
ORIGINAL RESEARCH
published: 07 December 2020

doi: 10.3389/fnins.2020.611194

Frontiers in Neuroscience | www.frontiersin.org 1 December 2020 | Volume 14 | Article 611194

Edited by:

John Ashburner,

University College London,

United Kingdom

Reviewed by:

Vasily Yarnykh,

University of Washington,

United States

Tobias Leutritz,

Max Planck Institute for Human

Cognitive and Brain

Sciences, Germany

*Correspondence:

Stefan Hetzer

stefan.hetzer@charite.de

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 28 September 2020

Accepted: 16 November 2020

Published: 07 December 2020

Citation:

Cooper G, Hirsch S, Scheel M,

Brandt AU, Paul F, Finke C,

Boehm-Sturm P and Hetzer S (2020)

Quantitative Multi-Parameter Mapping

Optimized for the Clinical Routine.

Front. Neurosci. 14:611194.

doi: 10.3389/fnins.2020.611194

Quantitative Multi-Parameter
Mapping Optimized for the Clinical
Routine
Graham Cooper 1,2,3,4, Sebastian Hirsch 5,6, Michael Scheel 2,7, Alexander U. Brandt 2,8,

Friedemann Paul 1,2,3,9, Carsten Finke 3,9,10, Philipp Boehm-Sturm 4,11 and Stefan Hetzer 5,6*

1 Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité–Universitätsmedizin

Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin,

Germany, 2NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität

Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany, 3 Einstein Center for Neurosciences

Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and

Berlin Institute of Health, Berlin, Germany, 4Department of Experimental Neurology and Center for Stroke Research Berlin,

Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin

Institute of Health, Berlin, Germany, 5Berlin Center for Advanced Neuroimaging, Charité–Universitätsmedizin Berlin,

Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin,

Germany, 6 Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany, 7Department

of Neuroradiology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu

Berlin, Berlin Institute of Health Berlin, Berlin, Germany, 8Department of Neurology, University of California, Irvine, Irvine, CA,

United States, 9Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin,

Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany, 10 Berlin School of Mind and Brain,

Humboldt-Universität zu Berlin, Berlin, Germany, 11NeuroCure Cluster of Excellence and Charité Core Facility 7T

Experimental MRIs, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu

Berlin, Berlin Institute of Health Berlin, Berlin, Germany

Using quantitative multi-parameter mapping (MPM), studies can investigate clinically

relevant microstructural changes with high reliability over time and across subjects and

sites. However, long acquisition times (20min for the standard 1-mm isotropic protocol)

limit its translational potential. This study aimed to evaluate the sensitivity gain of a fast

1.6-mm isotropic MPM protocol including post-processing optimized for longitudinal

clinical studies. 6 healthy volunteers (35±7 years old; 3 female) were scanned at 3T

to acquire the following whole-brain MPM maps with 1.6mm isotropic resolution: proton

density (PD), magnetization transfer saturation (MT), longitudinal relaxation rate (R1), and

transverse relaxation rate (R2∗). MPM maps were generated using two RF transmit field

(B1+) correction methods: (1) using an acquired B1+ map and (2) using a data-driven

approach. Maps were generated with and without Gibb’s ringing correction. The

intra-/inter-subject coefficient of variation (CoV) of all maps in the gray andwhitematter, as

well as in all anatomical regions of a fine-grained brain atlas, were compared between the

different post-processing methods using Student’s t-test. The intra-subject stability of the

1.6-mmMPMprotocol is 2–3 times higher than for the standard 1-mm sequence and can

be achieved in less than half the scan duration. Intra-subject variability for all four maps

in white matter ranged from 1.2–5.3% and in gray matter from 1.8 to 9.2%. Bias-field

correction using an acquired B1+ map significantly improved intra-subject variability of
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PD and R1 in the gray (42%) and white matter (54%) and correcting the raw images

for the effect of Gibb’s ringing further improved intra-subject variability in all maps in

the gray (11%) and white matter (10%). Combining Gibb’s ringing correction and bias

field correction using acquired B1+ maps provides excellent stability of the 7-min MPM

sequence with 1.6mm resolution suitable for the clinical routine.

Keywords: quantitative multi-parameter mapping, intra-subject reliability, Gibb’s ringing, quantitative MRI, signal-

to-noise-ratio

INTRODUCTION

Quantitative magnetic resonance imaging (qMRI) has the
potential to revolutionize neuroradiology by deriving absolute
measures in physical units that are independent of technical
confounders and provide insight into physiologically meaningful
properties of tissue (Tofts, 2010). Only quantitative measures
allow a statistically valid comparison and interpretation of effect
sizes across brain areas, subjects, species and sites (Sullivan
and Feinn, 2012; Weiskopf et al., 2015; Chen et al., 2017).
Quantitative multi-parameter mapping (MPM) is an excellent
example, whereby four quantitative maps [proton density (PD),
magnetization transfer saturation (MT), longitudinal relaxation
rate (R1 = 1/T1), and transverse relaxation rate (R2∗ = 1/T2∗)]
of the whole brain can be measured in a scan time of around
20min (Weiskopf et al., 2013). These maps are sensitive to
microstructural tissue properties of high clinical relevance, such
as myelin and iron content (Weiskopf et al., 2015), and have
been shown to be sensitive to pathology, for example in multiple
sclerosis (Jurcoane et al., 2013; Gracien et al., 2017; Lommers
et al., 2019) and spinal cord injury (Grabher et al., 2015). Despite
the high validity of MPM (Weiskopf et al., 2013; Leutritz et al.,
2020), the widely used standard MPM protocol with 1mm
resolution (Weiskopf et al., 2013; Callaghan et al., 2014; Grabher
et al., 2015; Ziegler et al., 2018; Lommers et al., 2019; Leutritz
et al., 2020; Taubert et al., 2020) has a relatively long acquisition
time, limiting its translational potential (Bagnato et al., 2020).
Particularly in the clinical context, scan-time is minimized to
increase patient comfort, reduce motion artifacts (Havsteen et al.,
2017), and increase cost-efficiency for a high patient throughput.

To optimize the clinical utility ofMPM,we propose amodified
scan protocol that seeks to find a compromise between shortened
scan time and highest achievable signal-to-noise ratio (SNR).
Since SNR is directly proportional to voxel volume (Edelstein
et al., 1986), spatial resolution should be reduced to the lowest
value that still provides discernibility for fine-grained structures
of interest such as multiple sclerosis lesions (Filippi et al.,
2019), while the scan-rescan variability is reduced to a level
close to physiological noise where detection power for small
longitudinal signal changes is optimal (Triantafyllou et al., 2011).
The well-known, simplified relationship between voxel volume,
V, acquisition time, T, and SNR∼V·

√
T, indicates that even a

small decrease in spatial resolution (and thus an increase in voxel
volume) allows a tremendous decrease in scan time to maintain
a constant SNR. For example, doubling the voxel size from 1 to
2mm, corresponding to an increase in voxel volume by a factor

of 8, results in a reduction of scan time T by a factor of 82 = 64
to obtain the same SNR. Additional optimization of scan-rescan
stability by correcting for artifacts like Gibb’s ringing, which has a
high impact on image reliability especially in the vicinity of sharp
tissue boundaries (Kellner et al., 2016), has not been investigated
in MPM.

Here, we present anMPM protocol based entirely on standard
manufacturer sequences that can be readily translated into the
clinical routine. Given the envisioned clinical application, we
used a 1.6mm isotropic MPM protocol with a clinically feasible
overall acquisition time under 10min. We investigated intra-
and inter-subject variability for tissue classes and anatomical
subregions using an atlas-based analysis and compared the
effect of using different bias field correction methods as well as
correcting for Gibb’s ringing to determine the optimum post-
processing strategy for this fast MPM protocol.

MATERIALS AND METHODS

Subjects
For intra-/inter-subject variability evaluation, a sample of six
healthy volunteers (3 females, age 34.7± 7.3 years) were scanned
at the same scanner three times. Multiple scans were acquired
sequentially in one session, i.e., the volunteer exited and re-
entered the scanner, to simulate a naturalistic head placement
as would occur in a longitudinal study. This study was approved
by the local ethics committee and conducted in accordance with
the Declaration of Helsinki and German law. All participants
provided written informed consent.

MRI Acquisition
All scans were acquired on a 3T MR scanner (Magnetom Prisma,
Siemens Healthineers, Erlangen, Germany) using a 20-channel
receive radio-frequency (RF) head-neck coil covering both the
cervical spinal cord and the brain. Trained radiographers placed
participants in the same position to obtain high reproducibility
across participants and time points, minimizing bias related to
non-linearity of the gradient and RF bias-fields over time as well
as nerve fiber orientation effects relative to the static magnetic
field (Sati et al., 2012). All volumes were automatically aligned
to the head-base axis (van der Kouwe et al., 2005) with a 25◦

rotation of the sagittal plane to avoid eye-related motion artifacts
or folding of the nose into the cortex (Callaghan et al., 2019).

Each 7-min long MPM scan with 1.6mm isotropic resolution
was comprised of three different 3D multi-echo fast low-
angle shot (FLASH) gradient-echo acquisitions designed to

Frontiers in Neuroscience | www.frontiersin.org 2 December 2020 | Volume 14 | Article 611194

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Cooper et al. MPM Optimization

provide measures of proton density (PD), magnetization transfer
saturation (MT), longitudinal relaxation rate (R1 = 1/T1),
and transverse relaxation rate (R2∗ = 1/T2∗) with a field-
of-view (FOV) of 224 × 256 mm2 (matrix-size 140 × 160)
and 112 partitions. To minimize acquisition time parallel
imaging was used in the phase-encoding direction (anterior-
posterior) employing a generalized auto-calibration partially
parallel acquisition algorithm (GRAPPA) factor of 2 combined
with a 6/8 partial Fourier acquisition in the partition direction
(left-right). The readout bandwidth was 470 Hz/pixel allowing
six echoes between 2.46 and 14.78ms for all three acquisitions.
Contrast parameters were: repetition time TR = 37ms, flip
angle FA = 6◦ for MT-weighted images with a Gaussian off-
resonance RF pulse (500◦, 10ms, 1,200Hz off-resonance, 192Hz
bandwidth) prior to non-selective excitation; TR = 18ms, FA
= 4◦ and 25◦ for PD-weighted images and T1-weighted images,
respectively. In order to enable bias field correction a RF transmit
(B1+) map was acquired for all runs in a FOV exactly matching
the MPM scans with an isotropic resolution of 4mm. The B1+
map was derived from spin-echo/stimulated echo acquisitions
with a total scan time of 2min per run using a standard vendor
sequence (Leutritz et al., 2020).

In order to demonstrate the impact of different image
resolutions on the variability of MPM data one volunteer
(male, aged 42) was additionally scanned twice with isotropic
resolutions of {2.67; 2.00; 1.60; 1.33; 1.00} mm, a matrix-size of
{84 × 96; 112 × 128; 140 × 160; 168 × 192; 224 × 256} and {64;
88; 112; 128; 176} partitions, resulting in scan times of {2.7, 4.6; 7;
9.4; 16.5} min per run. Including the RF transmit maps acquired
for each run the overall scan timewas 2 h for thismulti-resolution
scan-rescan session.

Quantitative Map Generation
MR parameter maps of PD, MT, R1, and R2∗ were
generated using the hMRI toolbox (Tabelow et al., 2019)
version 0.2.0 (RRID:SCR_017682) implemented in SPM12
version 7219 (RRID:SCR_007037) using MATLAB 2019a
(RRID:SCR_001622). Maps of MT, R1, and R2∗ were calculated
using the ESTATICS model (Weiskopf et al., 2014). Receive field
inhomogeneities were corrected using Unified Segmentation
(Tabelow et al., 2019). For the correction of transmit RF field
(B1+) imperfections we compared the acquired B1+map with a
data driven estimation of the B1+ bias-field using the UNICORT
approach by Weiskopf et al. (2011). The influence of Gibb’s
ringing correction as described by Kellner et al. (2016) was
tested by removing the typical oscillatory patterns from all 6
echoes of the raw images (MTw, T1w, PDw) before parameter
quantification with the hMRI toolbox.

Post-processing
All four maps (MT, PD, R1, and R2∗) were transformed to
MNI space using SPM12 standard tools. The extended tissue
probability map from the hMRI toolbox (Tabelow et al., 2019)
with a threshold of 0.6 was used to calculate the average
values and corresponding intra-/inter-subject coefficients of
variation (CoV) of all four maps in the gray and white matter.
Average values and the CoV of all maps in each region of

the Neuromorphometrics atlas (Bakker et al., 2015) were also
calculated using SPM12.

Statistical Analysis
Statistical analyses were calculated in the gray and white matter
masks and in all 60 ROIs of the Neuromorphometrics atlas.
For each subject the intra-subject CoV was calculated by
dividing the voxel-wise standard deviation by the mean across
all three scans. The intra-subject CoV was used to analyze
the impact of Gibb’s ringing correction and compare two B1+
inhomogeneity correction techniques: employing acquired B1+
maps and using a data-driven approach (Weiskopf et al., 2011).
Group comparisons were made using Student’s t-test. Statistical
analyses were conducted in R version 3.6.1 (www.R-project.org)
and MATLAB 2019a.

RESULTS

Multi-Resolution Analysis
Figure 1 gives an overview of the data acquisition times for all 5
image resolutions between 1 and 2.7mm and the corresponding
quantitative maps. An experienced neuroradiologist (M.S., 10
years of experience) rated the image quality of isotropic
resolutions higher than 2mm good enough to resolve common
pathologies in clinical practice.

Figure 2 depicts the reduction of the CoV with increasing
voxel size in the example of PD and the improvement of data
quality after Gibb’s ringing correction (see https://clinicalmpm.
github.io for the remaining contrasts). The image resolution
of 1.6mm chosen for the multi-subject analysis is close to the
optimum where physiological noise dominates (Triantafyllou
et al., 2011).

Multi-Subject Analysis
High quality MPM parameter maps with absolute values
comparable to those previously reported in healthy participants
(Weiskopf et al., 2013; Callaghan et al., 2014; Lommers et al.,
2019) were generated using the multi-subject protocol acquired
with 1.6mm resolution (see Figure 3A and Table 1). Using
the data-driven B1+ correction (UNICORT) resulted in small
deviations from the absolute values reported in Table 1 for
gray/white matter (MT: −0.27/−0.81%, R1: 6.79/6.69%). R2∗

and PD were not compared because R2∗ quantification is not
affected by B1+ correction in the hMRI toolbox and PD is not
quantified when using UNICORT (Tabelow et al., 2019). Without
Gibb’s ringing correction the absolute values in the gray/white
matter deviated slightly compared to Table 1. (PD: 0.46/0.10%,
MT: 0.85/0.54%, R1: 0.39/0.47%, R2∗: −0.08/0.15%).The mean
parameter values and CoV in the gray and white matter are
shown in Table 1 and Figure 3B, respectively. Compared to gray
matter, the intra-subject CoV of each contrast showed higher
stability in white matter by a factor of 1.50 ± 0.09 for PD, 1.57
± 0.12 for MT, 1.35± 0.14 for R1, and 1.73± 0.09 for R2∗.

The intra-subject CoV in maps with acquired B1+ map
correction was compared with maps derived from a data-driven
B1+ correction (see Figure 3B). Using the acquired B1+ field
correction resulted in lower intra-subject CoV of the R1 and PD
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FIGURE 1 | (A) The total scan time for one MPM session including B1+ map. (B) All four quantitative maps acquired at different isotropic resolutions.

FIGURE 2 | (A) Scan-rescan variability within the white matter at different isotropic resolutions on the example of proton density contrast. Increasing the voxel size

decreases scan-rescan fluctuations until a point (red dashed line) where we assume physiological noise starts to dominate. A decrease in voxel size below 1.6mm

(red arrow) comes at the cost of longitudinal stability and longer acquisition times (compare Figure 1A), which are incompatible with the needs of clinical routine.

Correcting for Gibb’s ringing increases stability (blue vs. red circles), especially at higher image resolution. (B) One exemplary slice (1.6mm resolution) illustrating the

advantages of Gibb’s ringing correction on image quality and stability, especially in areas close to sharp tissue boundaries (red arrow).

contrasts in the gray (R1: −33.3%, p = 0.04; PD: −49.7%, p =
0.007) and white matter (R1: −46.0%, p = 0.03; PD: −62.0%, p
= 0.005). Additionally correcting for Gibb’s ringing resulted in a
lower intra-subject CoV (p < 0.001) of all contrasts in gray/white

matter (PD: −12.2/-14.0%, MT: −11.6/-9.2%, R1: −8.0/-5.3%,
R2∗:−13.3/-12.1%).

Figure 3A (lower row) shows the intra-subject variability of
individual atlas regions in an example slice for a typical volunteer
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FIGURE 3 | (A) An axial slice for a typical volunteer showing PD, MT, R1, R2* parameter maps for the optimized 1.6-mm protocol (upper row) including contour lines

of white matter (blue) and gray matter (red) masks used in the analysis; intra-subject CoV across the three scans (middle row); and the average CoV of MT, PD, R1,

R2* in the atlas regions - see also Table 2 and https://clinicalmpm.github.io. (B) The effect of B1+ map correction (data-driven UNICORT vs acquired B1+ map) and

Gibb’s ringing correction on the group-averaged scan-rescan variability in the gray and white matter for all 4 MPM contrasts. Note the negligible effect of using the

2-minute long B1 bias-field scan for the MT and R2* map.

TABLE 1 | Group-average values and intra-/inter-subject coefficients of variation of PD, MT, R1, and R2* maps using B1+ map and Gibb’s ringing correction.

Parameter value Intra-subject CoV [%] Inter-subject CoV [%]

Gray matter White matter Gray matter White matter Gray matter White matter

PD [%] 78.92 ± 0.38 70.52 ± 0.40 1.85 ± 0.40 1.22 ± 0.20 0.48 ± 0.04 0.56 ± 0.05

MT [%] 0.93 ± 0.04 1.59 ± 0.04 5.26 ± 1.37 3.35 ± 0.83 4.67 ± 0.26 2.45 ± 0.15

R1 [s−1] 0.62 ± 0.02 0.90 ± 0.02 3.58 ± 1.04 2.69 ± 0.85 2.69 ± 0.26 2.43 ± 0.26

R2* [s−1] 18.87 ± 0.52 21.61 ± 0.66 9.17 ± 1.66 5.30 ± 1.01 2.73 ± 0.18 3.05 ± 0.15

and Table 2 presents the group-averaged intra-subject CoV of 15
ROIs with high clinical relevance from the Neuromorphometrics
atlas alongside volume (data for all regions can be found at
https://clinicalmpm.github.io). Intra-subject CoV within atlas
regions follows the same pattern as in the tissue masks: PD has
the lowest CoV (2.09 ± 1.07%), followed by R1 (4.00 ± 1.20%),
MT (6.26± 2.54%), and R2∗ (9.45± 3.43%).White and deep gray
matter regions are more stable compared to the cortical regions.
Using the data-driven B1+ inhomogeneity correction without
correcting for Gibb’s ringing resulted in poorer stability in all atlas
regions (https://clinicalmpm.github.io).

Inter-subject CoV followed a similar pattern as the intra-
subject CoV across atlas regions (https://clinicalmpm.github.
io): PD has the lowest CoV (2.02 ± 1.82%), followed by R1
(5.12 ± 2.17%), MT (9.33 ± 4.18%) and R2∗ (9.04 ± 5.61%).
Across atlas regions, no differences between intra- and inter-
subject variability were found for PD (p = 0.64) and R2∗ (p =

0.55) while the inter-subject CoV was slightly higher for MT
(by a factor of 1.61; p < 0.001) and R1 (by a factor of 1.35;
p < 0.001).

DISCUSSION

We present an acquisition and post-processing protocol for
quantitative MPM of the brain optimized for longitudinal
clinical studies. The acquisition protocol is fully based on
manufacturer sequences certified for clinical use and can be
immediately translated into clinical protocols without concerns
about patient safety or insurance issues. A standard head
coil (20 channels) was used for acquisition as it is more
readily available in the clinic (e.g., compared to 64-channel
coils). Further, the optimized protocol is fully compatible
with a wide range of 3-Tesla scanners with less performant
gradient systems.
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TABLE 2 | Mean and standard deviation of intra-subject CoV (scan-rescan) and volume of 15 example atlas regions with high clinical relevance (see remaining atlas

regions as sortable table at https://clinicalmpm.github.io).

ROI name PD CoV [%] MT CoV [%] R1 CoV [%] R2* CoV [%] ROI volume [cm3]

White matter

Cerebral WM 1.24 ± 0.21 3.54 ± 0.91 2.80 ± 0.87 5.31 ± 0.95 556.2

Cerebellum WM 1.81 ± 0.41 4.14 ± 0.82 3.13 ± 1.22 8.23 ± 2.03 33.1

Deep gray matter

Thalamus 1.34 ± 0.22 3.85 ± 1.22 2.71 ± 0.49 6.51 ± 1.11 20.7

Putamen 1.21 ± 0.21 3.02 ± 0.80 2.40 ± 0.48 5.29 ± 1.31 11.5

Hippocampus 1.76 ± 0.38 5.00 ± 1.50 3.42 ± 0.86 10.51 ± 2.25 9.5

Caudate 1.22 ± 0.18 3.59 ± 0.78 2.74 ± 0.85 5.95 ± 0.99 8.6

Pallidum 1.38 ± 0.36 3.39 ± 1.02 2.58 ± 0.55 4.26 ± 0.96 3.8

Amygdala 2.16 ± 0.46 5.14 ± 1.46 3.47 ± 0.84 14.56 ± 3.65 2.5

Cortical areas

Precentral gyrus 1.52 ± 0.44 6.43 ± 2.43 3.82 ± 1.45 7.15 ± 1.59 40.5

Postcentral gyrus 1.73 ± 0.54 7.68 ± 3.53 4.55 ± 1.93 8.38 ± 2.25 34.4

Angular gyrus 1.53 ± 0.48 5.88 ± 2.70 3.99 ± 1.40 7.35 ± 2.11 29.9

Supplementary motor cortex 1.40 ± 0.26 5.78 ± 1.45 3.66 ± 1.34 6.40 ± 1.13 16.0

Occipital fusiform gyrus 2.01 ± 0.55 5.74 ± 2.46 3.67 ± 0.86 10.38 ± 3.37 10.6

Occipital pole 2.92 ± 1.22 8.81 ± 6.49 5.25 ± 2.45 9.43 ± 3.27 9.3

Parahippocampal gyrus 2.72 ± 0.81 6.24 ± 2.67 4.21 ± 1.49 12.97 ± 2.90 7.6

Multi-Resolution Analysis
The analysis of MPM data acquired with isotropic voxel sizes
between 1 and 2.7mm showed the expected increase in stability
with increasing voxel size. The stability of the 1.6mm protocol
was very close to the optimum where physiological noise
dominates. A further increase in voxel size would not be expected
to increase sensitivity and would rather have a negative impact on
the anatomical details that can be resolved. Given the envisioned
clinical application, all maps were visually inspected by a
neuroradiologist (M.S.) and MPM maps with voxel resolutions
higher than 2mm were confirmed to be of good quality and
suitable formost clinical and diagnostic purposes. One example is
the detection of multiple sclerosis white matter lesions, which are
larger than 3mm in the long axis (Filippi et al., 2019) and could
be well-resolved at these resolutions. The fast MPM protocol
with 1.6mm resolution was confirmed to be suitable for our
multi-subject analyses.

Multi-Subject Analysis
Intra-/inter-subject variability for all four quantitative maps were
found to be good both in gray and white matter as well as across
all regions in the Neuromorphometrics atlas. Of note, intra-
/inter-subject variability of all atlas regions were very comparable,
suggesting that the optimized protocol is useful for both cross-
sectional and longitudinal clinical studies with similar sensitivity.
The intra-subject CoV of all contrasts at 1.6mm isotropic
resolution are roughly 3 times smaller than the values reported
by Weiskopf et al. for their 20-min protocol with 1mm isotropic
resolution (Leutritz et al., 2020), even without Gibb’s ringing
correction. Therefore, in order to achieve the intra-subject CoV
of our optimized 1.6mm protocol, patients would have to be
scanned for an estimated 32 = 9 times longer (∼3 h) using the

1mm isotropic protocol by Weiskopf et al. which is not feasible
for clinical studies. The mean and intra-/inter-subject CoV of
all maps in all 60 atlas regions and the gray and white matter
masks are available online (https://clinicalmpm.github.io) for use
by clinical researchers for sample size and effect size estimations
(Sullivan and Feinn, 2012) for microstructural changes in specific
ROIs using MPM.

An apparent spatial distribution of longitudinal variability
in all four contrasts was identified, where white and deep gray
matter regions had lower CoV compared to cortical gray matter.
This was particularly apparent in the gray/white matter contrast,
where white matter CoV was 50% lower than gray matter. Given
that cortical gray matter has a higher amount of vasculature
compared to white and deep gray matter (Bernier et al., 2018),
which could lead to artifacts from blood and cerebrospinal fluid
(Havsteen et al., 2017), we hypothesize that this could contribute
to the observed higher variability of MPM parameters in cortical
regions as this has also been shown in functional MRI (Mueller
et al., 2013; Chamberland et al., 2017; Bernier et al., 2018;
Provencher et al., 2018). The effect of vascularization on MPM
has, to our knowledge, not yet been investigated and represents a
potentially interesting area for future optimization.

We recommend correcting for Gibb’s ringing artifacts.
Removing the typical oscillatory artifacts surrounding sharp
tissue boundaries not only increases the overall image quality
for diagnostic purposes but also increases temporal stability as
the destructive effect of Gibb’s ringing is amplified due to subject
motion. Gibb’s ringing had very little influence on the absolute
values of MPM maps, while stability significantly increased.
While correcting for Gibb’s ringing increased stability in all maps,
the effect was less strong for R1. A possible interpretation of
this would be that the other three maps (PD, MT, and R2∗)
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are derived from raw data with high (unsuppressed) CSF signal
and therefore particularly benefit from Gibb’s ringing correction.
We suggest that high-resolution MPM studies trying to resolve
cortical layers (Trampel et al., 2019) might especially benefit from
Gibb’s ringing correction.

Given the need for short acquisition times in the clinical
setting, we tested which contrasts benefit from the additional scan
time (∼2min) required to acquire a B1+map. Using the acquired
B1+ maps increased the stability for PD and R1 with slight
deviations in absolute R1 andMT values as expected, with higher
deviations in R1 than MT (Callaghan et al., 2014; Leutritz et al.,
2020). As expected, R2∗ quantification is not affected by B1+
mapping (Tabelow et al., 2019). Hence, for clinical studies with
particularly limited scan time or in populations where patient
compliance is challenging, it may be possible to reduce the total
scan time to 7min, sacrificing some stability in R1 and PD.
Alternatively, the MPM protocol may be extended to correct
B1- inhomogeneities using the short (< 1min) scan presented
by Leutritz et al. (2020), according to the work of Papp et al.
(2016).

In line with previous reports (Weiskopf et al., 2013; Leutritz
et al., 2020), R2∗ had the lowest stability in the current study.
Possible measures to improve the stability may be to correct
for B0 inhomogeneities by adapting sequences as described
by Baudrexel et al. (2009) or by using the existing phase
images acquired with the MPM protocol (Cohen-Adad et al.,
2012). Phase images may also be used to derive quantitative
susceptibility maps (Acosta-Cabronero et al., 2018). Another
potential extension would be to calculate the macromolecular
proton fraction from the acquired MPM maps (Yarnykh, 2016),
to acquire an additional marker of myelination with high stability
(Yarnykh et al., 2020).

Important Considerations for Clinical
Applications
The real benefit of quantitative measures is the ability to make
statistically valid comparisons and interpret effect sizes across
brain areas, subjects, species and sites (Sullivan and Feinn,
2012; Weiskopf et al., 2015; Chen et al., 2017). Therefore,
excellent reporting standards are required, including a-priori
power calculation and effect sizes. This is a well-described
problem in the field of functional MRI research (Sullivan
and Feinn, 2012; Chen et al., 2017; Nichols et al., 2017).
We only found two MPM papers that reported absolute
values and effect sizes (Grabher et al., 2015; Lommers et al.,
2019). Weiskopf et al. (and the current study) provide
important reference values for mean and standard deviation
and intra-/inter-subject reliability. This should enable clinical
researchers to calculate detailed power analyses and report
effect sizes that can be interpreted in the context of future
studies as well as enable the implementation of their findings in
the clinic.

Limitations
Although the intra-subject variability reported in the current
study is good (0.2–10%), it is higher than recently reported
intra-subject variability in T1, T2∗, and PD (Gracien et al.,

2020). This might be explained by several factors: First, a
different B1+ inhomogeneity correctionmethod was used, which
can have a large effect on stability of qMRI parameters as
demonstrated in the current study. Second, the explicit use of
non-manufacturer sequences allowed for higher optimization
than was possible in the current study and may explain some
differences. Further, as recently highlighted (Leutritz et al., 2020),
PD maps are calibrated to 69% in the white matter (Tabelow
et al., 2019), which may have led to an underestimation of
variability. The current study aimed to implement sequences
for MPM that were fully certified for clinical use and based
on manufacturer sequences, allowing for safe and immediate
translation into clinical protocols (not just research centers).
Hence, we were unable to implement many experimental
sequence adjustments (Callaghan et al., 2019) that could further
optimize the stability of the qMRI parameters. Finally, this was a
single-center study and a multi-center validation of the current
protocol, similar to Weiskopf et al. (2013) is warranted for
future research.

Conclusions
In conclusion, we present an optimized 7–9min MPM protocol
at 1.6mm isotropic resolution that is fully certified for clinical
use, is suitable for diagnostic purposes and can be easily
translated into clinical protocols. All scan protocols, processing
scripts and variability data are available for download at
https://clinicalmpm.github.io. We show that a lower resolution
and correcting for Gibb’s ringing in the preprocessing stage
robustly produces high-quality PD, MT, R1, and R2∗ maps
with absolute values comparable to those previously reported
in healthy participants using MPM (Weiskopf et al., 2013;
Callaghan et al., 2014; Lommers et al., 2019). The optimized
MPM protocol has excellent intra-subject variability both in
tissue classes and individual atlas regions. The stability of our
optimized protocol is 2–3 times higher than for widely used 1-
mm MPM protocols (Weiskopf et al., 2013; Callaghan et al.,
2014; Grabher et al., 2015; Ziegler et al., 2018; Lommers et al.,
2019; Leutritz et al., 2020; Taubert et al., 2020) and was achieved
in less than half the acquisition time. Given the high effect
sizes reported in former MPM studies (Grabher et al., 2015;
Lommers et al., 2019), the optimized protocol is expected to
have high sensitivity to detect subtle changes related to disease
or treatment effects even at the single-subject level, making the
current protocol a candidate for rare diseases and personalized
medicine approaches.
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