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Figure S1: Expression of Wnts family members by ACs. 

(A-E) Cultivated ACs at p0 and p1 were subjected to RT-PCR analysis and showed 

that several Wnts (A) are expressed as well as Fzd receptors (B), LRP co-receptors 

(D) and Sfrps inhibitors (C). G6pdx (A, E) was used as housekeeping gene and RNA 

from E14.5 embryo was used as positive control (c). (F) qPCR confirm the ACs as main 

source of Wnt factors in the whole brain compared to MBMECs. (G) qPCR analysis on 

same samples reveals differential expression of Frizzled Receptors in ACs and 

MBMECS. (H) qPCR analysis on same samples shows expression of the non-

conventional ligand Ndp and the receptors mainly in ACs compared to MBMECs, n=3. 

Figure S2: Recombination efficiency. 

(A) Representative images depicting the specific recombination in CNS tissue of the 

constitutive driver line hGFAP-cre used for Evifl/fl recombination in our study crossed 

with the ROSA26-mTmG reporter strain. (B) Recombination in ACs (GFAP, red) is 

supported by co-localisation of -galactosidase (green) expressed together with cre-

recombinase. Insets show individual ACs  without and with -galactosidase 

expression in EviCtrl and Evi∆AC mice, respectively. 

Figure S3: Vascular density is not modified in Evi∆AC animals. 

(A-H) Quantification of (A, C, E, G) vascularized area and (B, D, F, H) branching points 

in (A-D) 10-week and (E-H) 40-week-old animals. (I-J) Details of the regions included 

for the analysis at (I, for results in A, B, E and F) bregma -1.82mm and (J for results in 

C, D, G and H) bregma 0.98mm. Asterisks point out area for multiple picture acquisition 

in large regions such as cortex, SVZ, piriform cortex and LSN, n=3 for each age and 

genotype. 

Figure S4: Western Blot analysis on vessels fragments. 

(A) Representative Western Blot for junction proteins (Cdh5 and Cldn5) and 

transporters (Slc2a1 and Abcb1a) in cortical vessel fragments of 10-week-old EviCtrl 

and Evi∆AC animals. Beta-actin was used for normalization. (B) Quantification of 

junction proteins (Cdh5 and Cldn5) and transporter (Slc2a1 and Abcb1a) in cortical 

vessel fragments of 10-week-old EviCtrl and Evi∆AC animals. n=4 except for Abcb1a for 1389 
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which n=3. (C) Immunofluorescent staining for Glut1 (magenta) combined with Podxl 

(white) as luminal vessel marker and DAPI (blue) nuclear staining of cortical vessels 

in 10- and 40-week-old EviCtrl and Evi∆AC mice. Representative images of n=3 mice.  

Figure S5: Quantification of junctional protein localization distribution. 

(A) Legend of the evaluation criteria for junction protein distribution. Protein localization 

and junctional staining was evaluated on 10µm sections for intensity, continuity and 

pattern quality. (B) Analysis of claudin-5 (Cldn5) junctional staining. (C) Analysis of VE-

cadherin (Cdh5) junctional staining (n=3). 

Figure S6: Immunofluorescence staining of Lama2, Lama4 and Lama5 
ECM components. 
(A) Immunofluorescent staining on 10µm sections for Lama2 (green) combined with 

Cdh5 (white) as vessel marker and DAPI (blue) as nuclear staining of cortical vessels 

in 10- and 40-week-old EviCtrl and Evi∆AC mice. (B) Immunofluorescent staining for 

Lama4 (white) combined with Cldn5 (magenta) as vessel marker and DAPI (blue) as 

nuclear staining of cortical vessels in 10- and 40-week-old EviCtrl and Evi∆AC mice. (C) 

Immunofluorescent staining for Lama5 (magenta) combined with Cldn5 (green) as 

vessel marker and DAPI (blue) as nuclear staining of cortical vessels in 10- and 40-

week-old EviCtrl and Evi∆AC mice. Representative images of n=3 mice.  

Figure S7: MACE analysis on FACS isolated cortical ECs. 

(A) Steps of the simple protocol used to isolate endothelial cells from brain of EviCtrl and 

Evi∆AC animals. (B) Gating strategy for the isolation of brain EC. (C-D) Histogram 

representative of the GO terms describing junction (C) or vesicle (D) terms. (E-H) 

Volcano plots of single GO term including genes belonging to amino acid transport (E), 

glucose transport (F), endothelial cell differentiation (G) and extracellular matrix (H) 

groups. Red dots represent significantly regulated genes, green dots indicate 

significantly regulated genes belonging also to Wnt canonical pathway, and blue dots 

genes of interest investigated in this study. 
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Figure S8: Pericyte coverage remains unchanged while cell body number 1421 

1422 

1423 

1424 

1425 

1426 

is decreased in several regions in young Evi∆AC adults. 

(A) Representative pictures of vessels (CD31, magenta) covered by pericytes (CD13/

Anpep, white) in cortex of 10-week-old EviCtrl and Evi∆AC animals. Green arrowheads 

point out pericyte cell bodies. (B-I) Quantification of (B, C, F, G) pericyte volume and 

(D, E, H, I) pericyte cell bodies in (B-E) 10-week and (F-I) 40-week-old animals. n=3 

for each age and genotype. 1427 
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Suppl Table 1: primers for RT-PCR 
 
 

target forward reverse 
Fzd1 TGTCCCTTGCCCAGTGTCTTT TTTAGCCTCTCCCAACCCACA 
Fzd2 TCGCCTACAACCAGACCATC CATTGGAAGCCGAACTTGT 
Fzd3 GGGTTGGAAGCAAAAAGACA CTCCCTGCTTTGCTTCTTTG 
Fzd4 CAACCTGTGTGATTGCCTGT TGTGTGTGGGCTGAAGTGTT 
Fzd5 GGCAGGCTTCGTGTCACTCTT GCTGGCACCGTGTAGAGCAG 
Fzd6 GGCTGAAGGTCATTTCCAAG TGAACAGGCAGAGATGTGGA 
Fzd7 GAAGCTGGAGAAGCTGATGG ATCTCTCGCCCCAAATCTCT 
Fzd8 CGGTGGTCTTTCTCCTTGTC TAGAAAAGGCAGGCGACAAC 
Fzd9 AGAGCCTGTGCTACCGAAAA CCCCCTGTGTCTCACTTGTC 
Fzd10 GACACCTGACTGCCTGATGA ACAACCAGCCAACCAAGAAA 
G6pdx AGACCTAAGCTGGAGGAGTT GGTGACTGCTTCATAGACTG 
Lrp5 AGCCATTGTGTTGCACCCTGT ACCAGGACATGCCGATCTCTC 
Lrp6 CGAACTGCCAGGACAAATCAG AACTGTGTTGGTGGCTTGTGG 
Sfrp1 GGTACAACCGTGTGTCCTCCA GCCGCTTCAGCTCCTTCTTCT 
Sfrp2 CGACATCATGGAAACCCTTTG AGCCACAGCACGGATTTCTTC 
Sfrp3 CATCTCTCCTGAGGCCATCGT TTTAGCCCGGATGACATAGTTG 
Sfrp4 CAATTCCTCCTGCCAGTGTCC TCCTGAAGCCTCTCTTCCCACT 
Sfrp5 CTGGACAACGACCTCTGCATC CGCTGTGCTCCATCTCACACT 
Wnt1 ATCCATCTCTCCCACCTCCT AGCAACCTCCTTTCCCACTT 
Wnt2 AGAGTGCCAACACCAGTTCC TACAGGAGCCACTCACACCA 
Wnt2b ATCTCGTCAGCAGGAGTGGT CCATCATATCGCCTCCTCAG 
Wnt3 GGGGCGTATTCAAGTAGCTG GTAGGGACCTCCCATTGGAT 
Wnt3a GGCGGCTGTAGTGAGGACATT GTTCGCAGAAGTTGGGTGAGG 
Wnt4 CGAGGAGTGCCAATACCAGT GTCACAGCCACACTTCTCCA 
Wnt5a CCCAGTCCGGACTACTGTG TTTGACATAGCAGCACCAGTG 
Wnt5b TCTCCGCCTTACAAAAGTCT CACAGACACTCTCAAGCCCA 
Wnt6 TTCGGGGATGAGAAGTCAAG CGGCACAGACAGTTCTCCTC 
Wnt7a GACAAATACAACGAGGCCGT GGCTGTCTTATTGCAGGCTC 
Wnt7b GCAGTGTGGATGGATGTTGA TGGAAGATTGGCTGTCCTCT 
Wnt8a CTGACTACTGCAACCGCAAC TGACAGTGCAACACCACTGA 
Wnt8b CCAGAGTTCCGGGAGGTAG GAGATGGAGCGGAAGGTGT 
Wnt9a CCCCTGACTATCCTCCCTCT GATGGCGTAGAGGAAAGCAG 
Wnt9b GGGTGTGTGTGGTGACAATC TCCAACAGGTACGAACAGCA 
Wnt10a GCGCTCCTGTTCTTCCTACT ATGCCCTGGATAGCAGAGG 
Wnt10b TCAGTCGGGCTCTAAGCAAT TGGTGCTGACACTCGTGAAC 
Wnt11 TGCTTGACCTGGAGAGAGGT AGCCCGTAGCTGAGGTTGT 
Wnt16 CCCTCTTTGGCTATGAGCTG TACTGGACATCATCCGAGCA 
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