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Abstract

In order to tackle the challenges caused by the variability in estimated MRI parameters (e.g., T2* and T2)
due to low SNR a number of strategies can be followed. One approach is postprocessing of the acquired
data with a filter. The basic idea is that MR images possess a local spatial structure that is characterized by
equal, or at least similar, noise-free signal values in vicinities of a location. Then, local averaging of the signal
reduces the noise component of the signal. In contrast, nonlocal means filtering defines the weights for
averaging not only within the local vicinity, bur it compares the image intensities between all voxels to
define “nonlocal” weights. Furthermore, it generally compares not only single-voxel intensities but small
spatial patches of the data to better account for extended similar patterns. Here we describe how to use an
open source NLM filter tool to denoise 2D MR image series of the kidney used for parametric mapping of
the relaxation times T2* and T2.
This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network

funded by the European Cooperation in Science and Technology (COST) program of the European
Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
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1 Introduction

Mapping of the transverse relaxation times T2* and T2

(or relaxation rates R2* ¼ 1/T2* and R2 ¼ 1/T2) requires series
of MR images with different echo times TE: The maps are obtained
by fitting the exponential model curve S(TE)¼ S0 exp(�TE/T2

(*))
to the signal intensities of each image pixel with increasing TE. This
approach is inherently associated with decreasing signal-to-noise
ratio (SNR) for the image volumes obtained for longer echo times.
Similarly, there is a substantial signal attenuation and SNR reduc-
tion in diffusion-weighted MRI versus images acquired without
diffusion-sensitizing gradients. Low SNR basically poses two
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general problems: First, it leads to a variability for the parameter
estimates in the quantitative maps or derived model parameters.
Second, it induces a systematic bias for the estimated parameter
maps [1]. Please see Polzehl and Tabelow [2] for an elaboration of
the issues and possible solutions.

In order to tackle the challenges caused by the variability in the
estimated parameters due to low SNR a number of strategies can be
followed. The obvious one is hardware related and includes
improvements on the MR scanner side, such as dedicated RF coils
or the use of cryogenically cooled RF probes [3]. Then, SNR is
increased by reducing the variability of the measurement. Since the
magnitude of the MR signal is directly related to the voxel volume
[4], SNR increase can be achieved by reducing the spatial resolution
of the image acquisition. This is obviously a very unfavorable
solution. Alternatively, signal variability can be reduced by averag-
ing of the signal over multiple acquisitions. This approach comes at
the cost of prolonged acquisition times. Acceleration techniques
like parallel imaging [5, 6] or compressed sensing [7] allow for
more signal averaging within the same time span. Image postpro-
cessing provides another alternative for reducing the variability of
the data. Within this chapter, we specifically consider a class of
methods that post-processes the acquired data, that is, smoothing.
The basic idea is that MR images (like all images) possess a local
spatial structure that is characterized by equal, or at least similar,
noise-free signal values in vicinities of a location. Then, local aver-
aging of the signal reduces the noise component of the signal. The
simplest approach is the application of a Gaussian filter which per-
forms a local averaging with weights defined by a (Gaussian) kernel
function and a bandwidth. Due to its simple mathematical formu-
lation it can be performed very fast on data volumes independent of
the spatial dimensionality of the data. However, it comes with the
blurring of the images, which is evident at edges between different
tissues, especially hindering the analysis of fine structures within the
volumes.

Alternatively, adaptive smoothing methods have been devel-
oped that aim to take the local properties of the specific data at
hand into account. The specific methods are based on different
methodologies, like anisotropic diffusion [8–11], nonlocal means
[12], penalization techniques [13, 14] wavelet filtering [15],
model-based methods [16, 17], the propagation-separation
approach [18, 19], or other local techniques [20, 21]. Many of
these techniques have been applied to diffusion-weightedMRI data
but are also applicable for relaxometry measurements. Depending
on the specific method and the input data at adaptive smoothing is
performed on each image volume separately or uses the combined
information from all available raw data. In contrast to nonadaptive
filters such as the Gaussian filter, these methods typically require
longer computation times and the choice of one or more

566 Ludger Starke et al.



smoothing parameters. Furthermore, in a similar way as the Gauss-
ian filter induced blurring of images, adaptive filters might impose
artifacts depending on their assumptions on the data like a cartoon-
esque appearance due to a step-function reconstruction of the
images.

Here, we specifically consider the nonlocal means (NLM) filter
[22, 23], which is of proven value for MRI. In contrast to defining
the weights for averaging within the local vicinity of a location
depending on the spatial distance only, it compares the image
intensities between all voxels to define “nonlocal” weights for
averaging intensities. Furthermore, it generally compares not only
single-voxel intensities but small spatial patches of the data to better
account for extended similar patterns. It is related to the bilateral
filtering [24], where the local weights are refined by a factor related
to local intensity differences; nonlocal means can thus be consid-
ered as a bilateral filter with infinite spatial bandwidth making it
nonlocal. The filter can be applied to images in two dimensions but
also in 3D or for multispectral [25] such as multiecho imaging
techniques used in MR relaxometry.

Advantages of the application of the NLM filter are manifold:
As a purely postprocessing method it does not require special
hardware or sophisticated image acquisition techniques but can
be applied offline. Many implementations and extensions of the
original algorithm as open-source software are freely available.
Examples are provided under: https://sites.google.com/site/pier-
rickcoupe/softwares/denoising-for-medical-imaging/dwi-denois-
ing/dwi-denoising-software. Most of the implementations require
MATLAB. Although smoothing parameters need to be tuned,
default settings provide a very good starting point. Images pro-
cessed with the NLMfilter exhibit an improved SNR, show no extra
blurring of the edges and preserve effective spatial resolution.
Occasional and slight introduction of large-scale structures along
the coordinate axis is a recognized limitation of the NLM filter
because the comparison of spatial patches is in favor of these
directions.

In this protocol we describe the application of a purpose-build
implementation of the NLM filter for 2D MRI relaxometry data
(see Note 1 for implementation details). The open source tool
comes in two versions: (1) each echo time is filtered independently
(2D-NLM) (2) similarities between image patches are estimated
jointly for the complete stack of echo images (stackNLM). While
the first is a straightforward block-wise implementation of the
NLM filter, the second proposes a novel method exploiting the
redundancy of information in MR relaxometry data (seeNote 1 for
implementation details). Both filters reduce the noise level in low
SNR relaxometry data with version 2 offering slightly superior
results (seeNote 2 for a detailed example). Additionally, application
of the MATLAB Image Processing toolbox function imnlmfilt is
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described. This function performs similar to 2D-NLM while being
considerably faster. To complete the preprocessing of MRI relaxo-
metry data, correction of the Rician noise bias is described.

This chapter is part of the book Pohlmann A, Niendorf T (eds)
(2020) Preclinical MRI of the Kidney—Methods and Protocols.
Springer, New York.

2 Materials

2.1 Software

Requirements

The processing steps outlined in this protocol require the
following:

1. The software development environments MATLAB ® (The
MathWorks, Natick, Massachusetts, USA; mathworks.com)
or Octave (gnu.org/software/octave).

2. The MATLAB/Octave implementation of the NLM filter
downloadable from github.com/LudgerS/
MRIRelaxometryNLM

3. Optional: The MATLAB Image Processing Toolbox release
R2018b or newer.

4. A MATLAB/Octave tool for noise bias correction download-
able from github.com/LudgerS/MRInoiseBiasCorrection.
This tool includes detailed documentation to facilitate adapta-
tion for other software development environments or use with
multichannel coil data.

5. A tool for data import. This tool will depend on the data
format:
DICOM data—MATLAB contains a build in function to

import dicom data: dicomread. For Octave support is
offered by the following package octave.sourceforge.io/
dicom/.

Bruker data—Bruker also offers a toolbox to import data into
MATLAB directly. To obtain Bruker’s pvtools contact Bruker
software support (mri-software-support@bruker.com).

2.2 Data

Requirements

1. The following protocol assumes that a pure noise scan was
acquired to reliable estimate the data noise level.

2. See Note 3 for comments on noise scan acquisition.

3 Methods

3.1 Data Import These steps should be executed for both the relaxometry data and
the noise scan data. In the following sections it is assumed that the
relaxometry data was stored in variable relaxData and the noise scan
in variable noiseData.
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3.1.1 DICOM Data 1. To import dicom data execute the command

data ¼ dicomread(filePath);

where ‘filePath’ is a string containing the relative or abso-
lute path of the .dcm file.

3.1.2 Bruker Data For a Linux or MacOS system, substitute the file separator \ by /.

1. Ensure that pvtools is on the search path:

addpath(genpath(. . .\pvtools))

where ‘. . .\pvtools’ specifies the path of the pvtools folder.

2. Store the path to the scan you want to load in variable
scanFolder.

3. Read the visu_pars parameter file:

visuPars ¼ readBrukerParamFile([scanFolder,
’\visu_pars’]);

4. Load the Paravision reconstruction:

[data, ~] ¼ readBruker2dseq([scanFolder, ’\pdata
\1\2dseq’], visuPars);

3.2 Correct Data

Scaling

The data scaling needs to be corrected in some cases depending on
the data format and vendor if the relaxometry data and noise scan
were acquired with different numbers of averages. For example, in
Bruker data, the individual averages are simply added instead of
computing the mean (seeNote 4 for a procedure to test the scaling
convention). Assuming the noise scan was acquired with a single
average and the relaxometry data with NA averages, use the follow-
ing processing step:

1. relaxData ¼ relaxData/NA

3.3 Noise Level

Estimation

We assume the availability of a pure noise scan. In this case the
complete noise data constitutes a background region. Assuming
that the noise scan was acquired with a single average and the
relaxometry data with NA averages, the noise level can be com-
puted as

1. sigma ¼ std(noiseData(:))/(0.6551*sqrt(NA));

The factor 0.6551 accounts for the different standard devia-
tions in background and high SNR regions in MR magnitude
images [1, 26, 27]. For data from multichannel coils see Note 5.
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3.4 Application

of the NLM Filter

3.4.1 Filtering

of Individual Echoes

with 2D-NLM

To apply the provided NLM filter implementation, use a loop over
all echo times. It is assumed that the relaxometry images are two
dimensional and that the echoes are stored along the third dimen-
sion of relaxData.

1. Set the parameters of the filter (seeNote 6 for an explanation of
choices)

params.centerDistance ¼ 1; % distance between
individual blocks

params.blockRadius ¼ 1; % size of the blocks;

params.searchRadius ¼ 10; % determines the number
of searched blocks

params.beta ¼ 0.5; % adjusts the filter strength

2. Prealocate memory for the filtered data

filteredData ¼ zeros(size(relaxData));

3. Apply the filter to every echo individually

for ii ¼ 1:size(relaxData, 3)

filteredData(:,:,ii) ¼ nlmFilter2D(relaxData
(:,:,ii), sigma, params);

end

3.4.2 Filtering Using

stackNLM

1. Set the paramters of the filter (see Note 4 for an explanation of
choices)

params.centerDistance ¼ 1; % distance between
individual blocks

params.blockRadius ¼ 1; % size of the blocks;

params.searchRadius ¼ 10; % determines the number
of searched blocks

params.beta ¼ 0.3; % adjusts the filter strength

2. Directly apply the filter to all echoes

filteredData(:,:,ii) ¼ stackNlmFilter(relax-
Data, sigma, params);

3.4.3 Filtering Using

MATLAB’s Imnlmfilt

MATLAB’s imnlmfilt works on 2D images. Again a loop over the
echo times is used:

1. Prealocate memory for the filtered data

filteredData ¼ zeros(size(relaxData));
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2. Apply the filter to every echo individually

for ii ¼ 1:size(relaxData, 3)
filteredData(:,:,ii)¼imnlmfilt(relaxData(:,:,ii),
degreeOfSmoothing,sigma);
end

3.5 Bias Correction To correct the Rician noise bias, the MRInoiseBiasCorrection tool-
box is used. Importantly, the noise level sigma of the original data
and not that of the filtered image needs to be given as an input
parameter.

1. Ensure that the toolbox is on the search path

addpath(. . .\MRInoiseBiasCorrection)

where ‘. . .\MRInoiseBiasCorrection’ specifies the path of
the toolbox folder.

2. Apply the noise bias correction

correctedImage ¼ correctNoiseBias(imageData,
sigma, 1);

The last argument specifies the number of channels in the
RF coil.

4 Notes

1. The provided tool follows the block-wise implementation of
the NLM filter outlined by Coupé et al. for 3D data [28]. The
noise level σ is expected to be provided by separate means such
as the noise scan described in this protocol. The filtering
parameter h is set to

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2βσ2n
p

, where n is the number of pixels
in the compared blocks and β a parameter which can be con-
trolled by the user (see Note 5). Noise bias correction was not
integrated into the filter but is recommended as a
subsequent step.

2. We present an example application to showcase the potential of
the NLM filter for T2* relaxometry. For this purpose the
kidney of an ex vivo rat phantom was scanned with a multiecho
gradient-echo (MGE) sequence (TR ¼ 50 ms, TE ¼ 2.14 ms,
2.47 ms echo spacing, ten echoes, [38.2 � 48.5] mm2 FOV,
1mm slice thickness, [202� 256] imagematrix, 80 repetitions,
one average per repetition). The average of all 80 repetitions
was used as a reference measurement. T2*maps were computed
from unfiltered data and data filtered following the protocols of
Subheading 3.4.1 (2D-NLM) and Subheading 3.4.2
(stackNLM).

Figure 1 shows maps for a single repetition (NA ¼ 1), the
average of four repetitions (NA ¼ 4) and the reference data
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with 80 averages. Maps showing the deviation from the refer-
ence (ΔT2*) and the magnitude deviation (|ΔT2*|) highlight
the strongly reduced noise level in filtered images for NA ¼ 1.
No bias is introduced and edges are preserved. The filter work-
ing on the complete stack of echoes (stackNLM) is more robust
regarding outliers. For NA ¼ 4 only very little improvement is
achieved due to the already good data quality, yet also no
artifacts are introduced.

The root-mean-square deviations (RMSD) of the T2*
maps from the reference support this visual assessment
(Fig. 2a). At low SNR (low number of averages) the filtered
data outperform the maps computed without filtering. The
improvement exceeds the gain achieved by doubling the mea-
surement time. At higher SNR filtered and unfiltered data
perform similarly. stackNLM consistently performs better
than 2D-NLM. Figure 2b shows selected echoes for NA ¼ 1
and the reference. Here the improved performance of
stackNLM becomes obvious for data acquired with
TE ¼ 19.4 ms where signal is recovered with sharper detail.

Fig. 1 Filtered and unfiltered kidney T2* maps acquired in an ex vivo rat phantom. The reference was
computed from unfiltered data and NA denotes the number of averages. The second row shows the T2*
deviation from the reference while the third row shows the magnitude of the T2* deviation

572 Ludger Starke et al.



Figure 3 shows an in vivo example for both T2* and T2

data. Here little filtering is performed for the high SNR T2*
data, whereas the T2 map is effectively denoised.

3. A pure noise scan is acquired by setting the excitation flip angle
and reference power to zero so that no excitation occurs and
pure noise is acquired. The receiver gain needs to be set identi-
cal to all other scans for which the noise level should be
determined. The number of averages can be reduced to one,
as the resulting change in noise level is easily compensated.
Alternatively, the output of the RF power supply can be dis-
connected following the system adjustments.

4. To determine the employed convention of averaging, acquire
high SNR phantom data with varying numbers of averages
while keeping all other parameters fixed. Import the data as
described in Subheading 3.1. If all scans show the same signal
magnitude, the scaling step described in Subheading 3.2
should be omitted. However if for example doubling the num-
ber of averages also doubles the signal amplitude, rescaling
should be performed.

Fig. 2 (a) Root-mean-square deviation (RMSD) from the reference (NA ¼ 80, unfiltered) for T2* maps
computed from filtered and unfiltered data. (b) Image data for selected echo times (TE). The scaling is set
individually for each row
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5. Assuming a sum-of-squares reconstruction, the factor 0.6551
should be replaced by 0.6824, 0.6953, 0.7014 or 0.7043 for
2, 4, 8 or 16 receive element coil data [29].

6. The block-wise NLM filter compares overlapping square image
patches or blocks. The larger the distance between block cen-
ters (params.centerDistance), the fewer blocks are in the image.
Reducing the number of blocks will accelerate the filter but
might lead to artifacts in the vicinity of contrast edges. params.
blockRadius determines the size of the blocks and must always
be larger than params.centerDistance to ensure overlap. The
block is a square patch of area (params.centerDistance + 1)2.
Increasing the size of blocks will improve performance in
homogeneous areas but prevent the filter from finding similar
blocks in areas with small features. params.searchRadius speci-
fies the number of compared image blocks: each block is com-
pared with the adjacent (params.searchRadius + 1)2 blocks to
determine the corresponding filter weights. In the ideal case
the algorithm would always search the complete image for
similar blocks; however, the computational cost to do so
would be prohibitive while the benefit diminishes fast with
increasing search radius. params.beta specifies the parameter β
introduced inNote 1. While theoretical considerations suggest
a value close to 1, the optimal value of β is known to vary with
the noise level [28]. Increasing the value of β will increase the
smoothing effect. The proposed values of 0.5 for 2D-NLM and
0.3 for stackNLM were found to perform well over a wide
range of noise levels.

Fig. 3 Filtered and unfiltered T2 and T2* maps acquired in a rat in vivo. In this experimental set-up (a healthy
naive rat kidney being imaged using a dedicated 9.4T small animal MR system) the SNR is sufficiently high for
the denoising to have only minor denoisng effect. The parameter β was set to 0.4 for the stackNLM filter to
increase the smoothing effect
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