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Analysis of Renal Diffusion-Weighted Imaging (DWI) Using
Apparent Diffusion Coefficient (ADC) and Intravoxel
Incoherent Motion (IVIM) Models

Neil Peter Jerome and João S. Periquito

Abstract

Analysis of renal diffusion-weighted imaging (DWI) data to derive markers of tissue properties requires
careful consideration of the type, extent, and limitations of the acquired data. Alongside data quality and
general suitability for quantitative analysis, choice of diffusion model, fitting algorithm, and processing
steps can have consequences for the precision, accuracy, and reliability of derived diffusion parameters. Here
we introduce and discuss important steps for diffusion-weighted image processing, and in particular give
example analysis protocols and pseudo-code for analysis using the apparent diffusion coefficient (ADC) and
intravoxel incoherent motion (IVIM) models. Following an overview of general principles, we provide
details of optional steps, and steps for validation of results. Illustrative examples are provided, together with
extensive notes discussing wider context of individual steps, and notes on potential pitfalls.
This publication is based upon work from the COST Action PARENCHIMA, a community-driven

network funded by the European Cooperation in Science and Technology (COST) program of the
European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
This analysis protocol chapter is complemented by two separate chapters describing the basic concepts and
experimental procedure.
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1 Introduction

Diffusion-weighted imaging (DWI) can be implemented in many
forms, and similarly analysis of DWI data is more complex than for
other common quantitative modalities such as T1, T2, and T2*
[1, 2]. The overall goal of deriving robust biomarkers for renal
function, disease identification and response, as well as monitoring
of transplants and so forth [3] relies not only on the suitability of
the acquisition for the question being asked, but also how that data
are handled in post-processing and analysis.
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The basic concepts underlying DWI, and example experimental
protocols, are discussed in the chapters by Jerome NP et al. “Renal
Diffusion-Weighted Imaging (DWI) for Apparent Diffusion Coef-
ficient (ADC), Intravoxel Incoherent Motion (IVIM), and Diffu-
sion Tensor Imaging (DTI): Basic Concepts” and by Periquito J et
al. “Renal MRI Diffusion: Experimental Protocol” of this book.
This chapter will cover general elements of data quality and analysis,
with a view to providing example protocols for the main models
employed for renal DWI. As mentioned in the chapter by Jerome
NP et al. “Renal Diffusion-Weighted Imaging (DWI) for Apparent
Diffusion Coefficient (ADC), Intravoxel Incoherent Motion
(IVIM), and Diffusion Tensor Imaging (DTI): Basic Concepts,”
however, it is critical to note that analysis choices are intrinsically
linked to the acquisition strategy itself, most prominently in num-
ber and direction of chosen b-values used, which means not only
that the available choices of analysis are limited by the type of data
collected but also that intended analysis should be an integral part
of study planning. Analysis itself is naı̈ve to the suitability of the
choices of model and algorithm used, for example, and so this
responsibility rests with the researcher.

Alternative diffusion models, as well as other mathematical
signal representations without explicit physiological meaning, to
the ones discussed here are numerous, and include the increasingly
popular stretched exponential and kurtosis descriptions, and this
field is constantly developing [4–8]. In addition to general consid-
erations, this chapter provides explicit methods for two common
diffusion models, namely, the apparent diffusion coefficient (ADC)
and the intravoxel incoherent motion (IVIM) models, and
describes the estimation of the corresponding diffusion parameters.
While the assumption has been made that suitable data has been
acquired (see the chapter by Periquito J et al. “Renal MRI Diffu-
sion: Experimental Protocol”), no two datasets are alike, and these
protocols are presented as guidelines that claim to be neither com-
plete nor sufficient, and are intended only to provide a basic frame-
work whereby a full analysis protocol can be developed. The
advantages of more sophisticated algorithms than are presented
here are becoming more apparent, and while the full details of
these techniques are beyond the scope of this chapter, the reader
is encouraged to investigate their potential when considering both
analysis protocols and, where possible, study design. When retro-
spective analysis is performed outside the original study plan,
understanding associated limitations and potential problems is cru-
cial to delivering sound conclusions.

Once DWI data has been acquired, an appreciable portion of
the available choices has already been made about how the data are
presented and packaged. Analysis is thus a purely computational
process that can be performed either “manually” using routines
developed in-house, ideally in collaboration with specialist MR
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physicists or mathematicians, or by using commercially available
software packages (including those available on the scanners them-
selves). The pros and cons of these two approaches are inversions of
each other, essentially revolving around transparency of the pro-
cesses and the ability to design bespoke interrogations of the data,
versus using more developed and optimized analysis using tools
that require less “up-front” investment of time but which can act as
inscrutable “black boxes.”

While many of the same issues arise for renal imaging, is it
useful to remember that much of current DWI acquisition and
analysis development has been in the brain and for neurological
applications. While this affords a large amount of literature and
advanced techniques, translating from one tissue to another
requires a certain degree of circumspection regarding assumptions
and reoptimization, if not protocol redesign. Finally, it should be
remembered that no level of analysis can ever provide more infor-
mation than is contained in the data itself, and care should be taken
to avoid over-interpretation.

This analysis protocol chapter is complemented by two separate
chapters describing the basic concepts and experimental procedure,
which are part of this book.

This chapter is part of the book Pohlmann A, Niendorf T (eds)
(2020) Preclinical MRI of the Kidney—Methods and Protocols.
Springer, New York.

2 Materials

2.1 Data Format

and Quality

MRI, including DWI, data are stored as either a manufacturer-
specific format (e.g., Bruker) or as a medical imaging standard
(e.g., DICOM, NifTI), but in essence contains a series of matrices
of intensity values constituting the images, with each image indexed
against the acquisition parameters including the diffusion-weighting
b-value. The exact details of where the b-value is stored varies by
image format, or the b-value may need to be explicitly added (see
Note 1). Commonly, DWI schemes acquire a set of three images for
nonzero b-valuemagnitudes, with the diffusion-sensitizing gradients
applied in orthogonal directions; this allows for calculation of a trace
image, where any anisotropy of diffusion is averaged out by taking
the geometric mean of the intensities. If possible, the separate images
should be used for analysis, since this allows for finer quality control
before processing, and will retain the intrinsic weighting (i.e., more
data at nonzero points) assumed by fitting algorithms.

A brief visual inspection should identify corrupted data or
individual images that need to be excluded on account of severe
artifacts or signal dropout, or from insufficient signal-to-noise
(SNR). Images and/or cases that display gross motion or distortion
may require additional processing steps before being included [9],
or can be excluded (see Fig. 1).
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Fig. 1 Examples of images that might be considered for exclusion from analysis.
(a) Signal drop, which can be uneven across the image, may arise from
excessive movement during image readout; these images are the same b-
value and were acquired in the same sequence, but show markedly different
signal in each kidney. (b) Three images from the same sequence showing
different degrees of distortion around the kidney edge; distortion is a dominant
artifact in DWI where EPI is used, and is most prominent at magnetic suscepti-
bility boundaries. (c) Imperfect fat suppression in the diffusion-weighted image
across the body, combined with the chemical shift displacement of fat protons,
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2.2 Software

Requirements

Many common mathematical algorithms used for signal fitting are
available across many software platforms with limited expertise
needed to implement them, meaning analysis routines can be
designed and written as needed. Commercial software such as
Matlab include curve fitting toolboxes, whereas platforms such as
Python and R contain equivalent functions and, being freely avail-
able, may present a more accessible or portable choice. In addition,
these environments have the ability to handle image data (reading,
sorting, displaying) and create figures, though a basic level of
programming ability is required. The trade-off is more direct con-
trol versus the extra investment required to obtain proficiency with
the software environment.

Several freely available software packages are able to perform
both image processing and curve fitting, but attempt to give a more
intuitive graphical user interface that allows out-of-the-box use,
perhaps at the expense of tailored functionality. Environments
such as Fiji (based on ImageJ, with additional plugins), as well as
the brain-centric FSL and the OSX-only DICOM viewersHoros and
OsiriX, provide different degrees of functionality and automation,
and the option for bespoke plugins to at least some degree. TheMR
scanner itself and associated workstations also offer some options
for processing of diffusion images, for example ParaVision on
Bruker scanners or SyngoVia on Siemens, although the available
choices and customizability on these systems can be limited.

In the following we present detailed instructions for imple-
menting a custom-made analysis program.

2.3 Fitting

Algorithms, Limits,

and Initialization

In well-behaved systems with high quality data and appropriate
models, choice of fitting algorithm is unlikely to influence the
resulting parameters. In many cases, however, data are sufficiently
noisy, or there may be cross-correlation between parameters in the
model being used, which can mean that choice of fitting algorithm
and initialization values can affect the result. These choices are
subjective and are made as part of the analysis procedure, so should
be reported in publications. Similarly, whether parameters are con-
strained to physical or anticipated physiological limits may have an
effect on reported metrics. Analysis protocols should critically con-
sider these choices as well as report them in scientific articles so that
the results can be communicated within the appropriate context.

It is difficult to prescribe “best practice” in diffusion-weighted
image processing, since organs and pathologies give a wide-ranging
spectrum of situations. Given the highly perfused nature of the

�

Fig. 1 (continued) may give incorrect intensities from overlap of fat signal with
target areas; here, the subcutaneous fat around the abdomen (overlay in yellow;
T1w is given for comparison) is shifted up in the image (overlay in red), and will
alter the observed image intensity seen for part of the kidney

Analysis of Renal Diffusion-Weighted Imaging (DWI) Using Apparent. . . 615



kidney, together with the tubular structures, models such as IVIM
that attempt to quantify pseudodiffusion (see Note 2) are poten-
tially more informative than simple ADC measurements, although
the analysis is more complex commensurate with the model, and
may not give sufficient repeatability for detection of small changes
[10]. Overall, standardization of protocols across studies has a value
to be balanced against optimization at a local level, where transla-
tion of preclinical work into clinical use is the ultimate goal.

3 Methods

3.1 Generalized

Steps

for Diffusion-Weighted

Image Processing

The steps listed here outline a general approach for DWI analysis
(Fig. 2). The sections immediately following give more specific
instructions for the ADC and IVIM models respectively, which
are sufficiently different in complexity to warrant separate presenta-
tion and discussion. Notes at the end of the chapter, referenced
throughout, give further detail on aspects that may need to be
considered.

1. Retrieve DWI data to analysis platform: verify b-value informa-
tion, and expected number of images (see Note 1).

2. Initial quality check: SNR threshold (see Notes 3 and 4) for
exclusion of poor images, excessive signal drop-out, distortion,
motion, failed fat suppression, and so on.

3. Preprocessing: motion correction, distortion correction, and
registration if desired/applicable (see Note 5).

4. Fitting of the model to observed signal intensities against their
acquisition parameters, normally b-value magnitude (see
Note 6).

Fig. 2 General overview of the diffusion-weighted imaging pipeline, left to right: Export from the scanner gives
the diffusion-weighted images, which should be reviewed for quality (SNR, artifacts, excessive motion, or
distortion). The resulting data matrix can be preprocessed using registration, and corrections for eddy
currents, distortion, and motion if desired. The fitting algorithm for the chosen model is run either on a region
of interest, or on the whole image and the ROI drawn on the parameter maps. A further quality check on the
maps and extracted results is recommended
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5. Second quality check: visual inspection of parameter maps,
extreme values, visualization of fitted curves against the data
(see Note 7).

6. Extraction of diffusion parameters. Summary statistics, histo-
gram moments, and so on from a region of interest (see Notes
8 and 9).

The example protocols below are the constituent parts of a
custom-made analysis program, designed to illustrate each step
clearly and explicitly (and are thus not optimized for speed), and
are presented in pseudo-code using functions and syntax in Matlab
(Mathworks, Natick, USA). The wide number of equivalent
choices and flexibility of some steps involved in DWI analysis are
ignored in favor of presenting the main thread of a workflow that is
easy to recreate, and so the reader is encouraged to appreciate the
purpose of each step, which can usually be performed in a number
of ways with different functions, rather than the specific
implementation.

3.2 Diffusion

Weighted Imaging:

Apparent Diffusion

Coefficient (ADC)

3.2.1 Preparation

of Image Data for Fitting

1. Retrieve the data to the required folder structure and verify
contents.

2. Load image data to matrix structure, aiming to create a 3D
matrix of stacked images for each slice (a single slice is pre-
sented for simplicity here), with b-value in the 3rd dimension
(see Note 10).

DICOM: matrix(:,:,i) = dicomread(<i_th_DICOM_filename>);

Bruker: [img,hdr] = read_2dseq(<series/pdata/1>);

3. Create a ‘bVals’ vector variable with the corresponding b-
values, checking for the correct number of repetitions and the
correct order (see Notes 11 and 12).

4. Review the images for quality: sufficient SNR, artifacts, and so
on. Identify and remove any nonqualifying images from the
img matrix, and correct bVals to match.

exclude = [0 0 0 1 0 0 0 1 1 0 0];

img = img(:,:,~logical(exclude));

bVals = bVals(~logical(exclude));

Optional steps at this stage include distortion, eddy cur-
rent, and motion correction, and image registration (see Notes
5 and 13).
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3.2.2 Least Squares

Fitting for Apparent

Diffusion Coefficient ADC

1. Define the model for fitting, where the two variables inX are S0
and ADC (see Note 14):

curveADC = @(X,bVals) (X(1)*exp(-bVals*X(2)));

2. Assign empty matrices for the two resulting maps, using the
dimensions of the images (see Note 15):

S0map = NaN(nRows,nCols);

ADCmap = NaN(nRows,nCols);

3. For each voxel, loop through each row (i) and column ( j) and
extract the signal data

for i = 1:nRows; for j = 1:nCols;

Sb = img(i,j,:);

4. Estimate initial values for the variables to be fitted; use the
b ¼ 0 s/mm2 value for S0, and approximate ADC by taking
the gradient of the log signal between two points (seeNotes 16
and 17). See also Subheading 3.2.4 for discussion of lineariza-
tion of ADC estimation and fitting.

S0_est = Sb(1);

ADC_est = (log(max(Sb))-log(min(Sb)))/

(max(bVals)-min(bVals));

X_est = [S0_est ADC_est];

5. Run the least-squares curve fitting routine, using the initial
estimates and providing lower and upper boundaries for the
estimates if desired (see Note 18). Assign the results to the
allocated results maps:

limL = [0 0]; limU = [Inf Inf];

res = lsqcurvefit(curveADC,X_est,bVals,Sb,LimL,LimU);

S0map(i,j) = res(1);

ADCmap(i,j) = res(2);

end; end; % close the row/column loops

Some of the options available for least-squares curve fitting
include the choice of algorithm, boundary conditions, stopping
criteria, number of iterations, and so forth. In general, for well-
behaved data the initial estimates will be good and the fitting
should converge quickly.
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3.2.3 Extraction

of Parameter Results

1. Review the results maps to visually inspect the results. Data
plotted against a signal curve generated from the fitted values
for any voxel in the image (i,j) should alert to any issues with
either the fitting process or the data itself.

Sb = img(i,j,:);

S0 = S0map(i,j);

ADC = ADCmap(i,j);

figure; hold on;

plot(bVals, Sb, ‘o’); % show the data

% show the fitted curve

plot(0:max(bVals), S0*exp(-ADC*(0:max(bVals))), ‘r-‘);

2. Define the region of interest on the ADC map and use this to
create a list of voxel coordinates within the ROI. For display,
creating a binary mask is also useful (Fig. 3).

imagesc(ADCmap);

roi = impoly(); % draw ROI on image

mask = createMask(roi);

ADCmask = ADCmap .* mask;

3. Extract the ADC values from the ROI to a single matrix for
summarizing (mean, median, percentiles, etc.).

ADClist = ADCmask(find(ADCmask));

ADC_mean = mean(ADClist);

3.2.4 Linear Regression

and Matrix Inversion

for ADC

Fitting of DWI to the monoexponential ADC model can be
achieved with either nonlinear fitting of the signal directly, as
above, but can also be treated as a linear regression fitting problem
(which is computationally faster) if the natural log of the signal
intensities is used (see Note 17). For the minimal acquisition of

Fig. 3 Example maps from a healthy volunteer illustrating the steps for ADC analysis. (a) Initial linear estimate
of ADC gives initial values for least-squares fitting. (b) Resulting ADC map. (c) A binary mask for the region-of-
interest drawn on the ADC image. (d) ADC values ready for extraction
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only two b-values, there is no ambiguity and the initial estimate
calculation shown in Subheading 3.2.2 gives the result.

Taking the signal logarithm also allows for the use of matrix
manipulations to perform the linear fitting, which again is compu-
tationally faster and handles the whole image simultaneously (see
Note 19).

3.2.5 Computed

Diffusion Images

Following calculation of S0 and ADC maps, it becomes possible to
create synthetic images at any desired b-value based on these values,
which may increase conspicuity of lesions at higher b-values where
noise would dominate in experimentally acquired images. Exten-
sion of this technique using an additional echo time TE allows
similar control for computed T2 weighting, which may assist with
T2 shine-through from fluid [11, 12].

3.3 Intravoxel

Incoherent Motion

(IVIM)

Fitting of the more complex IVIM model introduces associated
complexity on the analysis, in particular the initialization and algo-
rithm used for fitting [13]. Notably, the fitting for IVIM is inher-
ently nonlinear, and cannot be easily linearized for speed. While
more advanced fitting routines become popular (see Subheading
3.3.6), the major obstacle to successful IVIM fitting is ultimately
the appropriateness of the model to the quality of data available.

In the protocol below, which shares much with the ADC
protocol in Subheading 3.2, we present the segmented method as
a method of initializing a full least-squares fit. The segmented
method benefits from speed and stability, and can be used as an
estimator in its own right, although it relies on prior assumptions.
Parameters from segmented fitting may be fixed for the
subsequent least-squares fitting if desired [14–16]. In all cases,
the user is strongly encouraged to critically examine the results
from IVIM fitting.

3.3.1 Preparation

of Image Data for Fitting

This is identical to the preparation steps for ADC in Subheading
3.2.1.

1. Retrieve the data to the required folder structure and verify
contents.

2. Load image data to matrix structure, aiming to create a 3D
matrix of stacked images for each slice (a single slice is pre-
sented for simplicity here), with b-value in the third dimension
(see Note 10).

DICOM: matrix(:,:,i) = dicomread(<ith_DICOM_filename>);

Bruker: [img,hdr] = read_2dseq(<series/pdata/1>);

3. Create a bVals vector variable with the corresponding b-values,
checking for the correct number of repetitions and the correct
order (see Notes 11 and 12).
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4. Review the images for quality: sufficient SNR, artifacts, and so
on. Identify and remove any nonqualifying images from the
img matrix, and correct bVals to match.

exclude = [0 0 0 1 0 0 0 1 1 0 0];

img = img(:,:,~logical(exclude));

bVals = bVals(~logical(exclude));

Optional steps at this stage include distortion, eddy current,
and motion correction, and image registration (see Notes 5
and 13).

3.3.2 Segmented Fitting

for Diffusion Coefficient D

This section is largely the same as fitting for ADC in Subheading
3.2.2, with the exception that it is on a subset of the data in order to
derive D. The parameter SD is the equivalent of S0 but for the
D compartment only, and is used to estimate f in the next section.

1. Choose a threshold b-value beyond which it is assumed that the
pseudodiffusion signal contribution is negligible; this is com-
monly around 200 s/mm2. Create a new (not overwritten)
data matrix containing only these images, and matching bVals
vector.

Bcut = 200;

imgD = img(:,:,[find(bVals >= Bcut)]);

bValsD = bVals(find(bVals >= Bcut));

2. Define the model for fitting, directly analogous toADC, where
the two variables in X are SD and D:

curveD = @(X,bVals) (X(1)*exp(-bVals*X(2)));

3. Assign empty matrices for the two resulting maps, using the
dimensions of the images (see Note 15):

SDmap = NaN(nRows,nCols);

Dmap = NaN(nRows,nCols);

4. For each voxel, loop through each row (i) and column ( j) and
extract the signal data:

for i = 1:nRows; for j = 1:nCols;

Sb = imgD(i,j,:);
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5. Estimate initial values for SD and D by taking the gradient of
the log signal between two points (see Note 16).

SD_est = Sb(1);

D_est = (log(max(Sb))-log(min(Sb))). . .

/(max(bValsD)-min(bValsD));

X_est = [SD_est D_est];

6. Run the least-squares curve fitting routine, using the initial
estimates and providing boundaries for the estimates if desired
(see Note 18). Assign the results to the allocated results maps:

limL = [0 0]; limU = [Inf Inf];

res = lsqcurvefit(curveD,X_est,bValsD,Sb,limL,limU);

SDmap(i,j) = res(1);

Dmap(i,j) = res(2);

end; end; % close the row/column loops

3.3.3 Segmented Fitting

for Pseudodiffusion

Fraction f

The calculation (not strictly a fitting) of f, similar to fitting for D*
that follows, can also be performed on a voxelwise basis within the
loops used for the fitting of D. The presentation here is to empha-
size the stepwise nature of this procedure.

1. Derive estimate of f by calculating the fraction of S0 (the signal
at b ¼ 0 s/mm2) that does not arise from the D component.
Use the mean b ¼ 0 s/mm2 image if there are more than one.

b0img = mean(img(:,:,find(bVals == 0)),3);

fmap = (b0img – SDmap) ./ b0img;

3.3.4 Fitting

for Pseudodiffusion

Coefficient D*

Having estimated D and f using the segmented method above, D*
can be estimated by a second fitting process of the residuals after
subtracting the calculated signal from the D component. Though
not exactly equivalent, it is common to fix the D and f values and
perform a least-squares fit only for D* using all the data (see Note
20). These estimates can be sufficient on their own to provide a
result, or they can be used as initial estimates for subsequent
nonlinear fitting of all the parameters in the IVIM model (see
Subheading 3.3.5).

The dependency of IVIM parameters on the specific details of
the fitting process is not simple [17], and pseudodiffusion para-
meters in particular are known to be less repeatable [18]. It is worth
reiterating here that DWI acquisition and analysis are closely inter-
woven, and the utility of derived parameters is ultimately reliant on
the acquisition of suitable data.
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1. Allocate a matrix for the D* values (see Note 21) and the
pseudodiffusion fraction signal intensity.

Dsmap = NaN(nRows,nCols); SDsmap = NaN(nRows,nCols);

2. Define the IVIM model for fitting of D* (see Note 20). Note
that this uses the fixed values for SD and D so is placed inside
the voxel loops.

for i = 1:nRows; for j = 1:nCols;

SD = SDmap(i,j); D = Dmap(i,j); F = fmap(i,j);

curveDs = @(X,bVals) ( X(1)*exp(-bVals*X(2)) +. . .

SD*exp(-bVals*D) );

3. Extract the voxel data for the fitting.

Sb = img(i,j,:);

4. Estimate initial values for the fitted parameters; in this case D*
can be initialized as 10 �D, and SDs is derived from f from the
b ¼ 0 s/mm2 image.

SDs_est = F*b0img(i,j); Ds_est = 10*D;

X_est = [SDs_est Ds_est];

5. Run the fitting routine, assign the results to maps, and close the
loops.

limL = [0 0]; limU = [Inf Inf];

res = lsqcurvefit(curveDs,X_est,bVals,Sb,limL,limU);

SDsmap(i,j) = res(1); Dsmap(i,j) = res(2);

end; end;

3.3.5 Least-Squares

Fitting for Full IVIM Model

The segmented fitting described above should provide good initial
values for a full least-squares fitting, using the same framework.
Approximation of f andD* is more challenging than forD (Fig. 4).

1. Define model.

curveIVIM = @(X,bVals) ( X(1)*(X(2)*exp(-bVals*X(3)) +. . .

(1-X(2))*exp(-bVals*X(4)) ));

2. Assign matrices for maps.

S0full = NaN(nRows,nCols);

ffull = NaN(nRows,nCols);
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Dsfull = NaN(nRows,nCols);

Dfull = NaN(nRows,nCols);

3. Begin voxel loop and assign initial values.

for i = 1:nRows; for j = 1:nCols;

X_est = [b0img(i,j) fmap(i,j) Dsmap(i,j) Dmap(i,j)];

4. Run fitting routine.

Sb = img(i,j,:);

limL = [0 0 0 0]; limU = [Inf Inf Inf Inf];

res = lsqcurvefit(curveIVIM,X_est,bVals,Sb,limL,limU);

Fig. 4 IVIM parameter maps derived from (top row) segmented approach and (middle row) least-squares using
segmented values for initialization. Box plots of the parameter values for the ROI (bottom row, outliers
indicated in red) show the voxel spread in more detail and illustrate the relationship between returned
parameters and the specifics of the analysis protocol, although the summary parameters are largely similar
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5. Assign results to maps and close loops.

S0full(i,j) = res(1);

ffull(i,j) = res(2);

Dsfull(i,j) = res(3);

Dfull(i,j) = res(4);

end; end;

3.3.6 Spatial Information

and Bayesian Fitting

Algorithms

Another class of algorithms that have found promising applications
for IVIM data are Bayesian methods that utilize additional infor-
mation not normally considered in conventional fitting strategies
[19, 20]. If each voxel is fitted independently, as for the segmented
and least-squares approaches outlined above, it is implicitly
assumed there is no interrelation between different voxels; in real-
ity, voxels that are either adjacent or within the same tissue
(or lesion) are likely to share diffusion and pseudodiffusion char-
acteristics, at least to some degree.

The assumption of spatial similarity can be leveraged against the
IVIM model with the view to improving the performance of the
fitting, by allowing cross-talk between voxels throughout a series of
iterations. These algorithms, by their nature, require many more
calculations and so take substantially longer to run; nevertheless,
they require no extra data to be acquired and so can be performed
retrospectively, and have been shown to produce not only more
visually appealing parameter maps but also more meaningful results
[17, 21].

4 Methods for Results Validation

4.1 Validation

of Fitting Algorithm

One simple way to validate the fitting procedure is to run (and
initially develop) the code on synthetic data, generated using
known parameters, and to compare the results [21, 22]. A more
rigorous validation of the entire pipeline, including data acquisition
and transfer, can be performed by scanning a test object with
known diffusion parameters [23] using the study protocol.

Curve fitting routines should be able to supply additional
output, such as stopping condition and number of iterations
used, and these may be useful for troubleshooting, for example
identifying where results have hit boundaries or found local
minima.

4.2 Visualization

of Fitted Curves

Generating signal curves using the derived parameters, and com-
paring against the original data, is a straightforward way of validat-
ing results, and allows examination of areas of interest or apparently
spurious results (extreme or suspect values commonly arise from
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partial volume or motion in voxels at tissue boundaries, see Fig. 5).
Identification of particular issues may suggest changes to the analy-
sis routine or, in more severe cases, amendments to the analysis or
acquisition protocols. In particular for IVIM results, if the under-
lying pseudodiffusion fraction is limitingly small (or very large,
though this is not expected), the parameter D* can take essentially
any value without affecting the associated signal curve and thus the
quality of the fit. This is an intrinsic problem with the model
performance in this region of the parameter space, and cannot be
solved by acquiring better data.

4.3 Residuals

and Systematic Bias

Examining the residuals from the fitting, which are expected to be
normally distributed if the model correctly describes the underlying
signal, may also highlight bias in the model. Systematic deviation of
the residuals over b-values is an indication that the selected signal
representation is not optimal, though this does not necessarily
preclude it from providing useful parameters (Fig. 6).

4.4 Information

Criteria and Model

Selection

It may become apparent, from examination of the data, that origi-
nal assumptions made about the applicability of different models
may not be valid. Comparisons of different models must take
account of the complexity of the model (number of variable para-
meters) as well as the number of samples, since additional para-
meters will always provide a better fit if only residual signal is
considered.

There are several forms of such measures, the dominant one
being the Akaike information criteria (AIC), formulated using the

Fig. 5 Typical fitted curves overlaid on the experimental data from voxels in the healthy kidney, with locations
indicated in the calculated S0 map shown. (a) Good fitting within the kidney parenchyma. (b) A voxel near the
boundary is susceptible to respiratory motion, with some samples coming from within the liver tissue; the ADC
from all the data (red curve) is an underestimation compared to excluding images with substantial motion
(blue curve). (c) A similar effect is responsible for returning an incorrect curve for a voxel in the renal hilum.
Note that exclusion of the same four images would avoid both of these problems, or alternatively registration
may ameliorate it to some degree
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residual sum-of-squares differences between the observed data and
the fitted values at those points (RSS) and the number of data
points k:

AIC ¼ �2∙ ln RSSð Þ þ 2k ð1Þ
The AIC thus gives a numerical value that can be compared

across models, with lower (or more negative) values being pre-
ferred, although the relationship of the AIC to model validation is
not straightforward and is sometimes criticised for being too liberal
in favoring overly complex models. Nevertheless, it can often pro-
vide evidence for questioning assumptions about suitability. Note
that an assessment by AIC indicates only which model is best
supported by the data, and is not a validation of the model (Fig. 7).

Fig. 6 Example sample fits for synthetic monoexponential (left column, data in red) and biexponential (right
column, data in blue) data, fitted with the ADC (top row, curve in red) and IVIM (bottom row, curve in blue)
models. Residual signal from each fitting are inset. Where the model matches the underlying signal curve, in
(a) and (d), the residuals are normally distributed. Underfitting the model in (b) shows bias in the residuals.
Overfitting the data in (c) gives a visually acceptable curve and comparable residuals to ADC, but returns
f ¼ 0.98, D* ¼ 0.0012 mm2/s, and D ¼ �0.005 mm2/s, which should be flagged as problematic; critical
assessment of results should highlight such issues
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4.5 Covariance

and Repeatability

It is critical in quantitative studies to assess the robustness of the
derived metrics, and the gold standard for this is to include repeat-
ability studies where the same objects are measured (at least, but
commonly only) twice in the same way, and the resulting metrics
compared [24]. This is more achievable in preclinical studies, and
helps to establish the scale of changes in metrics that can be reliably
interpreted as arising from underlying physiological changes. Pre-
vious work on the ADC in extracranial cancer has shown it to be
generally robust [25], whereas there is less certainty about the
repeatability of parameters arising from more complex models
[10, 18].

Without the benefit of repeated measurements, analyzing the
covariance matrix of fitted parameters—that is to say, the extent to
which combinations of parameters have the same effect on the
fitted curve, can be illuminating. The covariance matrix is a stan-
dard output frommany fitting routines; high values indicate redun-
dancy between parameters, which in itself is not disqualifying but
may indicate a mis-match between the chosen model and the
available information in the data.

4.6 Final Analysis

Quality Check

Critical assessment of DWI results, no less than the principles of
good study design, is essential to avoid wasted time and effort, not
to mention the animals used for study, in generating meaningless
results. Diffusion-weighted imaging is extremely sensitive to spin
motion, which is not simple, and the complexity of the diffusion
signal curve is compounded by the additional subtleties of model-
ing and analysis. In general, mistakes arise as a result of incorrect

Fig. 7 Comparison of models using the Akaike information criterion (AIC) illustrates what complexity of model
is supported by the data but does not necessarily indicate the underlying truth if the data are not of high
quality. For (a) monoexponential and (b) biexponential synthetic data with low noise, the appropriate model fit
gives the favorable (lower) AIC value for ADC and IVIM models, respectively, indicated by the lower AIC values
in the legend. In (a), ADC and IVIM curves are identical, but the simpler ADC model (fewer variables) is
favoured. (c) With enough noise added, however, the underlying biexponential nature is obscured, and the
monoexponential fit with fewer parameters is favored. Axes shown are x: b-value (mm2s-1) and y: signal (a.u.)
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assumptions; a review of such assumptions—including attempting
to identify those made unconsciously, for example the role of para-
meters automatically set by the scanner (seeNote 22)—is therefore
a vital part of any diffusion analysis protocol.

5 Notes

1. Location of b-values. For Bruker data, the method file in the
experiment directory contains the full acquisition parameter
list; this file is human-readable but is best treated as a reference
list where b-values can be found by searching for the text
“Bval.” Export of Bruker data to DICOM varies by software
version but may not include the b-value in the export. For
DICOM files extracted from clinical scanners, the b-value is
normally located in a private field—for example (0019,100c) in
Siemens data—and can be accessed using functions such as
dicominfo(<DICOM_filename>) with an appropriate dictio-
nary file. NIfTI files do not contain b-value information as
standard in their header.

2. Pseudodiffusion, rather than perfusion, is a more accurate name
for the volume fraction and coefficient associated with the
second compartment of the IVIM model, given that it
describes only the phenomenon and avoids physiological infer-
ence. Particularly in the kidney, the pseudodiffusion observed
may arise from both vascular and tubular structures. Even in
tissues without the complication of tubular or ductal struc-
tures, the term pseudodiffusion should be used, since the
apparent pseudodiffusion fraction is known to be dependent
on acquisition parameters [26].

3. A review of images prior to processing should be performed to
ensure that assumptions made about the format and packaging
of the data are valid. This includes any naming and/or export
order conventions; incorrect assumptions about data presenta-
tion and provenance may also introduce errors into results or
interfere with smooth processing.

4. Signal-to-noise (SNR) for the relevant region is calculated as the
mean of the signal divided by the standard deviation of the
background noise signal, found from a comparable region
containing only noise (i.e., outside the object). This should
be tested at the highest b-values in particular; it is common to
require SNR above a suitable threshold (e.g., 5) for inclusion in
the calculation, unless a noise contribution is explicitly
included in the model.

5. Image registration to account for motion and distortion is a
large topic in its own right and there are many strategies
available, essentially divided into rigid and non-rigid
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techniques. It is useful to avoid averaging within the scanner,
for example of separate diffusion directions to form trace
images, which can lock in motion errors. Prospective motion
correction acquisitions (e.g., gating to respiration) may still
require motion correction; more efficient sampling with
increased averaging alleviates this problem overall, and allows
a wider range of processing options [27, 28].

6. Conventionally, all parameters except b-value remain constant
through the acquisition, and so b-value is the only independent
variable. For more complex acquisitions, fitting across several
parameters such at TE or Δ are needed [26, 29]. For DTI,
direction of diffusion-weighting is fitted as well as b-value.

7. An additional quality or “sanity” check is advised after the
fitting procedure; invalid assumptions about model applicabil-
ity or data quality should become apparent either in the result-
ing values, or from visual inspection of the parameter maps or
fitted curves. Resulting values should always be critically
assessed and not just accepted.

8. Region of interest definition. Depending on the research ques-
tion, it may be appropriate to define a region of interest (ROI)
based on a calculated parameter map (e.g., ADC) or a repre-
sentative high-b-value image, or to transfer an ROI from
another modality (e.g., DCE). In the latter cases, it is not
necessary to perform diffusion modeling over the whole
image, which can save considerable computation where more
complex models and algorithms are used. In general, calcula-
tion of the parameter map across the whole image gives a better
visual overview and may reveal features otherwise missed.

9. The definition of regions of interest (ROIs) can be done before
or after the model fitting. If done before, the signal through
the ROI can be summed (or averaged) and fitted to give a
single parameter set to reflect the entire ROI. This approach
minimizes the influence of noise, but is predicated on all ROI
voxels being the same class of tissue and discards spatial infor-
mation. Conversely, calculation of entire-image parameter
maps can highlight spatial features and help guide to ROI
definition. Summary statistics drawn from voxel-wise maps
after fitting also discards spatial information, and each voxel
fit will be subject to more noise but allows for reporting and
analysis of ROI histogram moments.

10. Reading Bruker format data into Matlab is not a standard
function; the read_2dseq suggested here is available for down-
load from Mathworks [30]. Another alternative, with more
direct equivalents in other programming languages, is to read
the file directly:
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file = fopen(‘<2dseqFile>’, ‘r’);

data = fread(file, ‘int16’);

img = reshape(data,imageDim1,imageDim2,nSlices,nBVals);

thisSlice = squeeze(img(:,:,sliceNumber,:));

fclose(file);

Other platforms are able to read Bruker format directly, or

convert to a more accessible format (e.g., NIfTI).

11. The order of b-values is irrelevant for the fitting, but it is con-
vention to handle them in a consistent (usually ascending)
order. If the b-values are known but without assignation to
specific images, the correct assignment can be inferred from the
overall image signal intensity if there is sufficient change in
contrast between successive images. b-value magnitude cannot
be inferred from the images if the values are not recorded.

12. b-values are usually specified as nominal values entered on the
console (e.g., 100 s/mm2) but, in reality, are modified by the
use of the imaging readout gradients themselves (which, like
the diffusion-encoding gradients pulses, have both magnitude
and direction). It is more correct to use the full b-value matrix
in the fitting [31], although the imaging gradient contribu-
tions are often considered small (e.g., “100” ¼ 105 s/mm2).

13. Registration and/or motion correction can be applied within
the diffusion series, or to a separate reference image (e.g.,
T2w). Distortion correction from eddy currents in EPI images
can also be ameliorated by registration to T2w images, or by
using phase reversed image pairs if acquired [32].

14. The S0 maps from ADC and IVIM fitting are expected to be
qualitatively similar to the b ¼ 0 s/mm2 images (for DWI
acquisitions with two b-values they are equivalent) and are
often not considered to be interesting. Nevertheless, the S0
map is generated using all data and thus may have less influence
from confounding factors (noise, distortion, etc.) and may
highlight issues arising from the fitting process.

15. When using custom fitting routines, certain programming prac-
tices such as memory preallocation can save substantial com-
putation time and are worth the extra investment of effort. Full
optimization of code is a much larger task, and will give dimin-
ishing returns beyond a certain level.

16. Division by zero, for example in voxels outside the object (and
which are not of interest), may result in infinities or errors that
halt the routine. These can be excluded from the fitting loop,
assigned an arbitrary default value, or values in Sb can be
incremented to an arbitrary small value (e.g., 1) that will not
appreciably affect the outcome.
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Sb = 1 + img(i,j,:);

17. Normalization of signal data to the b ¼ 0 s/mm2 value is not
necessary, and may introduce inaccuracy if the observed signal
value at b¼ 0 s/mm2 is not representative of the underlying S0
(e.g., in the presence of appreciable perfusion).

18. Imposing limits on fitted variables, perhaps to physiological or
physical, is possible in many fitting algorithms. One potential
pitfall with this approach is if limit values returned from a failed
fitting are treated as legitimate (i.e., converged) values, they
may bias summary measures. This is an easy oversight if sum-
mary statistics are taken and parameter maps/histograms are
not examined.

19. Matrix inversion is an efficient implementation of linear regres-
sion (using the log signal). The whole image can be used at
once, although since the 3D data matrix is reshaped for the
calculation, care must be taken to reconstruct the resulting
maps with the correct dimensions.

si = size(img);

dataVect = reshape(img+1,(si(1)*si(2)),si(3));

dataVectLog = log(dataVect’);

A = [ones(length(bVals),1) -bVals’];

res = inv(A’*A)*A’*dataVectLog;

res(1,:) = exp(res(1,:));

ADCmap_MI = reshape(res(2,:),si(1),si(2));

20. Segmented fitting for D* can take many flavors, essentially
revolving around which parameters are allowed to be free and
which are fixed. For example in this implementation, f is
already fixed but could be recalculated following fitting for
SDs. The use of the segmented method as initialization for a
full least-squares fitting is an iterative process and can minimize
the influence of noise in the b ¼ 0 s/mm2 image, and uncer-
tainty in choosing a suitable Bcut threshold [33].

21. One major need in the IVIM community is the standardization
of terminology, including the exact formulation of the model,
and even the parameter symbols. This article usesD* to denote
pseudodiffusion coefficient, but owing to the use of the asterisk
in Matlab to denote the product, D* is written Ds in the code.

22. The effect of diffusion time (delay between the gradient-
encoding pulses, Δ) is yet to be fully described, although it is
known to influence IVIM parameters in a similar way to echo
time, TE [26, 29]. It is thus important to fix, record, and
report this during acquisition, similar to TE.
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