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Abstract

Background: We investigated the effects of uncoupling protein 3 (UCP3) genetic deletion on '®F-fluorodeoxyglucose
(FDG) cardiac uptake by positron emission tomography (PET)/computed tomography (CT) dedicated animal system
after permanent coronary artery ligation.

Methods: Cardiac '8F-FDG PET/CT was performed in UCP3 knockout (UCP3™7) and wild-type (WT) mice one week after
induction of myocardial infarction or sham procedure.

Results: In sham-operated mice no difference in left ventricular (LV) volume was detectable between WT and UCP3™".
After myocardial infarction, LV volume was higher in both WT and UCP3™~ compared to sham animals, with a
significant interaction (p < 0.05) between genotype and myocardial infarction. In sham-operated animals no difference
in FDG standardized uptake value (SUV) was detectable between WT (1.8 + 0.6) and UCP3 ™~ (1.8 + 0.6). After myocardial

volume and SUV was found.

infarction SUV was significantly higher in remote areas than in infarcted territories in both UCP3—/— and WT mice
(both p < 0.01). Moreover, in remote areas, SUV was significantly higher (p < 0.001) in UCP3—/— as compared to WT,
while in the infarcted territory SUV was comparable (p =0.29). A significant relationship (r=0.68, p < 0.001) between LV

Conclusions: In a mice model of permanent coronary occlusion, UCP3 deficiency results in a metabolic shift that
favored glycolytic metabolism and increased FDG uptake in remote areas.
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Background

The family of mitochondrial uncoupling proteins (UCP)
has been recognized as being important in the regulation
of mitochondrial function and reactive oxygen species
(ROS) production [1]. In mitochondria from skeletal
muscle, UCP3 was found to be necessary for the fasting-
induced enhancement of fatty acid oxidation rate and
capacity, possibly via mitigated mitochondrial oxidative
stress [2]. Moderate physiological induction of UCP3
protein expression in muscle cells results in increased
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fatty acid oxidation in the absence of uncoupling, leading
to the possibility that it may be involved in protection
from lipotoxicity in muscle [3].

In the mammalian heart, UCP2 and UCP3 are the
predominant isoforms [4] and have a protective effect
in ischemia-reperfusion injury [5,6]. However, the role
of UCP3 in cardiac muscle remains relatively unex-
plored and it is still controversial [7,8]. Animal models
over- or under-expressing UCP3, evaluated by ex vivo
genomic or proteomic analysis, did not provide uniform an-
swers. Essop et al. [9] demonstrated a marked reduction in
left ventricular (LV) UCP3 mitochondrial gene expression
following experimental chronic hypoxia in association with
metabolic switch from fatty acid to glucose utilization,
resulting in an increased reliance on anaerobic glycolysis
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by cardiomyocytes. More recent evidences suggest that
UCP3 genetic deletion promotes mitochondrial dysfunc-
tion, and increases ROS production and apoptotic cell
death after myocardial infarction in mice, enlarging infarct
size and accelerating heart failure [10]. However, the effects
of UCP3 deletion on glucose metabolism after permanent
coronary artery ligation have never been tested. In this
study we measured in vivo '*F-fluorodeoxyglucose (FDG)
cardiac uptake by high-resolution positron emission
tomography (PET)/computed tomography (CT) in a
mouse model lacking UCP3 after permanent coronary
artery ligation to highlight possible alterations in myocar-
dial energetic metabolism.

Methods

Animal studies

Animal experiments conformed to the “Guide for the
Care and Use of Laboratory Animals” published by the
US National Institutes of Health (NIH Publication No.
85-23, revised 1996) and were approved by the animal
welfare regulation of University Federico II of Naples,
Italy. Mice were purchased from the Jackson Laboratory
(genetic background-strain: 129S4/Sv]Jae). The UCP3 knock-
out (UCP3™") mice were obtained as previously described
[11]. Male adult UCP3~/~ (aged 8 to 9 weeks, n=17)
and wild-type (WT) mice (aged 8 to 9 weeks, n=14)
were included in the study and maintained under iden-
tical conditions of temperature (21 +1°C), humidity
(60 +5%), and light—dark cycle and had free access to
normal mouse chow.

Mouse model of myocardial infarction

Myocardial infarction was induced in UCP3™~ (n = 8) and
WT mice (n=8) by permanent ligation of the left coron-
ary artery. Sham-operated animals underwent the same
procedure without ligation of the coronary artery at the
same time (sham: UCP3™/~, n =9 and WT, n = 6). Perman-
ent ligation of left coronary artery was performed as previ-
ously described [12] using a surgical microscope to clearly
detect and ligate the small vessel, dedicated microsurgical
instruments, thin sutures and needles, and a customized
mouse ventilator (Harvard Apparatus, March-Hugstetten,
Germany). Briefly, mice were anesthetized with 2.4%
sevofluorane plus oxygen, fixed in a supine position on
a heating table to prevent hypothermia, intubated and
ventilated with a tidal volume of 200 ul and a respira-
tory rate of about 110 breaths/min. The thoracotomy
was performed by a transverse 5 mm incision of the
left fifth intercostal space, 2 mm away from the left
sternal border, then the pericardial sac was opened and
the left anterior descending coronary artery was oc-
cluded 2-3 mm distal to the tip of the left auricle using
a 7.0 silk suture.
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Trans-thoracic echocardiography

Trans-thoracic echocardiography was performed 7 days
(range 5-8) after surgery in both myocardial infarction and
sham groups using the Vevo 770 high-resolution imaging
system (VisualSonics), as previously described [13]. Briefly,
the mice were anesthetized with an intramuscular injection
of ketamine 100 mg/kg and xylazine 2.5 mg/kg, and echo-
cardiograms were performed with a 30-MHz RMV-707B
scanning head. Cardiac function was evaluated by measur-
ing LV fractional shortening [13].

PET/CT imaging
The same day of echocardiography, PET/CT was per-
formed in all mice using a dedicated animal scanner
(eXplore Vista, GE Healthcare, Milwaukee, W1, USA).
The scanner has a PET spatial resolution of 1.6 mm
full-width at half maximum and a CT spatial resolution
of 200 um. The animals had unrestricted access to water
and their normal food before scanning. Prior to imaging,
mice were warmed for 15 minutes with an infrared lamp
to induce vasodilatation of the lateral tail vein. Mice were
then anesthetized with a mixture of isoflurane 4% and
oxygen 1 L/minute for 5 minutes and positioned in the
mouse restrainer. A dose of 300 MBq/kg of '*F-FDG
was administrated as a bolus in the lateral tail vein by a
30-gauge needle (injection volume, 100 pL). Animals
were maintained at a temperature of 23°C during the
biodistribution of FDG. This standardized protocol
safeguarded animal welfare and optimized the PET scan
with FDG, i.e., avoiding stress for restrain or cold to reduce
interscapular brown fat uptake and improve the uptake in
the target structure. In addition, it minimizes the risk of
motion artifacts during acquisition. After 40 minutes, mice
were anesthetized with ketamine 100 mg/kg and xylazine
10 mg/kg (injection volume, 100 pL/10 g). Thereafter, the
mice, with the heart centered in the tomograph, were sym-
metrically positioned on a warm bed with micropore tape,
and a 15-minute static PET (single bed position with an
axial field-of-view of 4.8 cm; energy window 250-700 keV)
scan was performed, followed by a 7-minute CT scan.
PET/CT images were processed as previously described
[14]. PET data were reconstructed using a 3D-FORE/2D-
OSEM iterative algorithm (16 subsets, 2 iterations, matrix
size 175 x 175, voxel size of 0.3875 x 0.3875 x 0.7750 mm®?)
including random, scatter correction, dead time, decay, and
attenuation correction using CT data. Reconstructed im-
ages were reoriented to obtain axial sections perpendicular
to the LV long axis and the whole ventricle wall was
manually segmented tracing a region of interest in each
slice (eXplore Vista Software). FDG uptake was measured
in the LV wall volume and expressed as standardized
uptake value (SUV): tissue activity (MBq/cc)/[injected
dose (MBq)/body weight (g)]). Ellipsoidal regions of
interest were also drawn on the right lobe of the liver
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and on the left triceps brachii muscle and FDG uptake was
expressed as average SUV. In UCP3™~ and WT mice with
myocardial infarction, SUV was also measured separately in
the infarcted territory and in remote areas. Automated
image analysis software (MunichHeart) was used to measure
LV volume and infarct size on the basis of volumetric sam-
pling of tracer uptake [15,16]. This software allowed long-
axis definition, volumetric polar map calculation, and report
page generation for the database. Each polar map was nor-
malized to its maximum uptake value. Extent of infarct was
expressed in percentage value (% defect area/LV area) by
counting the elements in the polar map with an activity
below a threshold (50% of the maximum) and relating
this value to the total number of polar map elements.
The reproducibility and accuracy of this approach for
measurement of infarct size in a mice model of permanent
coronary occlusion have been documented [14].

Statistical analysis

All data were expressed as mean * standard deviation.
Comparisons between two groups were performed
using the unpaired Student ¢ test. Two-way analysis of
variance was performed to analyze differences by genotype
and myocardial infarction among the four groups, including
a Tukey post-hoc analysis if a significant F test occurred.
Linear regression analysis was performed to evaluate the
relationship between LV volume and SUV. A p value < 0.05
was considered statistically significant.

Results

Individual values of LV volume in the four groups of
mice are illustrated in Figure 1. In sham-operated mice
no difference was detectable between WT (56.1 + 6.1 pl)
and UCP3™/~ (58.7 £+ 5.1 ul). After myocardial infarction,
LV volume was higher in both WT (59.9 +9.3 pl) and
UCP3”/~ (75.5£10.8 ul) as compared to sham animals,
with UCP3™"~ mice showing the highest values. At two-way
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Table 1 Effects of genotype and myocardial infarction
and their interaction on left ventricular volume at
two-way analysis of variance

Sum of Degree of Mean F-value p-value

square freedom square
Model 1782 3 594 8.78 0.0003
Genotype 627 1 627 9.27 0.005
Myocardial infarction 805 1 805 119 0.002
Genotype/myocardial 323 1 323 4.78 0.04
infarction
Residual 1826 27 68
Total 3608 30 120

analysis of variance a significant interaction (p < 0.05)
between genotype and myocardial infarction was found
(Table 1).

At trans-thoracic echocardiography, sham-operated
UCP3™"~ mice showed LV fractional shortening comparable
to WT (56.5 +4.6% and 54.1 +4.2%, respectively, p = NS).
After myocardial infarction, LV fractional shortening was
significantly lower (p <0.05) in both WT (42.7 + 3.1%) and
UCP37/~ (24.4 + 2.5%) mice compared to sham-operated
animals. UCP3™~ mice displayed a significant worsening
in cardiac function after coronary artery ligation compared
with WT (p<0.05). Furthermore, UCP3 genetic deletion
increased infarct size after coronary artery ligation as
compared to WT (44 +9% vs. 29 + 7%, p < 0.005). Vertical
long-axis, horizontal long-axis, and short-axis slices and the
resulting polar map in a WT mouse and an UCP3™"~ mouse
after myocardial infarction are illustrated in Figure 2.

Figure 3 shows individual values of SUV in the four
groups of mice. In sham-operated animals no difference
was detectable between WT (1.8 +0.6) and UCP3™/~
(1.8 £ 0.6). After myocardial infarction, SUV was higher in
both WT (2.2 +0.6) and UCP3™~ (4.0 + 0.9) compared to
sham animals, with UCP3™~ mice showing the highest
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Figure 1 Individual values for LV volume in sham-operated and myocardial infarction WT and UCP3™~ mice. Closed circles indicate
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Infarct size 27% area map

mouse (A) and an UCP3™~ mouse (B) after myocardial infarction.

Figure 2 Vertical long-axis, horizontal long-axis, and short-axis slices (on the bottom) and the resulting polar map (on the top) in a WT

B

Infarct size 55% area map

values. The results of two-way analysis of variance are
reported in Table 2. As shown, a significant interaction
(p < 0.005) between genotype and myocardial infarction
was found. At linear regression analysis a significant rela-
tionship (r =0.68, p <0.001) between LV volume and SUV
was found (Figure 4). At separate analysis, after myocardial
infarction SUV was significantly higher in remote areas
than in infarcted territories in both UCP3™~ and WT mice
(Table 3). In remote areas, SUV was significantly higher
(p<0.001) in UCP3™/~ as compared to WT, while in
the infarcted territory SUV was comparable (p = 0.29)
in the two groups of mice. Finally, in non-cardiac tissue
(liver and muscles) SUV was independent from UCP dele-
tion and myocardial infarction (Table 4).

Discussion

This study demonstrates that after permanent coronary
artery ligation UCP3 genetic deletion is associated with
larger infarct size and remodeling and higher cardiac
FDG uptake in remote areas as compared to WT mice.
These findings suggest that UCP3 deletion induces a
metabolic shift that favored glycolytic metabolism.
Moreover, the larger area of necrosis and remodeling in
response to ischemia in mice leaking UCP3 confirms the
cardioprotective role of this protein.

The physiological function of UCP3 is as yet unknown. It
has been hypothesized that UCP3 facilitate high rates of fatty
acid oxidation [17]. UCP3 is proposed to export the poten-
tially detrimental fatty acid anions to the intermembrane
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Figure 3 Individual values for SUV in sham-operated and myocardial infarction WT and UCP3™'~ mice. Closed circles indicate
mean =+ standard deviation.
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Table 2 Effects of genotype and myocardial infarction and
their interaction on SUV at two-way analysis of variance
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Table 3 SUV values in infarcted territory and remote
areas in WT and UCP3~'~ mice after myocardial infarction

Sum of Degree of Mean F-value p-value

square freedom square

Model 24 3 80 144 0.0001
Genotype 58 1 58 103 0.003
Myocardial infarction 12 1 12 216 0.0001
Genotype/myocardial 54 1 54 9.79 0.004
infarction

Residual 15 27 0.56

Total 39 30 130

space and cytosol where they can be re-esterified for subse-
quent use in other pathways. This hypothesis was supported
by MacLellan et al. [3] who observed an increased fatty
acid oxidation due to augmented UCP3 expression.
These results are consistent with the clinical findings of
Argyropoulos et al. [18] who demonstrated decreased
fat oxidation by indirect calorimetry in a population of
Gullah-speaking African Americans with an exon six-splice
donor single nucleotide polymorphism in the UCP3 gene.
Decreased fat oxidation has also been documented through
indirect calorimetry in UCP3™"~ mice [19]. These findings
support and extend the latter and provide a potential
mechanism for the detrimental effects of decreased UCP3
expression in muscle with regard to the development of
lipotoxicity and insulin resistance in muscle. Seifert et al.
[2] also indicated a role for UCP3 in the adaptation of
fatty acid oxidation capacity to fasting and possibly more
broadly to perturbed energy balance. In addition, Essop
et al. [9] demonstrated a decrease of UCP3 gene expres-
sion in rat heart during hypoxia, associated with reduced
fatty acid oxidation and increased reliance on glucose me-
tabolism. These data support an overall reduction in the
dependence on mitochondrial oxidative phosphorylation
in the left ventricle for ATP production in response to
hypobaric hypoxia. However, more recent studies have
shown that UCP3 is robustly upregulated in skeletal

Infarcted territory Remote areas p-value
WT 13+03 25£07 <001
ucpP3 ™~ 1.7£09 43+1.0* <0.01

*p < 0.001 WT vs. UCP37/~.

muscle in response to hypoxia [20]. Therefore, the effect
of hypoxia on UCP3 expression is still unclear.

UCP3 is expressed in response to reperfusion after ische-
mia and, activating a mechanism cytoprotective antioxi-
dant, it is capable of reducing the production of ROS and
subsequent reperfusion injury [21,22]. In rats it has been
shown that the expression of UCP3 is inversely associated
with infarct size, probably by activating a protective mech-
anism to prevent the death of cardiomyocytes in the tissue
surrounding the infarcted area [23]. An increased UCP3
expression after ischemia-reperfusion has been demon-
strated also in the isolated mouse heart [24] and in the
mouse heart in vivo [25]. Therefore, this protein might
be a potential therapeutic target for the management of
cardiac ischemic disease. During myocardial ischemia,
impairment of the energetic activity of the heart is asso-
ciated with increased level of circulating free fatty acids
[26]. However, it has been demonstrated that muscle
mitochondrial fatty acid oxidation is decreased in UCP3™~/~
as compared to WT mice [27]. Thus, it is conceivable that
also in the heart the reduced UCP3 levels may lead to a
reduction in capacity to oxidize lipids and to in increased
glucose consumption. Our data indicate that this meta-
bolic shift is present in remote myocardium where SUV
was significantly higher in UCP3™~ than in WT mice
(Table 3), indicating the presence of signaling mechanisms
between ischemic/necrotic and control remote tissue.

In this study we found that after permanent coronary
artery ligation, infarct size and LV volume were significantly
greater in UCP3™"~ group compared to WT mice. Infarct
size is one of the major determinants of post-ischemic car-
diac remodeling and adverse outcome. To evaluate cardiac
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Figure 4 Relationship between LV volume and SUV at linear regression analysis.
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Table 4 Liver and muscle SUV values for sham-operated
and myocardial infarction WT and UCP3™~ mice

Sham-operated Myocardial infarction

wT ucpP3 - wT UCP3™~ F-value p-value
Liver  042+£012 039+£018 046+015 038+012 048 0.69
Muscle 0784028 079+024 076+027 075+041 003 0.99

function in WT and UCP3™/~ mice after myocardial in-
farction, transthoracic echocardiography was performed
in all experimental groups. Sham-operated UCP3~~ mice
showed LV fractional shortening comparable to WT. After
myocardial infarction, LV fractional shortening was signifi-
cantly lower compared to sham-operated mice in both WT
and UCP3™"~ mice. Moreover, UCP3™'~ mice displayed a
significant worsening in cardiac function after coronary
artery ligation compared with WT.

Mailloux et al. [28] demonstrated that deficiency in
UCP3 resulted in a metabolic shift in skeletal muscles
that favored glycolytic metabolism, increased glucose
uptake and increased sensitivity to oxidative challenge
and these findings were confirmed by FDG uptake at
PET imaging. To explore whether this metabolic shift
towards glycolysis is present also in cardiac muscle, we
measured glucose uptake by monitoring myocardial
FDG activity in UCP3™~ and in WT mice with and
without coronary artery ligation. Our results show no
differences in sham-operated animals between WT and
UCP3™/". On the other hand, after myocardial infarc-
tion SUV in remote areas was higher in both WT and
UCP3™~ compared to sham animals. Noteworthy, UCP3™/~
mice showed the highest value of SUV and the results of
two-way analysis of variance demonstrated a significant
interaction between genotype and myocardial infarction.
Finally, we found a significant relationship between LV
volume and SUV. This finding indicates that adverse re-
modeling and metabolic derangement are direct related
and that UCP3 deletion has an unfavorable impact on
both parameters.

This study has some limitations. First, serum glucose
levels were not available at time of imaging. In addition, no
dynamic acquisition was performed and cardiac glucose
metabolism was indexed by SUV. This approach might
have been hampered by the systemic effect of UCP3 de-
letion on glycolytic flux in the whole body tissues. How-
ever, in non-cardiac tissue SUV was independent from
UCP deletion and myocardial infarction (Table 4), indicat-
ing that blood tracer availability for myocardial uptake
was not altered in UCP3™"~ mice.

Conclusions
In this study we demonstrate for the first time that, in
a mice model of permanent coronary occlusion, UCP3
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deficiency results in a metabolic shift that favored
glycolytic metabolism and increased FDG uptake in remote
areas. We also found a negative remodeling of the left ven-
tricle in response to ischemia in mice leaking UCP3, con-
firming the cardioprotective role of this protein.
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