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Fig. S1: EZH2 inhibition by GSK126 in lung cancer cells promotes EMT reporter expression and the
activation of an endogenous mesenchymal program with limited chromatin remodeling.

(A) Above, heatmap of MGT#1 gene expression in cancer cells lines treated as indicated. Gene expression
was normalized by GAPDH and number of integrations relative to the H2122 cell line (see Methods).
Middle, EMT score-based cell line classification on gene expression as in Fig. 1C (see Methods). Below, live
cell imaging of mVenus (EMT reporter) and DRAQ5 (nuclear dye) in the indicated cell lines and conditions.
(B) Immunoblot of epithelial marker (e-cadherin), trimethyl-H3K27 and H3 markers of A549-MGT#1 and
H1944-MGT#1 samples from RNA-seq upon treatment with GSK126 and TGF- Bl (see Methods). (C)
Heatmap with hierarchical clustering showing correlation of the RNA-seq samples by Euclidian distance.
The color intensity inversely correlates to the distance between pairs of samples, calculated from the
normalized expression data. Column color bars denote the indicated cell lines, treatment conditions and
MGT#1 expression levels. (D) Venn diagram depicting the overlap of the significant differentially regulated
genes (DESeq2, padj < 0.05, log2FC +/- 1.5) in the indicated cell lines and conditions compared to the
respective unsorted controls. (E) Dotplot visualization of the top upregulated gene sets, commonly induced
by GSK126 and TGF- B1 in A549 and H1944 cell lines. Color-code and node size indicate significance and
gene ratio, respectively. (F) Hierarchical clustering of ATAC-seq profiling of the top 250k accessible DHS for
the indicated conditions. Reads were corrected for total count only in probes per million reads, for probe
length, log transformed and transformed by size factor and percentile normalization. (G) IGV view of the
ATAC-seq profile of the MGT#1 at its endogenous location for the indicated conditions. (H) Scatter plot of
the ATAC-seq normalized reads count for 2M DHS. Colors indicate selected significant accessible sites as
determined by DESeqg2 (padj<0.05 for all conditions) and padj refers to gene set enrichment analysis for
the indicated conditions. Reads were corrected for total count only in probes per million reads, for probe
length, log transformed and transformed by size factor and percentile normalization. (I) Heatmap of the
ATAC-seq normalized reads count for significant accessible sites as determined by DESeq2 (padj<0.05 for

the TGF- B conditions).
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Fig. S2: phenotypic CRISPR interference screens quality controls.



(A) Heatmap of samples correlation in A549-MGT#1 kinome screen. Sample-to-sample Euclidean distance
is calculated on ~6000 gRNAs. The color intensity inversely correlates to the distance between pairs of
samples, as calculated from the normalized read counts of all gRNAs. Samples were clustered using
complete linkage. Samples were furthered annotated by experimental conditions and MGT#1 expression
level. (B) Heatmap of samples correlation in A549-MGT#1 epigenome screen. The settings for this analysis
are consistent with (A). (C) Scatter plot of differential enrichment analysis for gRNAs from the dox-only arm
of the A549-MGT#1 kinome screen to highlight the role for GSK126 to amplify the identification of hits. All
the settings and scales are consistent with Fig.1F for comparison. (D) Scatter plot of differential enrichment
analysis for gRNAs in the dox-only arm of the A549-MGT#1 epigenome screen. All the settings and scales
are consistent with Fig.1F for comparison. Note that GSK126 numerically increases the hits. (E) Scatter plot
of differential enrichment analysis for the kinome gRNAs in a representative control (i.e. without dox-
induced KRAB-dCas9 activation). All the settings and scales are consistent with Fig.1F for comparison. (F)
Scatter plot of differential enrichment analysis for the epigenome gRNAs in a representative control (i.e.
without dox-induced KRAB-dCas9 activation). All the settings and scales are consistent with Fig.1F for
comparison. (G) Boxplot of gRNA reads level for the indicated groups and comparisons. Significance is

calculated by Wilcoxon rank-sum test.
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(A) MA plot of gRNA abundance (X-axis) and fold-change (Y-axis) in the GSK126- and dox-arm of the H1944-
MGT#1 kinome screen. Selected hits from the A549-MGT#1 screen are colored to highlight that individual
hits may be context dependent. (B) MA plot of gRNA abundance (X-axis) and difference in gRNA abundance
(Y-axis) in the dox-only arm of the H1944-MGT#1 kinome screen to highlight that GSK126 increases the
number of hits revealed by the screen. (C) MA plot of gRNA abundance (X-axis) and fold-change (Y-axis) in
the GSK126- and dox-arm of the H1944-MGT#1 epigenome screen. Selected hits from the A549-MGT#1
screen are colored to highlight that individual hits may be context dependent and the scale is maintained
in all analysis to highlight that chromatin factors are dominant over kinases as regulators of EMT
homeostasis also in the H1944 screens. (D) MA plot of gRNA abundance (X-axis) and difference in gRNA
abundance (Y-axis) in the dox-only arm of the H1944-MGT#1 epigenome screen to highlight that GSK126
increases the number of hits revealed by the screen. (E) Boxplot of gRNA reads level for the indicated

groups and comparisons. Significance is calculated by Wilcoxon rank-sum test.
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Fig. S4: generation of knock-out lung cancer reporter cell lines by CRISPR/Cas9

(A) For each selected positive regulator of MGT#1 activation in the CRISPR interference, the upper panel

indicates the gRNA sequence and the lower and right panels reports on the validation by TIDE/ICE and



immunoblotting in A549 cells (polyclonal and clonal population), respectively. (B) Table summarizing the
% of indel calculated by ICE analysis for each KO cell line generated. (C) Validation of KO cell lines by western
blot. (D) Validation of CNKSR2 and KMT2A KO by T7E1 assay. (E) Validation of ARID1A and BRD2 KO in
H1944 by T7E1 assay and western blot for ZMYNDS. (F) Validation of ARID1A and BRD2 KO in GIC-IDH1-
WT-hGIC by T7E1 assay and western blot for ZMYNDS. (G) Bubble plot of FACS analysis validation of EMT
suppressors/enhancers performed in prolonged exposure of TGF-B1 (10d). (H) FACS analysis of MGT#1-
reporter in A549-MGT#1 pre-treated with GSK126 and BMP4 and after co-treatment with 1uM DMH1 (see
Methods). (I) Immunoblot of epithelial (E-cadherin) and mesenchymal (Vimentin, Snail) markers in wild-

type and DMH1-treated A549 -MGT#1 cells.
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Figure S5. Quality controls for ChlP-seq

(A) For each pairwise comparison, the scatter plot analysis shows ChlP-seq reads quantitated and corrected

for sequencing dept. Note the high concordance between biologically independent ChlP-seq. (B) Boxplot



of Cluster I-lI-1ll normalized gene expression distribution. Color-coding depicts the indicated cell lines and
treatment conditions. Significance is calculated by Wilcoxon rank-sum test. (C) IGV view of individual ChIP-
seq binding at selected genomic loci in which all profiles can be assessed. (D) Heatmap of the binding for
the indicated ChlIP-seq and ATAC-seq experiments at Cluster | chromatin region. Below, the binding for
indicated ChlIP-seq and ATAC-seq experiments at A549 CTCF binding sites. (E) IGV view of individual ChIP-
seq at selected genomic loci in the A549 cells with the indicated conditions. (F) Bar plot representation of
the relative BRD2 and ZMYND8 occupancy on the indicated target loci as assessed by ChIP-gqPCR.

Significance was calculated by 2-way ANOVA and Sidak post-hoc test.
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Fig. S6. Cluster |, Il and Ill genes separate TCGA LUAD patients according to their EMT status

(A) Venn diagram depicting overlap between highly epithelial or mesenchymal LUAD biopsies identified by
a dual score analysis. MES and EMT scoring classify LUAD patients based on gene expression of
mesenchymal and epithelial-mesenchymal markers, respectively (see methods). (B) Heatmap showing
clustering of epithelial and mesenchymal LUAD biopsies identified in A by non-negative matrix factorization

based on all expressed genes (NMF; see methods). Selected EPI and MES metagenes are highlighted to the



right. (C) Overall survival of LUAD patients with EPl or MES gene expression profiling. (D) Heatmap showing
clustering of epithelial and mesenchymal LUAD biopsies by non-negative matrix factorization based on

Cluster | (Left), Il (middle) and Il (right) genes.
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Fig. S7. Epithelial-mesenchymal classification by NMF consensus clustering in TCGA and ICGC cohorts

(A) Cluster I, Il and lll genes from Fig. 4a separate TCGA patients according to their EMT status. Consensus
clustering matrix of 1,096 TCGA samples. (B) Cophenetic coefficient for k = 2 to k = 7. (C) Silhouette plot
for identification of core TCGA samples. Note the generally high consensus for samples fitting the
respective clusters. (D) Validation of NMF clustering analysis on TCGA patients by NMF consensus
clustering matrix of ICGC samples. Based on cophenetic coefficient consensus for k = 2 to k = 7 and given
the narrower set of cancer types in the validation cohort, we chose k=3 as minimal validation. (E) Heatmap
showing 112 epithelial and mesenchymal ICGC cohorts biopsies defined by the dual scoring analysis are
clustered into three clusters by NMF consensus based on the 3,798 signature genes defined by NMF
clustering on TCGA cohorts (see methods). (F) Silhouette plot for identification of ICGC core samples. In
the k=3 setting, note the generally high consensus for samples fitting the C1, C2 and C4 clusters of TCGA
cohorts and that C3 in TCGA cohort is largely high- and low-grade gliomas, which are absent in the ICGC
cohort. (G) Box plot showing the EMT (left) and MES (right) scores for each NMF cluster in the three NMF

clusters for ICGC validation cohort.
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Fig S8. Tissue of origin and identity of samples in the NMF clusters
(A) Number of epithelial (EPI) or mesenchymal (MES) biopsies as defined by dual-scoring and divided by
cancer type. (B) Enrichment of MES and EPI patients independent of cancer types in each NMF clusters

(Fisher’s exact test). (C) Box plot showing EMT and MES scores for each NMF cluster. Reference: C4. (D)



GO terms enriched in the five NMF clusters as Fig. 5B. (E) Upstream regulator analysis of chemical drugs
and compounds by IPA on differentially-regulated genes between epithelial and mesenchymal

LUAD+KIRC+STAD patients. Selected significant terms are highlighted.
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Fig. S9. Functional analysis of NMF clusters
Left, gene-concept networks from the KEGG analysis; the yellow dots represent the pathways shown in Fig.
5B and the grey dots represent genes. Right, upstream regulators (legend) and their downstream targets

as defined by Ingenuity Pathway Analysis on metagenes associated with each NMF cluster.
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Fig. S10. Extended analysis of AP-1 characterization in LUAD, KIRC and STAD



(A) IGV view of individual ChIP-seq and ATAC-seq profiles at selected genomic loci, in A549 cells, in the
indicated conditions. (B) Bubble plot showing expression data for the indicated genes and cancer types.
Bubble color and size denote relative expression and fold-changes, respectively. (C) UMAP clustering of
LUAD patients based on signature genes from NMF cluster C1. Color code denotes the fold-changes in the
JUNXFOSL2 score. The box plot above represents the distribution of patients within the UMAP and is the
same as in Fig. 5E. The box plot to the right represents the distribution of the indicated scores within the
indicated subset of LUAD patients. (D) Bubble plot showing expression data for the indicated genes and
conditions. Bubble color and size indicate fold-change compared to control and normalized expression per
sample, respectively. (E) Immunoblotting for c-JUN and vinculin in the indicated in naive and treated cell
lines as indicated (see Methods). (F) IGV view of individual ChIP-seq binding at selected genomic loci in

A549 cells with the indicated treatment conditions.

SUPPLEMENTARY TABLES

Table S1. Source data for Fig. 1 and Supplementary Fig. 2-3. For each cell line, condition and library,
normalized readcounts for the kinome and epigenome CRISPR interference screens are indicated in
columns and the sgRNAs in rows. X-axis=sum, Y-axis=difference, stastistics= -log10(padj).

Table S2. Source data for Fig. 4A. K-means clusters |, Il and Il based on ZMYNDS8 binding.

Table S3. Source data for Fig. 5. TCGA cancers and patients.

Table S4. Source data for Fig. 5A. NMF clustering outcome. The first tab includes the patients’ TCGA
identifier, the NMF cluster, cancer type and the classification of each patient by our dual scoring system.
Table S5. Source data for Fig. 5C and Supplementary Fig. 9

Table S6. Source data for Fig. 6D. Relative directional RNAPII enrichment score.
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