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Abstract: Circulating levels of branched-chain amino acids, glycine, or aromatic amino acids have
been associated with risk of type 2 diabetes. However, whether those associations reflect causal
relationships or are rather driven by early processes of disease development is unclear. We selected
diabetes-related amino acid ratios based on metabolic network structures and investigated causal
effects of these ratios and single amino acids on the risk of type 2 diabetes in two-sample Mendelian
randomization studies. Selection of genetic instruments for amino acid traits relied on genome-wide
association studies in a representative sub-cohort (up to 2265 participants) of the European Prospective
Investigation into Cancer and Nutrition (EPIC)-Potsdam Study and public data from genome-wide
association studies on single amino acids. For the selected instruments, outcome associations were
drawn from the DIAGRAM (DIAbetes Genetics Replication And Meta-analysis, 74,124 cases and
824,006 controls) consortium. Mendelian randomization results indicate an inverse association for
a per standard deviation increase in ln-transformed tyrosine/methionine ratio with type 2 diabetes
(OR = 0.87 (0.81–0.93)). Multivariable Mendelian randomization revealed inverse association for
higher log10-transformed tyrosine levels with type 2 diabetes (OR = 0.19 (0.04–0.88)), independent
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of other amino acids. Tyrosine might be a causal trait for type 2 diabetes independent of other
diabetes-associated amino acids.

Keywords: Mendelian randomization; amino acids; tyrosine; type 2 diabetes; GWAS

1. Introduction

Blood levels of amino acids have been associated with risk of type 2 diabetes or insulin resistance
in several observational studies [1]. However, it is still not fully clear whether these metabolites
are causal markers for disease etiology or rather reflect early pathophysiological processes of the
disease development.

To investigate causal relationships between risk factors and disease outcomes, genetic variants
can be used as instrumental variables in Mendelian randomization (MR). The principle is based on
Mendels’s second law of inheritance, stating that the assignment of alleles is random during meiosis.
Therefore, genetic variants are generally not associated with possible confounders (e.g., environmental
exposures or lifestyle factors) in exposure-disease associations [2]. Furthermore, the genetic constitution
of an individual is determined prior to the disease onset overcoming the chance of reverse causation [2].
Various previous MR studies investigated single amino acids in relation to type 2 diabetes risk but
found controversial results. For glycine, one study found a causal inverse association with type 2
diabetes [3]; however, two others did not [4,5] and one suggested glycine levels rather being causally
influenced by insulin resistance [5]. Phenylalanine showed a positive causal effect on risk of type 2
diabetes [3]. While branched-chain amino acids (BCAA) (isoleucine, leucine, and valine) have been
associated with risk of type 2 diabetes using MR [6], others found no indication for a causal effect on
insulin resistance, but rather the opposite direction of insulin resistance having a causal impact on
BCAA levels [7].

Previous MR studies used large data sources; however, they focused on single amino acids only
and did not account for their interrelations within human metabolism. Amino acid ratios which
account for intercorrelations between single amino acids and utilizing underlying network structures
might depict pathway reactions connected to functional SNPs [8]. Another novel approach to consider
pleiotropic effects within complex metabolic pathways is multivariable MR, utilizing multiple genetic
instruments to disentangle direct causal effects of risk factors [9].

Within this project, we aimed to use human genetics to estimate causal effects of single
diabetes-related amino acids and amino acid ratios, as identified in the European Prospective
Investigation into Cancer and Nutrition (EPIC)-Potsdam study (Figure S1) [10], on the risk of type 2
diabetes and to study which of the diabetes-related amino acid traits predominantly account for the
causal relationship with risk of type 2 diabetes.

2. Materials and Methods

2.1. Workflow

Figure 1 illustrates the workflow of our analysis. First, we selected diabetes-related amino acid
traits based on metabolic network structures within EPIC-Potsdam (Figure S1). Second, we identified
suitable genetic instruments in genome-wide association studies (GWAS) on diabetes-related amino
acid traits within EPIC-Potsdam data (n = 2265). Third, we evaluated the pathway enrichment of the
genetic instruments to facilitate biological interpretation facilitating biological interpretation. Fourth,
for the selected SNPs, disease associations were extracted from large public GWAS on type 2 diabetes
and we performed univariable two-sample MR studies to estimate the causal effects of amino acid traits
on type 2 diabetes risk (DIAGRAM data). To complement our results achieved within EPIC-Potsdam
data and to gain higher power to generate genetic instruments for single amino acids, we used
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previously published GWAS data on single amino acid measures [11]. Fifth, these public data were
furthermore used in a multivariable MR to estimate direct causal effects of diabetes-related amino acid
traits. Finally, we evaluated the role of pre-existing insulin resistance (defined by fasting insulin in
MAGIC data) by applying a reverse MR approach in EPIC-Potsdam and utilizing public GWAS data.
Detailed description of data sources follows under the study populations section.
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Figure 1. Workflow of analysis. AS, amino acid; DIAGRAM, DIAbetes Genetics Replication And
Meta-analysis; GWAS, genome-wide association study; MAGIC, the Meta-Analyses of Glucose and
Insulin-related traits Consortium; MR, Mendelian randomization; SNP, single nucleotide polymorphism;
T2DM, type 2 diabetes mellitus.

2.2. Study Populations

2.2.1. Individual-Level Data from the EPIC-Potsdam Study

The European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study consists
of 27,548 participants recruited between 1994 and 1998 from the general population in Potsdam and
surroundings. The baseline examination involved a personal interview including questions on prevalent
diseases, self-administered questionnaires, interviewer-conducted anthropometric measurements,
and a blood sample collection [12]. We used a random sample within the EPIC-Potsdam study,
described in detail previously [13]. Briefly, a sub-cohort of 2500 individuals was randomly selected
from 26,444 participants who provided blood samples at baseline. Of these, participants with prevalent
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diabetes or diabetes medication at baseline were excluded. Further exclusion criteria were missing
genetic data (described in detail within the genotyping and quality control section) and missing or
implausible data on amino acid measurements, leaving up to 2265 individuals for analyses in the
sub-cohort (Figure S2).

All participants provided written informed consent. The EPIC-Potsdam study was approved by
the ethics committee of the State of Brandenburg, Germany (approval code: AS 29/93). All procedures
were in accordance with the ethical standards of the institutional and/or national research committee
and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

2.2.2. Summary-Level Data for Single Amino Acids

Estimates for the associations between genetic instruments and single amino acids (glycine,
phenylalanine, tryptophan, tyrosine, methionine, valine, leucine, serine) were extracted from public
GWAS data by Shin et al. investigating up to 7824 adult individuals with European ancestry from the
KORA (Kooperative Gesundheitsforschung in der Region Augsburg) and the TwinsUK studies [11].
Amino acid traits are log10-transformed and beta estimates are adjusted for age and sex. We selected
this data source, as all investigated amino acid traits from EPIC-Potsdam are available.

2.2.3. Summary-Level Data for Type 2 Diabetes

Estimates for the association of amino acid-associated SNPs with type 2 diabetes were obtained
from the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium, including 32
studies with a total of 898,130 individuals (74,124 with type 2 diabetes and 824,006 without) of European
ancestry [14]. We used the type 2 diabetes-risk estimates without BMI adjustment. Type 2 diabetes was
defined by study-specific diagnostic criteria, ranging from self-reports, diabetes medication to verified
diagnoses (see Table S1) [14].

2.2.4. Summary-Level Data for Fasting Insulin

Estimates for the associations between genetic instruments and fasting insulin were obtained
from MAGIC (the Meta-Analyses of Glucose and Insulin-related traits Consortium) investigators [15].
The estimates are adjusted for age and sex and were generated from up to 108,557 individuals with
European ancestry from 56 studies.

2.3. DNA-Extraction, Genotyping and Quality Control within EPIC-Potsdam

The DNA was extracted from buffy coats using the chemagic DNA Buffy Coat Kit on a Chemagic
Magnetic Separation Module I (PerkinElmer chemagen Technologies, Baesweiler, Germany) according
to the manufacturer’s manual. Samples from the EPIC-Potsdam participants were genotyped with
three different genotyping arrays: Human660W-Quad_v1_A (n = 363), HumanCoreExome-12v1-0_B
(n = 632, two datasets) and Illumina InfiniumOmniExpressExome-8v1-3_A DNA Analysis
BeadChip (n = 1369). Genotyping and quality control of the Human660W-Quad_v1_A and
HumanCoreExome-12v1-0_B chips was described elsewhere [16]. Genotyping using the Illumina
InfiniumOmniExpressExome-8v1-3_A DNA Analysis BeadChip was performed in the Life and Brain
Center in Bonn, Germany. Detailed description of genotyping and quality control and imputation was
previously published [17]. Briefly, pre-/phasing and imputation were conducted using Eagle2 [18]
and the Michigan Imputation Service [19] with The Haplotype Reference Consortium (release 1.1) as
reference panel [20]. Imputation was conducted in four separate datasets (one for each chip or two for
the HumanCoreExome-12v1-0_B chip) using minimac3 [19]. Imputed files were merged, keeping the
minimal R 2 score from the four files. SNPs were filtered by R2 keeping those with values bigger than
0.6. Overall, we had genotype data for n = 2303 samples from the sub-cohort available (Figure S1).
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2.4. Metabolite Measurements in EPIC-Potsdam

Metabolite quantification was performed in the Genome Analysis Center at the Helmholtz
Zentrum München. All samples have been measured using the AbsoluteIDQTM p150 Kit (Biocrates
Life Sciences AG, Innsbruck, Austria) in combination with flow injection analysis-tandem mass
spectrometry (FIA-MS/MS). Serum samples of 10 µL serum were used to quantify 163 simultaneously,
including 41 acylcarnitines (Cx:y), 14 amino acids, hexose (sum of six-carbon monosaccharides without
distinction of isomers), 92 glycerophospholipids (lyso-, diacyl-, and acyl-alkylphosphatidylcholines),
and 15 sphingomyelins. The method for sample preparation and measurement as well as the metabolite
denomination was previously described [21]. All samples of EPIC-Potsdam have been processed in one
batch [22]. We selected eight amino acid ratios out of the six diabetes-associated amino acids [10] which
were connected via one edge [8] based on a network of amino acids (Figure S1) and two single amino
acids, resulting in ten outcomes referred to as diabetes-related amino acid traits (glycine, phenylalanine,
glycine/serine, serine/phenylalanine, phenylalanine/arginine, valine/xleucine, xleucine/Methionine,
tyrosine/methionine, tyrosine/tryptophan, tryptophan/glutamine).

2.5. Statistical Analysis

Statistical Analysis System (SAS) Enterprise Guide 7.1 with SAS version 9.4 (SAS Institute Inc.,
Cary, NC, USA) was used for data management and preparation. QCtool v1.4 was used for genetic
data filtering. SNPtest v2.5.2 [23] was used for GWAS. For Mendelian Randomization analyses we used
R (version 3.6.3 (2020-02-29)) and the following R packages: TwoSampleMR (v0.5.4) [24], Mendelian
Randomization (v0.4.2) [25], Radial MR (0.4) [26] and MVMR (v0.2) [27].

2.5.1. Genome-Wide Association Study in EPIC-Potsdam

SNPs were filtered by SNP missing-rate (removed ≥ 0.05), minimum allele frequency (MAF)
(removed out of interval (0.05–0.5)) and Hardy-Weinberg equilibrium (removed −log10(p-value) ≥ 3).
We performed exploratory single variant association analysis using n ~ 5,338,500 markers as exposures,
separately for each of the ten amino acid traits. The effective number of independent metabolite
traits of 9 out of 10 was determined using equation 5 of Li and Ji [28]. We considered a p-value
as genome-wide significant at p < 1.11 × 10−8 = [10−7/9]. Suggestive significance threshold was
defined as p < 1.11 × 10−6 = [10−5/9]. Amino acid traits were natural log-transformed to normalize the
right-skewed distributions. After ln-transformation, metabolite outliers of >4 standard deviations (SD)
from the mean were excluded and amino acid traits were standardized (mean = 0; SD = 1). We assumed
an additive genetic model, adjusted for age at recruitment and sex. Variants were mapped to Ensembl
annotation version 87 (GRCh37) [29] and annotated by the Ensembl Variant Effect Predictor [30].

2.5.2. Gene Set Enrichment Analysis Using EPIC-Potsdam GWAS Data

We used GSA-SNP2 software for gene set enrichment analysis based on GWAS p-Values [31].
This tool employs the Z-statistic of the random set model. The SNP to gene annotation was done using
a 20 kilobases window upstream and downstream of the gene and highly correlated adjacent genes on
European population were removed. We present pathways up to q-value <0.25 using the MSigDB
C2.CP (curated canonical pathways) version 5.2 database [32–34] for pathway annotation that were
grouped according to gold standard pathways for type 2 diabetes [31].

2.5.3. Two-Sample Mendelian Randomization Analyses Using EPIC-Potsdam GWAS Data on Amino
Acids and Ratios

We conducted a univariable two-sample MR study using amino acid traits as exposures on type 2
diabetes. Effect estimates of the association between genetic instruments and amino acid traits were
obtained from EPIC-Potsdam data and effect estimates of the SNP-type 2 diabetes association were
used from public summary GWAS data [14]. We selected suggestive significant (p < 1.11 × 10−6) or
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genome-wide significant (p < 1.11 × 10−8) instrumental variables and performed clumping according
to linkage disequilibrium (LD). Therefore, SNPs within a window of 10,000 kb and being in LD as
defined by R2

≥ 0.3 were removed. The SNP with the lowest p-value was retained. Within the MR
analysis, we accounted for their correlation among each other, estimated in 502 European samples
from 1000 Genomes phase 3 as implemented within the Mendelian Randomization R package [25]
(Figure S3A). In sensitivity analysis, we performed strict clumping using the default threshold of R2

≥

0.001 from the TwoSampleMR R package to retain independent instruments. Data were harmonized
for the direction of effects between exposure and outcome associations and palindromic SNPs were
excluded. We then used an inverse variance weighted (IVW) meta-analysis of each SNP specific Wald
ratio (SNP-outcome estimate divided by SNP-exposure estimate) using random effects or fixed effects
(≤ 3 instruments), to obtain an estimate for the causal effect of the respective amino acid trait on type 2
diabetes. To investigate violations of the MR assumptions due to horizontal pleiotropy, we evaluated
the MR-Egger intercept [35]. Heterogeneity was assessed by the Cochran’s Q statistic and if applicable
we performed RadialMR using second order weights and an α level of 0.05 [26] to identify outliers
with the largest contribution to Q statistic. Furthermore, we obtained the mean F statistic for the set of
genetic variants as indicator of instrument strength [26].

2.5.4. Two-Sample Mendelian Randomization Analyses Using Public GWAS Data on Single
Amino Acids

To complement our results obtained from EPIC-Potsdam data and to gain higher power
for generating genetic instruments for single amino acids, we used previously published GWAS
data [11] and performed univariable two-sample MRs for single amino acids and type 2 diabetes.
Genetic instruments were selected based on strict genome-wide significance threshold of 5 × 10−8 and
default clumping threshold of R2

≥ 0.001 [11].
Furthermore, we conducted multivariable MR using tyrosine, methionine, and tryptophan as

exposures [11] on risk of type 2 diabetes [14] to receive direct causal effects for tyrosine adjusted for the
direct neighbors within the amino acid network. Genetic instruments for each exposure were selected
based on strict genome-wide significance threshold of 5 × 10−8 and default clumping threshold of
R2
≥ 0.001 [11] (Figure S3B). Then we obtained all SNP effects on the respective other amino acids.

Extraction of the outcome GWAS results and data harmonization was conducted as described before.
This analysis was extended by adjusting tyrosine by all other diabetes-related amino acids.

We calculated F-statistics to evaluate the presence of weak instruments within the multivariable
MR analysis and adjusted for those by minimizing the Q-statistic allowing for heterogeneity using
“qhet_mvmr” function from the MVMR package [27]. Phenotypic correlation was obtained from
EPIC-Potsdam data, considering levels of xLeu as being the sum of isoleucine and leucine, which were
not directly measured in our study.

To account for horizontal pleiotropic effects by other pathways besides amino acids and to avoid
false positive finding, we used Causal Analysis Using Summary Effect estimates (CAUSE) method [36]
for tyrosine using three different data sources: Shin et al. [11], Kettunen et al. [37] and Locke et al. [38].
The latter two were also used for univariable MR with type 2 diabetes.

Furthermore, we tested for associations of tyrosine with type 2 diabetes-related outcomes like
fasting blood glucose, fasting insulin, BMI, and waist circumference in univariable MR approach.

2.5.5. Reverse Two-Sample Mendelian Randomization Analyses of Insulin Resistance and
Amino Acids

We performed reverse MR analysis to test causality of insulin resistance on amino acid traits [5,7]
using nine out of ten genetic instruments from a genetic risk score for fasting insulin as a marker of
insulin resistance [39], providing a mean F statistic of 27.9. Results of amino acid ratios showing causal
influence by insulin resistance in EPIC-Potsdam were complemented by using EPIC-Potsdam and
public GWAS results for single amino acids [11].
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3. Results

3.1. Selection of Genetic Instruments by GWAS on Amino Acid Traits in EPIC-Potsdam

GWAS were conducted within the EPIC-Potsdam study with up to 2265 participants. Baseline
characteristics are illustrated in Table 1.

Table 1. Baseline characteristics, European Prospective Investigation into Cancer and Nutrition
(EPIC)-Potsdam random sample.

EPIC-Potsdam

N 2265

Sex (% men) 37.8

Age in years; median (interquartile range) 49.5 (15.6)

Waist circumference in cm; mean (SD) 85.3 (12.6)

Glycine in µmol/L; median (interquartile range) 241.0 (86.0)

Isoleucine + Leucine in µmol/L; median (interquartile range) 200.0 (70.0)

Phenylalanine in µmol/L; median (interquartile range) 55.0 (13.4)

Tryptophan in µmol/L; median (interquartile range) 80.0 (15.1)

Tyrosine in µmol/L; median (interquartile range) 78.7 (27.1)

Valine in µmol/L; median (interquartile range) 286.0 (83.0)

SD, standard deviation; Depicted are diabetes-associated amino acids.

We identified genome-wide significant hits for glycine, glycine/serine, and tyrosine/methionine
ratios. While hits such as CPS1 for glycine and glycine/serine ratio or PHGDH for glycine/serine or
serine/phenylalanine ratios were known from previous GWAS, we also identified novel suggestive
associations such as MEG9 for glycine and GOT2 for tyrosine/methionine ratio. All GWAS hits are
summarized in Table 2 and Figure S4. For tyrosine/tryptophan ratio, we did not identify suggestive
associations (Figure S4).
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Table 2. Independent GWAS hits at suggestive significance p < 1.11 × 10−6 per amino acid trait in EPIC-Potsdam.

Amino Acid Trait SNP SNP
Coordinates Gene EA/OA EAF N Beta (SE) p-Value Consequence (GRCH37) CADD-Score [40]

Glycine/Serine rs1047891 2:211540507 CPS1 A/C 0.31 2265 0.50 (0.03) 7.58 × 10−54 Thr1406Asn 22.1
rs2010825 7:44188220 GCK C/T 0.51 2265 0.15 (0.03) 5.78 × 10−7 Downstream gene variant 5.97
rs561931 1:120254506 PHGDH G/A 0.61 2265 −0.18 (0.03) 2.28 × 10−9 Upstream gene variant 7.61

rs9851577 3:125908310 ALDH1L1;
ALDH1L1-AS2 T/C 0.46 2265 0.15 (0.03) 7.36 × 10−7 Intron variant 2.44

Glycine rs1047891 2:211540507 CPS1 A/C 0.31 2264 0.59 (0.03) 2.79 × 10−76 Thr1406Asn 22.1
rs61992673 14:101542105 AL132709.1; MEG9 A/C 0.20 2264 −0.22 (0.04) 1.62 × 10−8 Intron variant 5.34

Phenylalanine/ rs1451722 11:3856553 RHOG T/C 0.58 2265 −0.15 (0.03) 3.51 × 10−7 Intron variant 12.7
Arginine rs1718309 12:103242396 PAH G/A 0.60 2265 −0.17 (0.03) 3.44 × 10−8 Intron variant 3.32

Phenylalanine rs55940357 19:2610628 GNG7;
CTC-265F19.2 C/T 0.88 2265 0.24 (0.05) 1.03 × 10−6 Intron variant 1.72

Serine/ rs1047891 2:211540507 CPS1 A/C 0.31 2265 0.18 (0.03) 5.95 × 10−8 Thr1406Asn 22.1
Phenylalanine rs11024310 11:17520786 USH1C G/C 0.08 2265 −0.31 (0.06) 9.83 × 10−7 Intron variant 1.25

rs2992975 1:194106746 - A/G 0.41 2265 0.17 (0.03) 5.65 × 10−7 Intergenic variant 0.63
rs478093 1:120255126 PHGDH G/A 0.69 2265 0.18 (0.03) 1.27 × 10−8 Intron variant 8.15

Tryptophan/ rs4903067 14:73286300 DPF3 C/T 0.34 2260 −0.15 (0.03) 6.28 × 10−7 Intron variant 0.88
Glutamine rs7973936 12:64333645 SRGAP1 A/G 0.31 2260 0.18 (0.03) 3.07 × 10−8 Intron variant 1.58

Tyrosine/ rs12756904 1:104337030 - C/T 0.20 2261 −0.18 (0.04) 1.08 × 10−6 Intergenic variant 2.96
Methionine rs17606481 6:111542388 SLC16A10 G/A 0.15 2261 0.28 (0.04) 1.70 × 10−11 Intron variant 2.49

rs72792419 16:58741949 GOT2 C/T 0.08 2261 −0.30 (0.06) 6.59 × 10−7 Downstream gene variant 4.23

Valine/xLeucine rs2456586 19:51434353 CTB-147C22.3 C/T 0.39 2258 0.15 (0.03) 6.11 × 10−7 Upstream gene variant 0.64

xLeucine/ rs12642299 4:90942633 - G/C 0.67 2263 0.17 (0.03) 6.16 × 10−8 Intergenic variant 0.99

Methionine rs1958029 14:21491151 NDRG2;
AL161668.5; TPPP2 G/A 0.11 2263 −0.25 (0.05) 1.84 × 10−7 Upstream gene variant 3.12

CADD, combined annotation dependent depletion; EA, effect allele; EAF, effect allele frequency; OA, other allele; SE, standard error. SNP, single nucleotide polymorphism.
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3.2. Enrichment of Amino Acid-Associated SNPs in Type 2 Diabetes-Related Pathways

We analyzed which pathways were enriched with genetic signals on diabetes-related amino acids.
Therefore, we used curated sets of type 2 diabetes-related pathways (Figure 2).

Nutrients 2020, 12, x FOR PEER REVIEW 9 of 19 

 

3.2. Enrichment of Amino Acid-Associated SNPs in Type 2 Diabetes-Related Pathways 

We analyzed which pathways were enriched with genetic signals on diabetes-related amino 

acids. Therefore, we used curated sets of type 2 diabetes-related pathways (Figure 2). 

Genetic signals on tyrosine/methionine showed the most enriched pathways which were mainly 

related to NOTCH signaling. While phenylalanine/arginine was enriched in pathways mapping to 

fatty acid metabolism; glycine/serine, phenylalanine, and tryptophan/glutamine were mainly related 

to pathways of glucose metabolism and type 2 diabetes. GWAS results for glycine, 

serine/phenylalanine, tyrosine/tryptophan, xLeucine/methionine, and valine/xLeucine were not 

enriched in type 2 diabetes-related pathways. 

 

Figure 2. Pathway enrichment analysis. For each amino acid trait, pathways with significant 

enrichment of SNPs (q-value < 0.25) that mapped to gold standard pathways for type 2 diabetes are 

Figure 2. Pathway enrichment analysis. For each amino acid trait, pathways with significant enrichment
of SNPs (q-value < 0.25) that mapped to gold standard pathways for type 2 diabetes are shown. Arg,
arginine; Gln, glutamine; Gly, glycine; Met, methionine; Ser, serine; Phe, phenylalanine; Trp, tryptophan,
Tyr, tyrosine.

Genetic signals on tyrosine/methionine showed the most enriched pathways which were
mainly related to NOTCH signaling. While phenylalanine/arginine was enriched in pathways
mapping to fatty acid metabolism; glycine/serine, phenylalanine, and tryptophan/glutamine were
mainly related to pathways of glucose metabolism and type 2 diabetes. GWAS results for glycine,
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serine/phenylalanine, tyrosine/tryptophan, xLeucine/methionine, and valine/xLeucine were not
enriched in type 2 diabetes-related pathways.

3.3. Causal Estimates for Amino Acid Traits on Risk of Type 2 Diabetes

There was an inverse association with type 2 diabetes risk per SD increase in ln-transformed
tyrosine/methionine ratio (beta = −0.141; OR = 0.87 (0.81–0.93)) when including one genome-wide
significant instrument located in SLC16A10 (Table 3, Tables S2 and S3).

Although heterogeneity was identified for suggestive hits of glycine/serine, tyrosine/methionine
and xLeucine/methionine, outliers could only be detected for glycine/serine (rs2010825). Exclusion of
this variant did not change the overall not significant association (Table 3). If applicable, we could not
find indication for directional horizontal pleiotropy as assessed with MR-Egger regression (Table 3).
Using public GWAS data on single log10-transformed amino acid measurements, we found that the
association of tyrosine/methionine ratio seems to be driven by tyrosine showing itself a strong inverse
association (beta = −1.530; OR = 0.22 (0.07–0.67)) (Figure 3, Tables S4 and S5). Higher levels of
methionine, however, showed no significant association with type 2 diabetes, although the estimate
was also quite strong (beta = −1.170; OR = 0.31 (0.04–2.2)) (Figure 3, Tables S4 and S5).

We investigated other diabetes-related amino acid traits using public data and found positive
associations for increased levels of valine and leucine in univariable MR (Tables S4 and S5). When we
adjusted tyrosine for its direct neighbors in the network (tryptophan and methionine) in multivariable
MR, we found an inverse association for higher levels of tyrosine (OR = 0.27 (0.07–1.12), Figure 3),
which became stronger and significant after adjustment for all other diabetes-associated amino acids
(tryptophan, leucine, isoleucine, valine, glycine, and phenylalanine) (beta =−1.66; OR = 0.19 (0.04–0.88),
Figure 2 and Tables S6 and S7) while neither higher levels of BCAA nor glycine, phenylalanine or
tryptophan showed significant associations. F-statistics were below 10 for all exposures suggesting
potentially weak instruments used in this analysis (Table S6). However, we repeated the multivariable
MR by accounting for weak instruments and received comparable effect estimate for tyrosine
(beta = −1.76; OR = 0.17 (0.03–0.98), Table S6).

Using CAUSE method for tyrosine, the model fit for both, the sharing and causal models, was not
significantly different from the null model (Table 4) using data from Shin et al. or Kettunen et al.
Using data from Shin et al., the causal model seemed to have a better fit than the sharing model;
still, none of the models was statistically better than the other one. However, we could use only
83,936 genetic variants to estimate the nuisance parameters which might have resulted in bad model
comparisons as it is advised to use at least 100,000 variants. When we used most recent data from
Locke et al. [38], we found that the causal model was significantly better than the null or the sharing
model (Table 4). However, in univariable MR using this data source, we found indication for significant
positive association with type 2 diabetes, contrasting the effect directions observed from Shin et al.
and Kettunen et al. (Tables S8 and S9).

Tyrosine showed no significant associations with BMI, waist circumference and fasting insulin,
but results tended towards an inverse association with fasting blood glucose adjusted for BMI (p = 0.008)
and blood glucose (p = 0.004). (Table S10).
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Table 3. Total causal effects of amino acid traits and of type 2 diabetes using instruments with R2 < 0.3.

Amino Acid Trait Instruments N (SNPs) a Beta (SE) from
IVW p-Value Heterogeneity between

SNPs; Q-Statistic, p-Value
Directional Horizontal Pleiotropy b;

Egger-Intercept (SE), p-Value
Outlier Detected

Glycine suggestive 13/16 −0.003 (0.011) 0.804 no; 12.43,0.41 no; −0.001 (0.003), 0.85 no
genome-wide 9/11 −0.005 (0.011) 0.686 no; 8.62, 0.38 no; 0.004 (0.004), 0.37 no

Glycine/Serine suggestive 17/18 0.018 (0.019) 0.348 yes; 48.24, <0.001 yes; 0.009 (0.004), 0.02 Yes (rs2010825)
suggestive

(excluding outlier) 16/17 −0.001 (0.011) 0.895 no; 15.04, 0.45 no; 0.005 (0.003), 0.15 -

genome-wide 12/12 −0.003 (0.012) 0.800 no; 10.47, 0.49 no; 0.006 (0.004), 0.14 no

Phenylalanine suggestive 1/1 0.053 (0.045) 0.237 n.a. n.a. n.a.

Phenylalanine/Arginine suggestive 2/2 0.043 (0.028) 0.120 no; 0.36, 0.54 n.a. no

Serine/Phenylalanine suggestive 3/4 0.000 (0.023) 0.990 no; 0.59, 0.74 no; 0.08 (0.26), 0.77 n.a.

Tryptophan/Glutamine suggestive 2/2 0.002 (0.028) 0.931 no; 0.16, 0.69 n.a. n.a.

Tyrosine/Methionine suggestive 4/4 −0.012 (0.069) 0.857 yes; 29.59, <0.001 no; 0.04 (0.02), 0.08 n.a.

genome-wide 1/1 −0.141 (0.033) <0.001 n.a. n.a. n.a.

xLeucine/Methionine suggestive 2/3 0.05 (0.031) 0.108 yes; 7.54, 0.01 n.a. n.a.

Valine/xLeucine suggestive 1/1 −0.012 (0.044) 0.777 n.a. n.a. n.a.

IVW, inverse variance weighted method; n.a., not applicable; SE, standard error. xLeucine = Isoleucine + Leucine. a used instruments/suitable instruments available in the GWAS of type 2
diabetes in Mahajan et al. [14] b assessed by MR-Egger (>2 variants needed).

Table 4. Results from CAUSE MR for tyrosine with type 2 diabetes.

Data Source N Variants Used to Calculate
Nuisance Parameters

N Variants to Estimate
CAUSE Posteriors Model 1 * Model 2 * ∆ ELPD ** SE ∆ ELPD z-Score p-Value

Tyrosine from Shin et al. 2014 [11]
83,936 124 Null Sharing −1.1 0.74 −1.5 0.069

Null Causal −4.0 3.10 −1.3 0.100

Sharing Causal −2.9 2.40 −1.2 0.120

Tyrosine from Kettunen et al. 2016 [37]
75,155 37 Null Sharing 0.0033 0.00061 5.4 1

Null Causal 0.0400 0.00710 5.7 1

Sharing Causal 0.0370 0.00650 5.7 1

Tyrosine from Locke et al. 2019 [38]
260,603 150 Null Sharing −0.4 0.49 −0.82 0.210

Null Causal −4.1 2.20 −1.80 0.035

Sharing Causal −3.7 1.80 −2.00 0.020

CAUSE, causal analysis using summary effect; ELPD, expected log pointwise posterior density; SE, standard error. * Model 1 and Model 2 refer to the models being compared (null,
sharing, or causal). ** Model fit is measured by ∆ Expected Log Pointwise Posterior Density (ELPD); Negative values indicate that model 2 is a better fit.
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Figure 3. Causal effects (OR and 95%CI) of amino acid traits and type 2 diabetes. Met, methionine;
Tyr, tyrosine. * assessed using EPIC-Potsdam GWAS data and Mahajan et al. [14], tyrosine/methionine
ratio is ln-transformed and standardized. ** assessed using public GWAS data by Shin et al. [11] and
Mahajan et al. [14], Met and Tyr are log10-transformed. *** adjusted for Tryptophan, Leucine, Isoleucine,
Valine, Glycine, Phenylalanine.

3.4. Causal Estimates for Insulin Resistance on Amino Acid Traits

We found significant associations of insulin resistance on serine/phenylalanine (beta = −1.895;
OR = 0.15 (0.03–0.81)) and tyrosine/methionine (beta = 1.486; OR = 4.42 (1.03–19.0)) ratios in reverse MR
analysis (Table S11–S13) using EPIC-Potsdam data. The former was driven by the significant association
of insulin resistance on serine; which was however only identified when using, EPIC-Potsdam data
(beta = −1.75; OR = 0.17 (0.04–0.76), Tables S14 and S15). Insulin resistance was not causally linked to
individual amino acid measures of phenylalanine, tyrosine, and methionine, neither using data from
EPIC-Potsdam nor from Shin et al. [11] (Tables S12–S15).

4. Discussion

Within this study, we applied a two-sample MR approach to investigate causal effects of
diabetes-associated amino acid traits on the risk of type 2 diabetes. As a main finding, our MR
analysis supports a causal effect of tyrosine on type 2 diabetes which seems to be independent of other
diabetes-associated amino acids. For BCAA, glycine, tryptophan and phenylalanine, no direct causal
effects could be established in this multivariable MR analysis. Reverse MR approach indicated causal
effect of insulin resistance on tyrosine/methionine and serine/phenylalanine ratios in EPIC-Potsdam,
but this could not be attributed to single amino acids within the ratios.

4.1. Amino Acids and Type 2 Diabetes

We found a genetically inverse association of tyrosine/methionine ratio with type 2 diabetes
which seems to be driven by tyrosine. This inverse association was robust throughout all our analyses,
independent of whether we used the tyrosine/methionine ratio in EPIC-Potsdam or tyrosine as single
trait obtained from Shin et al. [11]. Furthermore, this inverse association was robust to adjustment
by other diabetes-related amino acids in multivariable MR. Genome-wide significant instruments for
tyrosine selected in public data were located on the same chromosomes as suggestive instruments
identified in EPIC-Potsdam GWAS for tyrosine/methionine ratio; however, there was no indication
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for LD between the respective SNPs. Although, our results are in accordance with a recent MR
study on tyrosine [41]; it is noteworthy that our findings (except the univariable MR using data from
Locke et al. [38]) are in contrast to observational studies conducted in Caucasian populations (including
EPIC-Potsdam) which found positive associations between serum tyrosine levels and type 2 diabetes
risk [10,42].

With regard to the other investigated diabetes-related amino acid traits, utilizing ratios did
not result in novel findings compared to previous MR studies on single amino acids. However,
our multivariable approach combining all diabetes-associated amino acids into one model yielded no
direct effect for BCAA, glycine, phenylalanine, or tryptophan. This is in contrast to our univariable MR
on valine and leucine and previous univariable MRs on BCAA [6] and phenylalanine [3] showing risk
increasing effects on type 2 diabetes. Previous MR studies might have come to divergent conclusions,
as they have missed the intercorrelation between different amino acids in human metabolism by
focussing on single traits only.

The association of tyrosine on type 2 diabetes could not be attributed to pre-existing insulin
resistance. Although we found a significant effect of insulin resistance on tyrosine/methionine ratio in
reverse MR approach in EPIC-Potsdam, we could not verify this result for single amino acids included
within the ratio, neither in EPIC-Potsdam nor in larger GWAS [11]. Therefore, our results suggest that
the direct association for tyrosine is not confounded by reverse causation due to insulin resistance.
Still, this finding should be confirmed in future studies.

4.2. Biological Mechanisms Linking Tyrosine to Type 2 Diabetes

Our main genetic instrument for tyrosine was located within the SLC16A10 locus. The locus was
previously discovered to be associated with isoleucine/tyrosine ratio [43] (rs7760535, LD with our
EPIC-Potsdam variant (rs17606481): r2 = 0.25 and D’ = 0.93). SLC16A10 encodes a monocarboxylate
transporter 10 also known as T-type amino acid transporter 1 (TAT1) which is a sodium-independent
transporter that mediates the uptake of aromatic acids like tyrosine, tryptophan phenylalanine and the
non-proteogenic amino acid L-DOPA [44]. Tyrosine might act on type 2 diabetes risk via its crucial
role in synthesis of the neurotransmitter dopamine and L-DOPA. Although, research regarding the
effects of dopamine on glucose homeostasis and beta cell function is still at the beginning, in vitro and
in vivo studies suggest that dopaminergic agents exert actions on the central nervous system (e.g.,
appetite control) as well as on the endocrine system (pituitary and pancreas) which modulate glucose
and energy homeostasis [45]. In addition to being endogenously synthesized from phenylalanine,
tyrosine is found in high-protein foods such as meat, fish, and cheese, but also in non-animal products
like nuts, legumes, and whole-grains. Especially the latter are considered as beneficial for health and
diets rich in those foods have been associated with reduced risk for type 2 diabetes [46]. Whether
dietary supplementation of tyrosine is able to modulate glucose tolerance is studied within an ongoing
clinical trial [47]. A recent study in rodents showed that beta cell function is affected by oral tyrosine
administration and postulated dopamine and L-DOPA derived from nutritional tyrosine as anti-incretin
candidates [48]. On the one hand, high blood levels of tyrosine may result in high L-DOPA and
dopamine levels and therefore strengthen the anti-incretin effect. On the other hand, high tyrosine
levels may reflect a reduced tyrosine hydroxylase (TH) activity resulting in low L-DOPA and dopamine
levels and thereby weaken the anti-incretin effect. While the former would be supported by the
observational finding of higher tyrosine levels being associated with higher diabetes risk, the latter
would, however, be more in line with the causal inverse effect of tyrosine on blood glucose levels and
type 2 diabetes risk, identified in our multivariable MR. A SNP (rs10770141) in the human TH gene
resulting in reduced expression of TH was associated with lower type 2 diabetes risk [49], supporting
our results. The TH expression and activity can furthermore be regulated by insulin to maintain
an appropriate dopaminergic tone, suggesting that conditions with impaired insulin signaling are
accompanied with a reduced TH expression [50], and hence high tyrosine levels. This might be one
explanation why observational studies find higher tyrosine levels to be associated with higher risk.
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Another mechanism how tyrosine might relate to reduced type 2 diabetes risk is via its fermentation by
gut microbiota to 4-Cresol, improving glucose homeostasis and β-cell function [51]. Still, the direction
of effect obtained in our univariable MR depended on the respective study population and the resulting
instruments used for the SNP-exposure association. Therefore, we cannot finally clarify whether the
tyrosine-type 2 diabetes association is inverse or positive.

Gene-set enrichment analysis highlighted pathways connected to NOTCH signaling to be
enriched in our data. NOTCH signaling is important for cell-cell signaling and plays a role in pancreas
development. NOTCH2 was previously described as a type 2 diabetes susceptibility locus [52].
Furthermore, NOTCH signaling is connected to beta cell insulin secretion [53].

4.3. Strengths and Limitations

One limitation of our analysis is the exclusion of prevalent diabetes cases in the EPIC-Potsdam
sample which was used for instrument selection and might have weakened the exposure betas.
However, compared to the overall study sample this number was small and we aimed to exclude
bias from reverse causation due to the fact that prevalent cases might have different blood levels of
amino acids [54]. When we used public GWAS data, we could observe a similar direction of association
for tyrosine, and therefore this result seems to be robust. Furthermore, our findings are restricted to
Europeans only, and can therefore not be generalized to other ethnicities.

A major concern is related to the presence of pleiotropic pathways as the single amino acids are
connected within the metabolite network and therefore not independent of each other. Although we
used ratios to address limitations by previous MR studies that did not account for correlations between
specific amino acids, our MR analysis using estimates from EPIC-Potsdam might be underpowered
(e.g., 59.3% power [55] to find the same causal effect for insulin resistance on glycine levels compared
to the previous study [5] using the same genetic instruments). We addressed this disadvantage
by complementing our results from EPIC-Potsdam with data from three times larger GWAS on
single amino acids [11] (yielding a power of one for insulin resistance on glycine levels [55]). Still,
we cannot rule out that we had insufficient power to detect causal effects for other amino acid traits
beyond tyrosine. We adjusted for horizontal pleiotropy due to other amino acids, by applying novel
multivariable MR framework; however, direct estimates might be biased if weak genetic instruments
are used (indicated by F-statistic <10) [27], which was the case for all our exposures. Nevertheless,
when we accounted for those in the analysis, we obtained comparable beta estimates and retained
a significant direct effect for tyrosine. We tried to correct for correlated and uncorrelated horizontal
pleiotropy using CAUSE MR method which did support a causal model for tyrosine and type 2 diabetes
using most recent data for tyrosine measurements.

5. Conclusions

In conclusion, our results suggest that tyrosine might play a causal role for type 2 diabetes
development, which seems to be independent of other diabetes-associated amino acids or pre-existing
insulin resistance. However, interpretation should consider limitations like potentially weak and
pleiotropic genetic instruments and the unclear effect direction which need to be addressed in
future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/12/3890/s1,
Table S1: Characteristics of studies included within the DIAGRAM consortium, Table S2: Associations of single
genetic instruments used for MR of amino acids traits from EPIC-Potsdam and type 2 diabetes, Table S3: Total
causal effects of amino acid traits from EPIC-Potsdam and of type 2 diabetes using independent instruments
(R2 < 0.001), Table S4: Total causal effects of amino acid traits from Shin et al. and type 2 diabetes and sensitivity
analyses, Table S5: Associations of single genetic instruments used for MR of amino acids traits from Shin et al.
and type 2 diabetes, Table S6: Direct causal effects of diabetes associated amino acid traits from Shin et al. and type
2 diabetes, Table S7: Associations of single genetic instruments used for MVMR of amino acids traits from Shin et al.
and type 2 diabetes, Table S8: Total causal effects of tyrosine risk of type 2 diabetes using other public data sources,
Table S9: Associations of single genetic instruments used for MR of tyrosine from Kettunen et al. and Locke et al.
and type 2 diabetes, Table S10: Total causal effects of tyrosine from Shin et al. and other risk factors for type 2
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diabetes, Table S11: Instruments from genetic risk score for insulin resistance, Table S12: Total causal effects of
insulin resistance on amino acid traits from EPIC-Potsdam, Table S13: Associations of single genetic instruments
used for MR of insulin resistance and amino acids traits from EPIC-Potsdam, Table S14: Total causal effects of
insulin resistance and single amino acids, Table S15: Associations of single genetic instruments used for MR of
insulin resistance and single amino acids, Figure S1: Network structure of amino acids within EPIC-Potsdam,
Figure S2: Flow-chart of final study population in EPIC-Potsdam, Figure S3: Example flow charts of inclusion and
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in EPIC-Potsdam.
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