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Abstract. In the present paper, we experimentally study the diffusive dynamics in ensembles
of self-propelled and self-rotating bristle-bots. Considering the dependence of the system
dynamics on the packing density of robots as well as on the friction between individual robots,
we show that the friction slightly affects the diffusive dynamics but leads to a significant change
in the jamming transition corresponding to the formation of rigid clusters of robots.

1. Introduction
Physics of active matter considers the dynamics of systems composed of particles that can
extract energy from their sources and convert this energy into individual and collective motion.
Examples of such systems include biological ones such as bacterial colonies [1], flocks of birds or
fish [2], as well as artificial systems, including ensembles of self-propelled micro-particles [3] or
macroscopic robots [4, 5, 6]. The latter platform is especially attractive for experimental studies
due to its low cost and great flexibility which allows engineering properties of individual particles.
Various phenomena have also been studied in ensembles of self-rotating particles, including
phase separation [7] and mixing [8] of particles rotating clockwise and counterclockwise, reversal
of collective rotation of active spinners having the same chirality depending on their packing
density [9], theory of jamming and unjamming of active rotators [10], and dynamics of active
spinners embedded in passive media [11]. However, the dependence of collective behavior of
self-propelled or self-rotating robots on friction between individual robots have not been studied
in detail. In the present paper, we focus on diffusive dynamics and jamming transition in such
active ensembles.
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Figure 1. Experimental setup. (a): Photograph of the self-propelled bristle bot used in the
experimental setup. (b): Schematics of the robot control circuit which includes a power source, a
photodiode, two transistors and a vibration motor. (c, d): Schematic representation of the self-
propelled (c) and self-rotating (d) robots movement patterns. (e): Setup for the measurement
of static friction coefficients. (f): Displacement between the given initial location of moving
particle and the position of collision with the boundary for some arbitrary trajectory of the
particle.

2. Experimental setup
In the present work, we consider the ensembles of 33 self-propelled and 22 self-rotating bristle-
bots (10 clockwise and 12 counterclockwise) vibrating at frequencies between 50 and 100 Hz,
figure 1a. The vibration causes bristle-bots having soft deformable legs to move due to the
asymmetry of their shape and mass distribution. Each robot is 35 mm in diameter and consists
of the body made of ABS plastic via FDM printing technology, QX-6A-1 vibration motor, a 3V
battery, and a control circuit. The circuit allows turning the robots on and off by changing the
ambient lighting and includes two KT315B1 transistors, Vishay BPW34 PIN photodiode and
KLS7-SS03-12D02 slide switch, figure 1b. The robots are placed inside the plastic boundary
of a variable diameter that is changed between 20 and 40 cm to control the density of robots.
To change the friction between robots, side surfaces of individual bristle-bots are covered with
different materials ranging from a sandpaper to a paper tape to a plastic tape. The motion of
the system is captured with a camera and then analyzed with the aid of DeepLabCut neural
network and OpenCV Library.

To obtain numerical values of friction coefficients for the used materials, we measure the
static friction coefficient k of the plastic tape, paper tape and sandpaper directly as the tangent
of the angle at which the test body covered with a given material starts to slide on the
inclined plane covered with the same material, figure 1e. The inclination angle is controlled
and measured by the setup including servo motor Tower Pro SG90, potentiometer S16KN1-
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B2K, and microcontroller ATMega2560. The results are averaged over three measurements.
The obtained static friction coefficient values are klow = 0.26, kmed = 0.40, and khigh = 0.96 for
the plastic tape, paper tape, and sandpaper, respectively.

3. Dynamics of self-propelled particles
We consider the dependence of the dynamics of robotic ensemble on the robot density p and
friction coefficient between individual robots k. To do so, we extract trajectories of individual
robots for different diameters of the boundary D and different materials covering robots. Then,
we study a root mean square displacement of robots as a function of time, averaged over N
different trajectories in the single realization as well as over three different initial configurations
of the ensemble:
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to compare the measured particle displacements with some estimation value of typical mean
displacement of the particle initially located at a random position within the considered system
and the boundary. Such a quantity is given by the integral
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where
x(s, φ, ψ) =

√
r2 + s2 − 2rscos(φ− ψ), (3)

as illustrated by the schematics shown in figure 1f. Numerical evaluation of this integral gives

M = 0.544D, (4)

where D is the boundary diameter.
Another useful estimation is calculated as the maximum displacement of the particle until it

reaches the boundary:

Mmax =

∫ r
0

∫ 2π
0 (r + s)dsdϕ∫ r
0 ds

∫ 2π
0 dϕ

. (5)

Analytical evaluation of this integral gives

Mmax = 0.75D. (6)

The first series of experiments are performed in the system consisting of 32 to 33 self-propelled
bristle-bots. The bots of this type are characterized by a unidirectional motion, figure 1c. For
each value of the friction coefficient and boundary diameters of D = 30, 33.5 and 40 cm, we
studied three independent realizations of the system. Corresponding filling densities of the
system read p1 = 0.35, p2 = 0.25, and p3 = 0.2. Photographs of the system for different
boundary diameters are shown in figure 2a-c. To analyze the captured robot trajectories, we
applied the DeepLabCut neural network. The processed trajectories are shown in figure 2d-f.

Next, we analyze the time dependence of the root mean square displacement x(t) for each
robot in the log-log scale. All the curves shown in figure 2g-i are averaged over 5 to 6 marked
robots, as well as over three independent realizations of the system corresponding to different
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Figure 2. Experimental study of self-propelled particles. (a)-(c): Photographs of the system
for various boundary diameters D. (d)-(f): Extracted trajectories of robots for particular
realizations of systems corresponding to the same boundary diameters D as in panels (a)-
(c). (g)-(i): Root mean square displacements of robots as a function of time x(t) for different
friction coefficients between robots klow = 0.26 (blue solid line), kmed = 0.4 (red solid line), and
khigh = 0.96 (green solid line). Grey and red dashed lines show estimations of the characteristic
particle displacements M and Mmax, correspondingly.

initial positions of the robots for each boundary diameter and friction value. From the plots
shown in figure 2g-i, one can see the region corresponding to a ballistic motion

x(t) ∝ t, (7)

the region corresponding to the diffusive dynamics

x(t) ∝ tα, (8)

with a power law exponent α ≈ 0.5, and the plateau

x(t) = const, (9)
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Figure 3. Experimental study of self-rotating particles. (a)-(c): Photographs of the system
for various boundary diameters D. (d)-(f): Extracted trajectories of robots for particular
realizations of systems corresponding to the same boundary diameters D as in panels (a)-
(c). (g)-(i): Root mean square displacements of robots as a function of time x(t) for different
friction coefficients between robots klow = 0.26 (blue solid line), kmed = 0.4 (red solid line), and
khigh = 0.96 (green solid line). Grey and red dashed lines show estimations of the characteristic
particle displacements M and Mmax, correspondingly.

corresponding to the formation of a rigid cluster of robots, qualitatively resembling a glass. In
the last case, the root mean square displacements of the robots practically do not change, even
though the limiting maximal displacements M and Mmax associated with the finite boundary
diameter have not been reached. Since packing density of the system for all values of D shown
in figure 2 is relatively low and is far from the bulk jamming transition point, this condensation
of robots corresponds to the boundary-assisted jamming. It is seen that the diffusive motion
weakly depends on friction since the slope of the curves corresponding to the region defined by
Eq.(8) for all cases in figure 2g-i is practically the same. However, friction significantly affects the
density at which jamming emerges. For example, in the figure 2h, jamming is more pronounced
at the intermediate value of friction kmed than at high or low friction values. The obtained
results demonstrate the possibility of a non-monotonic dependence of the jamming transition in
active systems on friction between individual particles.
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4. Dynamics of self-rotating particles
In the second series of experiments, we studied the system of 22 self-rotating particles, which
are bristle-bots actively rotating around their axis with nearly no translational displacement,
figure 1d. The same materials as in the first setup were used to obtain different friction between
robots. Field diameters are D = 20, 25 and 30 cm, and corresponding filling densities of the
system are p1 = 0.56, p2 = 0.36, and p3 = 0.25, figure 3a-c. To analyze captured videos and
extract trajectories of individual robots shown in figure 3d-f, Hough transform from the OpenCV
Library is applied. The results are averaged over 18 to 22 bristle-bots in each implementation of
the system, as well as over three independent realizations corresponding to different initial
positions of the robots. There is a small difference in the number of statistical samples
for different realizations, as in the previous setup, because not all robots were successfully
recognized.

The dependencies of the root mean square displacement on time x(t) shown in figure 3g-i
demonstrate that at lower densities robots move diffusively, while at high densities there are
multiple jamming transitions, which correspond to plateaus in the x(t) curves. As seen in
figure 3g, at high densities larger robot mobility is observed at the highest friction between
robots, in contrast to low system fillings, and that at low friction jamming and release of robots
goes faster. This highlights the role of friction in mechanisms leading to the conversion of robot
rotation into motion as well as in the formation of stable clusters.

5. Conclusion
We experimentally studied the behavior of the active system of robots at different filling
densities of the system, as well as at different values of the friction coefficient between robots.
Two different systems were considered: self-propelled particles and self-rotating particles.
Experiments with ensembles of self-propelled particles show that the boundary-assisted jamming
transition corresponding to the formation of an active glass of robots significantly depends on
friction between the robots, while the diffusive dynamics corresponding to the liquid-like behavior
of the active system remains unchanged. Experiments with ensembles of self-rotating particles
demonstrate that multiple jamming transitions can be observed at high densities of the system,
and emphasize the possibility of a non-monotonic dependence of the mobility of robots on the
friction between them.
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