validation by repeated random sub-sampling. To this 
end, the data was randomly partitioned into a training set constituting three-quarter of the DNMT3A-mutated 
AML patients and a test set constituting the remaining one-fourth of patients. A network was constructed on 
the training data, and the expression of the signature genes was predicted and compared to the experimentally 
measured expression for the test data. This procedure was repeated 100 times. To assess prediction accuracy, we 
calculated Pearson correlation coefficients of predicted and measured gene expression averaged over the 100 
networks. A consensus network was constructed by including all links with q-values of 0.1 or smaller that were 
predicted in at least two-thirds of the 100 networks.

Validation based on independent DNMT3A‑mutant AML patients.  To validate the separation 
capability of the characteristic gene mutation profiles of short- and long-lived DNMT3A-mutant AML patients 
from TCGA, we downloaded publicly available gene mutation profiles and clinical data of AML patients from 
https​://githu​b.com/gerst​ung-lab/AML-multi​stage​/tree/maste​r/data34. We considered all 208 DNMT3A-mutated 
AML patients from the German-Austrian AML Study Group (AMLSG)43–45 that received a bone marrow trans-
plantation to obtain a large validation cohort of patients that were treated similarly. The majority of these patients 
(204 of 208) were part of two clinical trials (AMLHD98A: 7744; AMLSG0704: 12745) focusing on AML patients 
in the age range of 18 to 65. The other four patients were part of the AMLHD98B trial that considered AML 
patients of age 61 or older43. Considered patients from AMLHD98A received an induction chemotherapy with 
idarubicin, cytarabine and etoposide (ICE) followed by allogeneic transplants. Treatment of considered patients 
form AMLSG0704 and AMLHD98B was similar, but patients were randomly assigned to receive ICE or ICE 
plus all-trans retinoic acid (ATRA) as induction therapy before transplantation12. We computed the most similar 
DNMT3A-mutated TCGA AML patient for each of these 208 patients by counting mismatches between each 
corresponding pair of gene mutation profiles. We had to focus on 31 genes that overlapped with the mutated 
genes of DNMT3A-mutated TCGA AML patients, because the data from34 was obtained by targeted sequenc-
ing of selected cancer genes. We assigned each of the 208 patients either to the short- or to the long-lived group 
based on the class label of the most similar TCGA patient and performed a survival analysis as described in the 
section ’Survival analysis’ above (Supplementary Table 6). Further, we also considered the European Leukemi-
aNet (ELN) 2010 risk classification46 available for 192 of 208 patients to analyze if an additional stratification of 
each individual ELN 2010 risk category based on our short- and long-lived classification can improve this prog-
nostic scoring system (Supplementary Table 6). We realized this by an extended survival analysis for the patients 
of an individual risk category in comparison to our corresponding short- and long-lived classifications of these 
patients. Similarly, we also analyzed our stratification into short- and long-lived patients considering the revised 
ELN 2017 risk classification47. This was only possible for 134 of 208 validation patients that were reclassified in48 
(Supplementary Table 6). The other validation patients could not be considered, because FLT3-ITD-to-wild-type 
allelic ratios required for a reclassification were not publicly available.

To validate the separation capability of the gene expression signature of short- and long-lived DNMT3A-
mutant AML patients from TCGA, we considered a cohort of 218 AML patients from the University Hospital 
of Ulm of which 63 had a DNMT3A mutation. The majority of these 63 patients were part of the AMLSG0704 
clinical trial45 (59) and the remaining 4 patients were part of the AMLHD98A clinical trial44 of the German-
Austrian AML Study Group. The majority of these patients received a bone marrow transplantation (47 of 63). 
The AML gene expression profiles of these patients were measured on Affymetrix HG-U133 Plus 2 microar-
rays. We normalized the gene expression data set using GCRMA87 in combination with a BrainArray design file 
(HGU133Plus2_Hs_ENTREZG 15.0.0). We focused on the 257 signature genes of the 260 signature genes from 
our TCGA analysis (Fig. 2A, Supplementary Table 3, q < 0.1) that were measured on the Affymetrix arrays. We 
computed for each of the 63 DNMT3A-mutated patients rank-based correlations (Kendall’s tau) between its 
signature gene expression profile and the average short-lived and long-lived signature gene expression profiles 
of the DNMT3A-mutated AML patients from TCGA. We assigned each patient either to the short-lived or to 
the long-lived group based on the maximum of both correlations and performed a survival analysis as described 
above (Supplementary Table 7). We also repeated this analysis only focusing on the 47 patients that received a 
bone marrow transplantation. Further, we again considered the ELN 2010 risk classification46 available for 62 of 
63 patients (Supplementary Table 7) and performed an additional survival analysis to analyze if our short- and 
long-lived classification can improve the individual risk categories. Similarly, we analyzed our short- and long-
lived stratification considering the revised ELN 2017 risk classification47 for the subset of 37 of 63 validation 
patients that could be reclassified in48 (Supplementary Table 7).

Ethical approval and informed consent.  Not applicable. No ethical approval was required for this study. 
All utilized public omics data sets were generated by otherswho obtained ethical approval.

https://github.com/gerstung-lab/AML-multistage/tree/master/data
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Data availability
Molecular data and meta-information of all considered TCGA AML patients are publicly available from The 
Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/). Additional files attached to this manu-
script contain considered molecular data, survival information, and learned network links. Basic implementa-
tions of the algorithms considered for network inference are publicly available from GitHub (https://github.
com/seifemi/regNet).
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