Astrocytes and oligodendrocytes in the thalamus jointly maintain synaptic activity by supplying metabolites

Highlights

- In the thalamus, astrocytes and oligodendrocytes form large coupled networks

- These panglial networks are essential for energy supply to neurons

- Oligodendrocytes assist astrocytes in metabolite transfer to postsynapses

In Brief

Philippot et al. show that, in the thalamus, astrocytes and oligodendrocytes form large-gap junction-coupled networks, which are required to deliver energy substrates for sustaining neuronal activity. The role of oligodendrocytes in these networks is not to provide nutrients to axons but to assist astrocytes in metabolite transfer to postsynapses.
Astrocytes and oligodendrocytes in the thalamus jointly maintain synaptic activity by supplying metabolites

Camille Philippot, Stephanie Griemsmann, Ronald Jabs, Gerald Seifert, Helmut Kettenmann, and Christian Steinhauser

SUMMARY

Thalamic astrocytes and oligodendrocytes are coupled via gap junctions and form panglial networks. Here, we show that these networks have a key role in energy supply of neurons. Filling an astrocyte or an oligodendrocyte in acute slices with glucose or lactate is sufficient to rescue the decline of stimulation-induced field post-synaptic potential (fPSP) amplitudes during extracellular glucose deprivation (EGD). In mice lacking oligodendroglial coupling, loading an astrocyte with glucose does not rescue the EGD-mediated loss of fPSPs. Monocarboxylate and glucose transporters are required for rescuing synaptic activity during EGD. In mice deficient in astrocyte coupling, filling of an oligodendrocyte with glucose does not rescue fPSPs during EGD. Our results demonstrate that, in the thalamus, astrocytes and oligodendrocytes are jointly engaged in delivering energy substrates for sustaining neuronal activity and suggest that oligodendrocytes exert their effect mainly by assisting astrocytes in metabolite transfer to the postsynapse.

INTRODUCTION

Glia are key elements to guarantee proper brain function by providing energy substrates to neurons. Astrocytic endfeet are strategically located in close contact to blood vessels and cover a large part of their surfaces. Astrocytes, as well as capillary endothelial cells, express the glucose transporter, GLUT1, which allows astrocytes to take up glucose from the circulation (Bélanger et al., 2011). Glucose is then metabolized to lactate by glycolysis. Described by Pellerin and Magistretti (1994) as the astrocyte-neuron lactate shuttle (ANLS), astrocyte-derived lactate is then transported to the synapse, via monocarboxylate transporters (mainly MCT4 in astrocytes and MCT2 in neurons), to fuel neurons (Pellerin and Magistretti, 1994). In addition, glycogen, which is almost exclusively localized to astrocytes, serves as a significant energy reserve for the brain. Glycogen breakdown also results in lactate production, is released in the extracellular space, and is taken up by neurons to fuel their energy needs (Magistretti et al., 1993; Bélanger et al., 2011). Rouach et al. (2008) demonstrated that, in the hippocampus, delivery of glucose or lactate from astrocytes is needed to maintain neuronal synaptic transmission during extracellular glucose deprivation (Rouach et al., 2008). Gap junction coupling among astrocytes is required for this protective effect. Gap junctions are formed by connexin proteins (Cx), which are expressed in a cell-type-specific manner (Goodenough et al., 1996; Bedner et al., 2012). They allow intercellular exchange through diffusion of small molecules, such as ions, second messengers, and energy metabolites, including glucose and lactate (Giaume et al., 2010).

The thalamus has been described as the gate to consciousness (Crick and Koch, 2003) because it has a key role in relay and modulation of sensory and motors signals to the neocortex (Sherman and Guillery, 2002) as well as in the generation of sleep-related rhythms (Crunelli and Hughes, 2010). In the thalamus, unlike the neocortex or the hippocampus, many astrocytes lack Cx43 but, instead, abundantly express Cx30 (Griemsmann et al., 2015). Oligodendrocytes mainly express the Cx isoforms Cx32 and Cx47. Tracer filling of individual thalamic glial cells revealed abundant astrocyte-oligodendrocyte coupling, called panglial coupling. This is different from other brain regions, e.g., the hippocampus and the neocortex, in which panglial coupling is much less prevalent (Griemsmann et al., 2015). The functional effect of oligodendrocytes within these gray matter panglial networks is still unclear. It has been shown that, in white matter, networks of coupled oligodendrocytes support the axonal function by transport of metabolites (Lee et al., 2012; Meyer et al., 2018). Thus, because oligodendrocytes are not in direct contact with blood vessels, panglial coupling in the thalamus might be needed to transport energy metabolites from the circulation, via astrocytes and oligodendrocytes, to synaptic structures and/or to axons. Here, we assessed...
whether, and through which mechanisms, oligodendrocytes in the thalamus are participating in the energy provision of neurons. By stimulating the cortico-thalamic pathway, we found that extracellular glucose deprivation (EGD) suppresses thalamic post-synaptic field potentials (fPSPs), which could not be rescued by extracellular lactate or pyruvate. Importantly, the loss of fPSPs during EGD was fully prevented when filling an individual astrocyte with glucose or lactate, a process that required glucose and monocarboxylate transporter activity. Filling of individual oligodendrocyte with glucose also rescued fPSPs during EGD. Thus, in the thalamus, astrocytes and oligodendrocytes are jointly engaged in maintaining synaptic activity by delivery of metabolites through the panglial coupling network.

RESULTS

Characterization of post-synaptic field potentials in the ventrobasal thalamus

To record thalamic fPSPs, coronal brain slices with a 30° angle to the horizontal plane were prepared. A bipolar stimulation electrode was placed into the internal capsule, and the field recording electrode was located at the ventrobasal thalamus (Figures 1A and 1B). Stimulation of the cortico-thalamic pathway (indicated by the green neuron in Figure 1A; five pulses, 100 µs at 20 Hz, every 15 s) in the presence of picrotoxin (100 µM), to block GABAergic neurons of the reticular thalamic nucleus (RTN), evoked fPSPs (Figures 1C-1F). The stimulation intensity was set to elicit 80% of the maximal responses. This protocol allowed for long-term monitoring (>1 h) of synaptic activity without inducing long-term potentiation (LTP) or long-term depression (LTD). fPSPs were isolated by subtracting responses evoked in the presence of picrotoxin, D-AP5, and NBQX from responses in artificial cerebrospinal fluid (ACSF) (Figures 1C and 1D). Thalamic fPSPs were completely blocked by adding tetrodotoxin (TTX) (0.5 µM) to the bath solution (Figure 1E, bottom). fPSP amplitudes were calculated as the voltage difference between the intersection of the tangent and the minimum of the second negative deflection.

EGD leads to a rapid decline of thalamic fPSPs and cannot be rescued by bath application of lactate or pyruvate

In ACSF containing 11 mM of glucose, stable fPSPs could be recorded over >40 min (Figures 2A and 2B, black line, and
Figure 1. For EGD experiments, first, control fPSPs were recorded in ACSF (10 min); then, glucose was removed from the bath (10 min; gluc-), and subsequently, ACSF was reperfused (30 min). During EGD, fPSPs declined to around 45% of the initial amplitude and recovered upon reperfusion with ACSF (Figure 2, orange line and bar graph). Similar to the corpus callosum (Meyer et al., 2018), extracellular replacement of glucose with equistoichiometric amounts of L-lactate (22 mM, n = 5) or pyruvate (22 mM, N = 6) did not rescue the transient decline of fPSPs, with the drop to about 60% of the control value being not statistically different from that observed in ACSF lacking glucose (Figures 2B and 2C; p = 0.13 and 0.10 for L-lactate and pyruvate, respectively). Reperfusion of glucose after lactate or pyruvate application led to a similar recovery of fPSPs. The kinetics of the fPSP decline was analyzed using linear approximation of the decay and comparing the slopes. There was no significant difference when comparing the EGD-only condition with the EGD + lactate and EGD + pyruvate conditions (Figure 2D; p = 0.307, Kruskal-Wallis).

Figure 2. EGD-induced depression of thalamic fPSPs is Rescued by glucose or lactate filling of an astrocyte or oligodendrocyte
(A) Example traces of thalamic field potentials in slices from hGFAP-EGFP mice. Top: control recordings, indicated by black lines in (B), with numbers corresponding to time points indicated in (B). Bottom: recordings obtained (1) before removal of extracellular glucose, (2) during EGD, and (3) after reperfusion with glucose-containing bath solution, indicated by the orange lines in (B). Scale bars, 0.5 ms, 0.5 mV.
(B) Representative traces of thalamic fPSPs under control conditions (gluc+, black lines) and during a 10 min of EGD (gluc-, orange; n = 12, N = 10). Red and pink curves represent fPSPs in which extracellular glucose was replaced by L-lactate (22 mM; n = 9, N = 5) or by pyruvate (22 mM, n = 6, N = 6), respectively. (C) Bar graphs represent the means and SEM of the remaining fPSP amplitudes, normalized to the respective condition before EGD. Extracellular lactate and pyruvate did not rescue the EGD-induced decline of fPSPs. Number of mice is given in the bar graphs. (D) Boxplots represent the median of the slope (fPSP%/min) of the respective condition using linear approximation and comparing the steepness of the curves. Extracellular lactate and pyruvate did not affect fPSP slope compared with the EGD-only experiments. (E) Representative traces of fPSPs during EGD (EGD, orange, n = 12, N = 10; same EGD trace is shown for comparison in Figures 2, 3, and 4), during EGD after filling an hGFAP-EGFP-positive astrocyte with glucose (20 mM, EGD+AG, dark green; n = 8, N = 7) and during EGD after filling an astrocyte with L-lactate (40 mM, EGD+AL, light green; n = 7, N = 6). The bar graphs (right) compare the amplitudes of the fPSPs remaining under the respective conditions, normalized to amplitudes before EGD. Astrocytes loaded with glucose or lactate could partially rescue thalamic fPSP amplitudes during EGD. Error bars represent SEM. (F) Representative recordings of fPSPs during EGD (EGD, orange, n = 12, N = 10), during EGD after filling a PLP-GFP-positive oligodendrocyte with glucose (20 mM, EGD+OG, dark blue; n = 9, N = 7), and during EGD after filling an oligodendrocyte with L-lactate (40 mM, EGD+OL, light blue; n = 5, N = 5). The histogram (right) compares the fPSPs remaining under the respective conditions, normalized to the amplitudes before EGD. Loading of oligodendrocytes with glucose or lactate partially rescued fPSPs during EGD. The number of mice is given in the bar graphs. ANOVA followed by Tukey’s post hoc test. *p < 0.05, **p < 0.01. Error bars represent SEM.
The decline of fPSPs during EGD can be rescued by filling an astrocyte with glucose or lactate

We investigated whether, in the thalamus, metabolite loading of glial cells counterbalances the EGD-mediated loss of fPSP amplitudes. Astrocytes were identified by employing acute brain slices from hGFAP-GFAP mice. Although thalamic astrocytes are almost devoid of GFAP protein, many of them express hGFAP promoter activity and can be identified by their intrinsic fluorescence and morphology (Griemsmann et al., 2015; Matthias et al., 2003). An astrocyte was patched and filled through the pipette solution with a high concentration of glucose (20 mM, 20 min). Subsequently, EGD was performed (10 min), followed by reperfusion of the ACSF. The pipette solution also contained the gap-junction-permeable dye sulforhodamine-B to monitor a successful spread into the coupled networks. The patched cells displayed electrophysiological properties typical of astrocytes, including a very low input resistance (2.9 ± 0.3 MΩ; n = 15, N = 14). Glucose filling of an astrocyte significantly reduced the EGD-dependent drop of fPSPs (control EGD, same as in Figure 2C, to 45 ± 5%; N = 10; after astrocyte filling, to 71 ± 5.5%; N = 7; p = 0.004) (Figure 2E). We also tested whether filling of astrocytes with l-lactate (40 mM, N = 6, because during lactic fermentation 1 molecule of glucose generates 2 molecules of lactate) can rescue fPSP. Indeed, under this condition, the EGD-induced drop of fPSPs was also reduced (to 66 ± 3.26%; n = 6, p = 0.014) (Figure 2E). In conclusion, high glucose or l-lactate filling of astrocytes can rescue the decline of fPSP amplitudes during EGD in the thalamus.

Filling an oligodendrocyte with glucose or lactate also rescues fPSPs during EGD in the thalamus

We have previously reported that, in the thalamus, astrocytes and oligodendrocytes form abundant panglial coupling networks (Griemsmann et al., 2015; Claus et al., 2018). In the corpus callosum, Meyer et al. (2018) demonstrated a critical role for oligodendrocytes, rather than astrocytes, in coupling-dependent provision of energy substrates to prevent the decline of axonal activity during EGD. To test whether oligodendrocytes similarly support synaptic activity in the thalamus, individual oligodendrocytes of PLP-GFP mice were filled with glucose (20 mM) or lactate (40 mM), and fPSPs were recorded as described above. The input resistance of the cells was 7.7 ± 4.1 MΩ (n = 13, N = 12). Similar to dialyzing astrocytes with energy metabolites, loading of oligodendrocytes with high glucose concentration (20 mM, N = 7) significantly reduced the decline of fPSPs during EGD (to 68 ± 3%; p = 0.01). Loading an oligodendrocyte with lactate (40 mM, N = 5) had a comparable effect (decline to 66 ± 4%; p = 0.031) (Figure 2F). In conclusion, filling of individual astrocytes or oligodendrocytes with energy substrates is equally efficient at attenuating EGD-induced impairment of fPSP activity in the thalamus.

The protective effect of astrocyte glucose filling on fPSP activity requires astrocyte-oligodendrocyte gap junction coupling

In the thalamus, Cx30 is the dominating astrocytic connexin, and astrocyte-oligodendrocyte coupling is mainly mediated by heterotypic Cx32:Cx30 channels (Griemsmann et al., 2015; Claus et al., 2018). To investigate the putative effect of oligodendrocyte coupling on energy substrate provision, we first investigated the coupling efficiency by filling a thalamic astrocyte in Cx32−/−;Cx47EGFP+/− mice (dko) (n = 10, N = 9), Cx32−/−;Cx47EGFP+/− (n = 11, N = 4) and Cx32−/−;Cx47+/+ mice (n = 15, N = 4) with biocytin (during 20 min of patch clamp recording; Figures 3A and 3C). Coupling efficiency was significantly reduced in dko mice (36 ± 8 cells, n = 10 slices), compared with that of Cx32−/−;Cx47EGFP+/− mice (69 ± 11 cells, n = 11 slices, p = 0.048) (Figure 3A) and of control mice (110 ± 20 cells from PLP-GFP mice, p = 0.0028; (Griemsmann et al., 2015), whereas it did not differ from Cx32−/−;Cx47+/+ mice (58 ± 2 cells, n = 15 slices, p = 0.12). Furthermore, in the Cx32−/−;Cx47EGFP+/− mice, among those coupled cells, 27% were GFP+ (Figures 3A and 3C, white arrows indicate some examples), i.e., oligodendrocytes (versus 55% in control mice). In dko mice, no coupled GFP+ cells were seen, i.e., oligodendrocytes were completely uncoupled.

Next, we investigated whether, in Cx32/Cx47 dko mice, the protection of fPSP activity during EGD through glucose filling of astrocytes was affected. In these mice, Cx47-positive cells never colocalized with the astrocytic marker SR101 (Griemsmann et al., 2015; Kafitz et al., 2008) (not shown). Thus, astrocytes were identified as non-fluorescent cells with passive membrane currents and very low input resistance (1.8 ± 0.3 MΩ; n = 6, N = 6). In addition, the cell was filled with sulforhodamine B (10 µg/mL) to visualize coupling online and to ensure that the patched cell was an astrocyte. In Cx32/Cx47 dko mice, filling of an astrocyte (20 min) with glucose (20 mM) did not rescue fPSP amplitudes during EGD (light gray, 53.8% ± 6.4%, N = 6) compared with control experiments (dark gray, 46.6% ± 5.1%, N = 5) (Figure 3B, p = 0.87). These values were also similar to the fPSP decline during EGD in hGFAP-GFP mice (orange bar in Figure 3B). From Figure 3C for comparison, p = 0.99 and 0.68, respectively.

Rescue of fPSPs during EGD through intercellular glucose provision is sensitive to the activity of glucose and monocarboxylate transporters

We next asked which glial and neuronal transporters participate in the rescue of synaptic activity in the thalamus. Therefore, EGD, filling of an astrocyte with glucose, and fPSP recording were performed while inhibiting glucose and monocarboxylate transporters. First, we co-applied AR-C155858 (1 µM; inhibits monocarboxylate transporters MCT1 in oligodendrocytes and MCT2 expressed by neurons) and Stf31 (5 µM; blocks glucose transporter GLUT1 expressed by astrocytes and oligodendrocytes). Under those conditions, no rescue of fPSPs during EGD was observed when filling an astrocyte with high glucose (Figure 4A, dark green bar, N = 6) because the fPSPs declined to a similar extent as that without intracellular glucose provision (to 45% ± 8% and 45% ± 5%; orange bar taken from Figure 2C, p = 0.99). Co-application of AR-C155858 and Stf31 in control ACSF (i.e., with glucose) moderately reduced fPSPs (p = 0.0145) (Figure 4B, brown, N = 7). This inhibition was significantly less compared with EGD experiments in which those blockers were applied after filling an astrocyte with glucose (73% ± 4% versus 45% ± 8%, p = 0.014). SR13800 (0.01 µM), an MCT1-specific inhibitor, did not affect fPSPs during EGD while glucose...
filling (dark purple, N = 6) compared with EGD-only or EGD+AG (Figure 4C, p = 0.38 and 0.64, respectively). Similarly, although loading an astrocyte with glucose, AR-C155858 (light pink, n = 6) and Stf31 (light purple, N = 6) alone also failed to affect fPSPs during EGD (p = 0.21 and 0.20) or EGD+AG (p = 0.84 and 0.87, respectively) (Figure 4C). In conclusion, both MCT1/2 and GLUT1 transporters are involved in the rescue of synaptic activity when providing energy substrates through the coupled pan-gial thalamic network.

Finally, we asked whether, in mice lacking astrocyte gap junction coupling (Cx32−/−;Cx47EGFP+/−) (dko) mice; Wallraff et al., 2006), the protection of fPSP activity during EGD through glucose filling of oligodendrocytes was still affected. In those mice, SR101 was used to label astrocytes in the slices, and oligodendrocytes were identified as SR101-negative cells with typical passive membrane current patterns. In addition, the selected cells were dye coupled as evidenced online by adding sulforhodamine B to the pipette solution. We found that, in the
absence of astrocyte coupling, filling of oligodendrocytes (20 min) with glucose (20 mM) failed to rescue fPSP amplitudes during EGD (dark gray, 45.1% ± 10.8%, n = 3, N = 2, p = 0.26; Figure 4D).

DISCUSSION

In the hippocampus, glial gap junction networks enable trafficking of energy metabolites to maintain glutamatergic synaptic activity (Rouach et al., 2008). These networks are almost exclusively formed by astrocytes expressing Cx43 (Griemsmann et al., 2015). In contrast, in the corpus callosum, panglial networks are dominated by oligodendrocytes (Meyer et al., 2018), indicating that glial properties are heterogeneous across brain areas (Xin and Bonci, 2018; Matyash and Kettenmann, 2010). The molecular and functional characteristics of astrocytes in the thalamus also show distinct features and thus differ from those of other regions, e.g., the hippocampus or neocortex. Thalamic astrocytes
mainly express Cx30 instead of Cx43 and lack most of the “classical” astroglial markers, such as GFAP and ALDH1L1. Notably, thalamic networks of coupled glial cells are equally composed of astrocytes and oligodendrocytes (Höft et al., 2014; Griemsmann et al., 2015; Claus et al., 2018). We, therefore, addressed the question of whether oligodendrocytes within the thalamic pancellular network are needed for the provision of energy substrates to maintain neuronal activity.

The thalamus is a brain region of high energy consumption (Gordji-Nejad et al., 2018), probably also because of its long-range signaling pathways and metabolic needs for myelination. After having established a method to quantify post-synaptic network activity in slices from the ventrobasal thalamus, we investigated whether extracellular glucose can be replaced by lactate or pyruvate to maintain fPSPs. Indeed, several recent studies, mainly in the optic nerve, but also in spinal cord, have demonstrated that delivery of these substrates by oligodendrocytes is critical for axonal function (Hirrlinger and Nave, 2014; Fünschilling et al., 2012; Brown et al., 2003; Lee et al., 2012). On the other hand, astrocytes have been shown to produce lactate, either from glucose or glycogen, and to deliver it to neurons through the astrocyte-neuron lactate shuttle (ANLS) (Pellerin and Magistretti, 2012). Thus, oligodendrocytes in the thalamic network might help sustain presynaptic function, whereas astrocytes through the ANLS might supply post-synaptic elements with energy. We found that EGD-induced decreases in fPSPs could not be prevented by extracellular lactate or pyruvate. Similar observations were made in the corpus callosum (Meyer et al., 2018), whereas, in the optic nerve, lactate may replace glucose to preserve axonal function (Brown et al., 2003). Compared with the hippocampus (Rouach et al., 2008), fPSPs declined much faster after onset of EGD, which might indicate a higher energy consumption in the thalamus because of structural differences between both regions (cf. above). During metabolic challenges, astrocytes may also deliver lactate derived from glycogen (Pellerin and Magistretti, 2012), and lower glycogen storage would entail a faster decline of energy reserves for neurons. Indeed, regional differences in metabolic roles imposed by astrocytes have been reported. Inhibition of glutamine synthetase led to massive glycogen accumulation in astrocytes of the hippocampus and neocortex but not in the thalamus (Yamamoto et al., 1989). Evidence for regional differences in glycogen content came from a recent immunohistochemical study revealing much lower glycogen labeling in astrocytes of the thalamus compared with other brain regions. Thus, the rapid fPSP decline during EGD in the thalamus might reflect lower glycogen reserves of those astrocytes (Oe et al., 2016).

Next, we investigated whether loading the pancellular coupling network with energy substrates rescued the EGD-induced fPSP decline. We are aware that the loaded glucose concentration of 20 mM is much higher than the physiological condition. However, we assumed that there is considerable decay from the concentration in the pipette into the loaded astrocyte and, even more so, into the coupled network because of diffusion resistance. For better comparison, we used the same experimental conditions as those for the corresponding analyses in the corpus callosum (Meyer et al., 2018). Filling glucose or lactate into a single astrocyte largely prevented the decline of synaptic activity during EGD. Filling individual oligodendrocytes with the substrates had a similar effect, suggesting that the pancellular networks use both astrocytes and oligodendrocytes to transport energy metabolites from blood vessels to thalamic neurons. To further substantiate a role for oligodendrocytes in sustaining synaptic activity, mice with genetic deletion of Cx32 and Cx47 were employed. These connexins are crucial for proper central myelination and oligodendrocytic coupling (Menichella et al., 2003; Odermatt et al., 2003; Maglione et al., 2010; Griemsmann et al., 2015). As expected, mice devoid of both connexins showed complete lack of oligodendrocyte coupling. Filling an astrocyte with glucose in those double-deficient mice could not rescue fPSPs during EGD. Thus, oligodendrocytes are key elements of the pancellular networks for the proper neuronal energy supply in the thalamus.

Based on findings from the hippocampus, optic nerve, and corpus callosum, one may speculate that astrocytes support neurons at the synapse, whereas oligodendrocytes support them at the axons. Our stimulation paradigm includes both elements, action potential propagation via axons and synaptic transmission, and one may assume that these two glial cell types subdivide their task in supporting the neuron.

In the optic nerve, axonal activity provokes glucose uptake into oligodendrocytes through incorporation of GLUT1 into the oligodendrocytic membrane, a mechanism not requiring gap junction coupling but NMDA receptors (Saab et al., 2016). In contrast, the neuronal energy supply in the thalamus was disturbed in mice with coupling-deficient oligodendrocytes. Even though we still don’t know whether thalamic oligodendrocytes lack GLUT1 and/or NMDA receptors, these finding add to the emerging view that the properties of glial cells in the thalamus are distinct from those of other brain regions (Claus et al., 2018; Griemsmann et al., 2015). Oligodendrocytes in the optic nerve show lower coupling efficiency (Butt and Ransom, 1989) and obviously have developed alternative strategies to fuel neurons.

According to the ANLS hypothesis, glucose can be taken up by astrocytes from blood vessels via GLUT1 (Bélangier et al., 2011; Barros and Deitmer, 2010). Astrocytes convert glucose into lactate and export it via MCT4 (Rafiki et al., 2003; Rinholm et al., 2011). MCT1 is expressed by oligodendrocytes and predominantly localized to the myelin sheaths around axons. Lactate can then be taken up by MCT2 to pre- or post-synaptic neurons (Pierre and Pellerin, 2005; Lee et al., 2012). In the corpus callosum, oligodendrocyte-derived glucose, rather than lactate, contributes to metabolic support of axons (Meyer et al., 2018). We applied inhibitors of GLUT1 and MCT1/2 to reveal whether pancellular coupling of neurons in the thalamus involves pre-synaptic or post-synaptic mechanisms or both. Simultaneous blockade of MTCs and GLUT1 completely abolished the rescue of fPSPs observed upon astrocyte glucose loading during EGD. In contrast, the effect of blocking only GLUT1 or MCT1/2 alone, as well as the effect of SR13800, an MCT1-specific blocker, was difficult to interpret because the remaining amplitude was not different from the control situation (EGD).

To further discern how oligodendrocytes exert their effect on fPSP rescue during EGD, mice with genetic deletion of Cx30 and Cx43, in which astrocytes are completely uncoupled, were
employed (Wallraff et al., 2006). Filling an oligodendrocyte with glucose in those mice did not rescue IPSPs during EGD, suggesting that oligodendrocytes within the pial network exert their protective effects mainly by assisting metabolite transport of astrocytes to the postsynapses, although further experiments are needed to finally resolve that issue.

Taken together, we show that astrocytes and oligodendrocytes in the thalamus are jointly engaged in maintaining synaptic activity by delivery of metabolites through the pial-coupled network (Morrison et al., 2013). The underlying mechanisms are clearly different from other gray and white matter regions of the brain. Our data support the view that thalamic oligodendrocytes exert their effect mainly by assisting metabolite transport of astrocytes to the postsynapse, rather than by fueling axons or pre-synaptic structures.

References


STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Antibodies</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken anti-GFP</td>
<td>Abcam</td>
<td>Cat# ab13970; RRID: AB_300798</td>
</tr>
<tr>
<td>Streptavidin, Alexa Fluor 647 conjugate antibody</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# S-21374; RRID: AB_2338066</td>
</tr>
<tr>
<td>Alexa 488 goat anti-chicken</td>
<td>Invitrogen</td>
<td>Cat# A-11039; RRID: AB_142924</td>
</tr>
<tr>
<td><strong>Chemicals, Peptides, and Recombinant Proteins</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrodotoxin citrate</td>
<td>Abcam</td>
<td>Cat# 120055; CAS: 18660-81-6</td>
</tr>
<tr>
<td>Biocytin</td>
<td>Sigma-Aldrich</td>
<td>Cat# B4261; CAS: 576-19-2</td>
</tr>
<tr>
<td>Picrotoxin</td>
<td>Abcam</td>
<td>Cat# ab120315; CAS: 124-87-8</td>
</tr>
<tr>
<td>Sulforhodamine B</td>
<td>Sigma-Aldrich</td>
<td>Cat# S1402; CAS: 3520-42-1</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>Sigma-Aldrich</td>
<td>Cat# SP2256; CAS: 113-24-6</td>
</tr>
<tr>
<td>Hoechst 33342</td>
<td>Invitrogen</td>
<td>Cat# H1399</td>
</tr>
<tr>
<td>AR-C155858</td>
<td>MedChemExpress</td>
<td>Cat# HY-13248; CAS: 496791-37-8</td>
</tr>
<tr>
<td>Sf31</td>
<td>Sigma-Aldrich</td>
<td>Cat# SLM1108; CAS: 724741-75-7</td>
</tr>
<tr>
<td>SR13800</td>
<td>Tocris</td>
<td>Cat# 5431; CAS: 227321-12-2</td>
</tr>
<tr>
<td>L-lactate</td>
<td>Sigma-Aldrich</td>
<td>Cat# L7022; CAS: 867-56-1</td>
</tr>
<tr>
<td>Sulforhodamine 101</td>
<td>Sigma-Aldrich</td>
<td>Cat# S7635; CAS: 60311-02-6</td>
</tr>
<tr>
<td><strong>Experimental Models: Organisms/Strains</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse: hGFAP-EGFP</td>
<td>Colony maintained at the facility of the University of Bonn</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse: PLP-GFP</td>
<td>Colony maintained at the facility of the University of Bonn</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse: Cx32/Cx47 double KO</td>
<td>Colony maintained at the facility of the University of Bonn</td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Software and Algorithms</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igor Pro 7.0</td>
<td>WaveMetrics</td>
<td>[<a href="https://www.wavemetrics.com/">https://www.wavemetrics.com/</a>; RRID: SCR_000325](<a href="https://www.wavemetrics.com/">https://www.wavemetrics.com/</a>; RRID: SCR_000325)</td>
</tr>
<tr>
<td>R v3.5.2</td>
<td>R Core Team</td>
<td>[<a href="http://www.R-project.org/">http://www.R-project.org/</a>; RRID: SCR_001905](<a href="http://www.R-project.org/">http://www.R-project.org/</a>; RRID: SCR_001905)</td>
</tr>
<tr>
<td>Tida v5.24</td>
<td>HEKA</td>
<td>[<a href="https://www.heka.com/">https://www.heka.com/</a>; RRID: SCR_014582](<a href="https://www.heka.com/">https://www.heka.com/</a>; RRID: SCR_014582)</td>
</tr>
<tr>
<td><strong>Other</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bipolar stimulation electrode</td>
<td>MicroProbes for Life Science</td>
<td>Cat# WE3ST31.0A10</td>
</tr>
</tbody>
</table>

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to, and will be fulfilled by, the Lead Contact, Christian Steinhäusser (cste@uni-bonn.de)
Materials availability
This study did not generate any unique materials. All materials needed to support the claims of the study are available commercially.

Data and code availability
The article includes all data generated or analyzed during this study. Original source data for Figures in the paper are available upon request to the Lead Contact author. No proprietary software was used in the data analysis.

EXPERIMENTAL MODEL

Mice
Experiments were performed in transgenic mice with astrocyte-specific fluorescence labeling (human glial fibrillary acidic protein-enhanced green fluorescent protein (hGFAP-EGFP); (Nolte et al., 2001), astrocyte-specific knockout of Cx43 and global deletion of Cx30 ([Cx30−/−];Cx43ΔGhGFAPCre (DKO)); (Wallraff et al., 2006) or oligodendrocyte-specific fluorescence labeling (myelin proteolipid protein-green fluorescence protein (PLP-GFP); (Fuss et al., 2000)). In Cx32/Cx47-deficient [Cx32−/−;Cx47EGFP−/−] and Cx32−/−;Cx47EGFP−/− (dko) mouse lines, oligodendrocytes could be identified by EGFP fluorescence as the Cx47 coding region had been replaced by cDNA encoding the enhanced variant of the green fluorescent protein (Odermatt et al., 2003). As in our previous studies (Meyer et al., 2018; Claus et al., 2018; Grießmann et al., 2015), mice of both sexes were used for the experiments at postnatal day (p) 28-40, except DKO mice which had an age of p23-24. Animals were kept under standard housing conditions. All experiments were carried out in accordance to local, state (Landesamt für Natur, Umwelt und Verbraucherschutz NRW) and European regulations.

METHOD DETAILS

Slice preparation
Animals were anesthetized with Isoflurane (Abbott, Wiesbaden, Germany) and killed by decapitation. The brains were then carefully removed. The midline of each hemisphere was put on a custom-made Teflon block with a 30° angle and a small piece of the dorsal part of the brain was cut off. The hemispheres were glued dorsally on a specimen holder and cut in ice cold solution containing (in mM): 119 NaCl, 2.5 KCl, 1.3 MgSO4, 2.5 CaCl2, 11 glucose, 1 NaH2PO4 and 26.2 NaHCO3, O2/5% CO2) at pH 7.4. Using a vibratome (VT1200S, Leica, Nussloch, Germany), 300 μm thick slices for post synaptic field potential recordings and 200 μm thick slices for whole-cell patch clamp experiments, were prepared containing the ventroposteromedial (VPM) and ventroposterolateral (VPL) nuclei of the thalamus. Slices were kept at 35° C for 15 min and then stored in artificial cerebrospinal fluid (ACSF) containing (in mM): 119 NaCl, 2.5 KCl, 1.3 MgSO4, 2.5 CaCl2, 11 glucose, 1 NaH2PO4 and 26.2 NaHCO3, at room temperature for at least 1 h before starting the experiments. In some cases, the slices were incubated in ASCF supplemented with 1 μM sulforhodamine 101 (SR101; Invitrogen, Thermo Fisher Scientific, Darmstadt, Germany) to label astrocytes (35° C for 20 min).

Post-synaptic field potentials and data analysis
Slices were then transferred to a recording chamber and visualized using a Leica TCS SP5 confocal microscope (Leica DM6000, Leica, Mannheim, Germany) and LAS AF software. It was equipped with a Leica HCX APO L 20x 1.0 water immersion objective (Leica, Mannheim, Germany) and a resistance of 3-6 MΩ. The depth of the stimulation electrode was adjusted to evoke maximal responses. Electrical stimulation was achieved with a computer-controlled constant current isolated stimulator (STG2004, Multi Channels Systems, Reutlingen, Germany). Field potentials were recorded in the ventrobasal thalamus with a SECO5-LX amplifier in the bridge mode (npi electronic, Tamm, Germany) while applying trains of stimuli (duration 100 μs, 5 stimuli at 20 Hz, from 50 μA to 200 μA, every 15 s). Ten subsequent traces were averaged and used for the analysis (giving one data point every 150 s). To obtain stable responses the stimulation intensity was set to 80% of the peak amplitude. Data analysis was performed with Igor Pro software (Wave Metrics, Portland, USA).

Extracellular glucose deprivation (EGD)
For EGD experiments, slices were first incubated with ACSF (10 min) for recording baseline fPSPs. Then, glucose-free ACSF was applied for 10 min and subsequently ACSF containing glucose was reapplied for 30 min. In some experiments, glucose was replaced by L-lactate or pyruvate (both Sigma-Aldrich, StLouis, Missouri, USA) during the 10 min EGD step. Blockers for glucose and monocarboxylate transporters (AR-C155858, MedChemExpress, Sollentuna, Sweden; Stf31, Sigma-Aldrich, StLouis, Missouri, USA and
SR13800, Tocris Bioscience, Bristol, United Kingdom) were applied by bath perfusion during EGD. Experiments were performed at room temperature because at 35°C, EGD (duration 5-10 min) caused an irreversible fPSP decline to zero while shorter EGD durations (2.5 min) did not affect the field potential (data not shown).

**Patch-clamp recordings**

Whole-cell patch clamp experiments were performed on thalamic astrocytes and oligodendrocytes, which were identified based on their morphology and green fluorescence (Matthias et al., 2003; Fuss et al., 2000; Odermatt et al., 2003). Patch pipettes were pulled from borosilicate glass capillaries (Science Products, Hofheim, Germany) by a horizontal puller (DMZ Zeitz-Puller, Zeitz, Martinsried, Germany) and had a resistance of 3-6 MΩ when filled with the following intracellular solution (in mM): 100 K-gluconate, 30 KCl, 0.5 CaCl₂, 1 MgCl₂, 5 EGTA, 20 KOH, 3 Na₂-ATP, 10 HEPES, supplemented with 20 glucose or 40 L-lactate. Sulforhodamine B (10 µg/ml; Sigma-Aldrich, St.Louis, Missouri, USA) was added to the pipette solution to visualize the coupled network during recording. Patched cells were selected close to the recording electrode (maximum distance 80 µm, same depth as the recording electrode). Cells were dialyzed for 20 min with the pipette solution prior to EGD to ensure saturation of metabolites spreading in the coupled networks. Cells were clamped at −80 mV. The liquid junction potential, calculated using Clampex (−7.1 mV), was compensated online. Input and series resistance were regularly monitored applying 10 mV voltage steps. Recordings with series resistance >20 MΩ were discarded. Currents were recorded using an EPC-800 patch clamp amplifier (Heka, Lambrecht, Germany) and monitored by TIDA software (Heka). Data were filtered at 3-10 kHz and sampled at 6-30 kHz.

**QUANTIFICATION AND STATISTICAL ANALYSES**

**Quantification of tracer coupling**

Tracer-filling experiments were performed to determine the size and composition of glial networks in acute thalamic brain slices of Cx32/Cx47-deficient mice (Griemsmann et al., 2015). To identify astrocytes, 200 µm thick slices were incubated in ACSF supplemented with SR101. Currents were recorded and cells dialyzed for 20 min with intracellular solution supplemented with 0.5% biocytin. After recording, slices were fixed in 4% paraformaldehyde (PFA) in 0.1 M phosphate buffered saline (PBS), pH 7.4, overnight at 4°C and subsequently stored in PBS. Slices were permeabilized and unspecific antibody binding sites were blocked by incubating for 4 h at room temperature in PBS containing 2% Triton X-100 and 10% normal goat serum (NGS; Millipore). They were then incubated with streptavidin-Alexa Fluor 647 (1:600; Thermo Fisher Scientific) and chicken-α-GFP (1:500; Abcam, Cambridge, UK; ab13970) in PBS with NGS (2%) and Triton X-100 (0.1%) at 4°C overnight. The next day, slices were washed 3 times in PBS and incubated 2 h at room temperature with goat-α-chicken Alexa Fluor 488 (1:500; Invitrogen A11039). Slices were then washed 3 times and incubated with Hoechst (Invitrogen; 1:100 in dH₂O, 10 min). After another washing step, slices were mounted on coverslips (Aqua-Poly/Mount, Polyscience). Stacks of image planes were acquired at a 1-2 µm intervals using a confocal microscope (TCS SP8 Leica). Coupling networks were quantified by counting the total number of biocytin-filled cells through the z stacks using ImageJ software and the cell counter plugin. Counting was performed independently by two colleagues blinded to the experimental conditions, and the results were averaged.

**Statistics**

Data are given as mean ± standard error of the mean (SEM). N refers to the number of animals and n to the numbers of brain slices investigated. Those numbers are indicated in the figure legends or in the text. Data were tested using analysis of variance (ANOVA) followed by Tukey’s test (Gaussian datasets) or the Kruskal–Wallis test followed by Dunn’s test (non-Gaussian datasets). In case two groups were compared, a t-test was applied. Differences were regarded as significant at *p < 0.05 or **p < 0.01. Tests were performed with the software R (R Development Core Team, URL http://www.R-project.org).