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Abstract:  

Cilia are involved in a plethora of motility and sensory-related functions. Ciliary defects 

cause several ciliopathies, some of which with late-onset, suggesting cilia are actively 

maintained. While much is known about cilia assembly, little is understood about the 

mechanisms of their maintenance. Given that intraflagellar transport (IFT) is essential 

for cilium assembly, we investigated the role of one of its main players, IFT88, in ciliary 

maintenance. We show that DmIFT88, the Drosophila melanogaster orthologue of 

IFT88, continues to move along fully formed sensory cilia, and that its acute 

knockdown in the ciliated neurons of the adult affects sensory behaviour. We further 

identify DmGucy2d, the Drosophila guanylyl cyclase 2d, as a DmIFT88 cargo, whose 

loss also leads to defects in sensory behaviour maintenance. DmIFT88 binds to the 

intracellular part of DmGucy2d, which is evolutionarily conserved and mutated in 

several degenerative retina diseases, taking the cyclase into the cilia. Our results offer 

a novel mechanism for the maintenance of sensory cilia function and its potential role 

in human diseases. 
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Introduction: 

Cilia are microtubule (MT)-based organelles that emanate from the surface of 

eukaryotic cells and are vital for several functions, including motility and sensing 

(Breslow and Holland, 2019; Reiter and Leroux, 2017; Sreekumar and Norris, 2019). 

Cilia biogenesis is a multistep process that is tightly coordinated with cell 

differentiation. A cilium consists of two regions: a ciliary base, and a ciliary protrusion 

or shaft. The latter grows from the ciliary base and is composed of a MT-based 

skeleton (the axoneme) and a ciliary membrane. Ciliary proteins are produced in the 

cell body and then move either by diffusion or by active transport through the ciliary 

base into the ciliary shaft. This active transport is called intraflagellar transport (IFT), 

which depends on molecular motors moving from the ciliary base to the axoneme tip 

(anterograde) and in reverse (retrograde) direction (reviewed in (Breslow and Holland, 

2019)).  

Defects in cilia structure and function cause several human disorders, collectively 

called ciliopathies, which show manifestations such as alterations in body symmetry, 

obesity and cystic kidneys. While defects in cilia assembly can lead to numerous 

diseases, they do not account for all symptoms of many cilia-related disorders, such 

as retinitis pigmentosa, Nephronophthesis and Alstrom syndrome, which show 

progressive tissue-degeneration in the patients (Reiter and Leroux, 2017; Sreekumar 

and Norris, 2019). Given that many ciliated cells involved in sensory reception, such 

as photoreceptors, ciliated sensory neurons and epithelial cells are long-lived, it is 

possible that breakdown of ciliary maintenance is causal to those diseases. IFT has 

been implicated in maintaining ciliary structural and functional properties such as 

flagella/cilia length, or localisation of signalling receptors, such as Opsin, TRPV and 

Guanylyl Cyclases, into the cilium, in various organisms (Bhowmick et al., 2009; 

Eguether et al., 2014; Jiang et al., 2015; Marshall et al., 2005; van der Burght et al., 

2020). In contrast, in the unicellular parasite Trypanosoma, IFT88 depletion does not 

affect the structure of fully formed flagella, only causing defects in flagella beating 

which suggests a deregulation of flagella signalling components (Fort et al., 2016). 

Furthermore, entry of several receptors, such as Smoothened (SMO) or SSTR3, into 

cilia is IFT-independent (Milenkovic et al., 2009; Williams et al., 2014; Ye et al., 2013). 

Altogether, the existing evidence suggests that the maintenance of ciliary structure 
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and sensory function is a heterogeneous process, whose underlying mechanisms 

need to be explored.  

Here we study the underpinnings of ciliary maintenance in a genetically tractable 

organism, Drosophila melanogaster. In particular, we focus on adult Type-I ciliated 

sensory neurons as they rarely get replenished (Fernández-Hernández et al., 2020; 

Grotewiel et al., 2005) and are involved in different sensory functions with 

straightforward experimental readouts, including hearing, climbing, gravitaxis and 

olfaction (Han et al., 2003; Jana et al., 2011). Given the importance of IFT in cilia 

assembly and maintenance in Chlamydomonas (Marshall et al., 2005; Pazour et al., 

2002), we chose to investigate the function of a key IFT protein, IFT88, in the 

maintenance of Drosophila cilia structures and function. Here, we refer to the 

Drosophila melanogaster homologue of IFT88 protein as  DmIFT88 (also known as 

NOMPB (Han et al., 2003)). We first found that DmIFT88 trains move within fully-

grown chordotonal cilia, suggesting IFT plays an active role in Drosophila cilia 

maintenance. We next observed that depletion of DmIFT88 in adult ciliated sensory 

neurons leads to defects in climbing (or negative-gravitaxis) behaviour, while subtly 

affecting their structure. In the search for distinct DmIFT88 cargoes important for ciliary 

maintenance, we discovered that DmIFT88 binds and transports to the cilium the fly 

homologue of an evolutionarily conserved particulate guanylyl cyclase (Gucy2d) that 

is involved in human retina diseases. Our research shows that IFT is important for the 

functional maintenance of adult sensory cilia, in particular through transporting key 

signalling cargoes. 

 

Results: 

IFT88 protein sequences show high conservation of structural domains  

Drosophila melanogaster homologues of IFT proteins (i.e. A-complex, B-complex, and 

BBSome) have been identified through bioinformatics analysis (for a summary, see 

our compilation of all information in Supplemental Figure 1A, and Supplemental Table 

1). Several of them were shown to be expressed in ciliated neurons or in the fly head 

(Avidor-Reiss et al., 2004; Chintapalli et al., 2007; Lee et al., 2008; Lee et al., 2018; 

Mourao et al., 2016), yet only a few, such as DmIFT88 and DmIFT140, have been 

mechanistically investigated (Han et al., 2003; Lee et al., 2008). Studies in other model 

organisms suggest that only a few evolutionarily conserved IFT proteins are critical for 
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cilia formation (Eguether et al., 2014; Fan et al., 2010; Fort et al., 2016; Pazour et al., 

2002). Among them is the IFT88 protein, and thus, we investigated whether it might 

also have an important role in transporting components needed for cilium 

maintenance. In Drosophila melanogaster, two isoforms of DmIFT88 have been 

reported, which are similar in their amino acid composition (Figure 1Ai; (Han et al., 

2003)) and are predicted to bear 10 tetratricopeptide repeat (TPR) domains 

(Karpenahalli et al., 2007) (Figure 1Aii), which often act as interfaces for protein-

protein interactions (Allan and Ratajczak, 2011; Taschner et al., 2012). In particular, 

all IFT88 homologues (in insects as well as vertebrates) are predicted to comprise 10 

to 15 TPRs (Figure 1Aii), pointing to conserved vital roles of this protein in mediating 

protein interactions, either within the IFT-B core complex or between IFT and cargo 

(Taschner et al., 2012). We thus investigated whether DmIFT88 continues to transport 

cargoes after cilium assembly, which could be important for its maintenance. 

 

DmIFT88 trains are visible in fully assembled cilia  

To assess the localisation of DmIFT88 protein in fully assembled cilia, we first tested 

a transgenic fly line expressing GFP-tagged DmIFT88 protein (GFP::DmIFT88) under 

its endogenous promotor (Han et al., 2003), however its weak signal prevented its use 

for live imaging. We thus generated transgenic lines carrying a UAS-eGFP::DmIFT88 

(isoform-RD) construct, as this isoform suffices to rescue IFT88 function in 

Dmift88/nompB mutant in which all isoforms are affected (Han et al., 2003). To test 

whether DmIFT88 is part of IFT trains in assembled cilia, the transgene was expressed 

using a chordotonal neuron-specific driver (Gal4Iav) (Figure 1Bi) (Zhang et al., 2013). 

We were able to track DmIFT88 particles in the cilia of lateral chordotonal organ (lch5) 

neurons in wandering L3 larvae. Quantifications of the velocity of the eGFP::DmIFT88 

signal (Figure 1Bii-iv and Supplemental movie 1) revealed that the particles move 

about five times faster in the retrograde direction (2.09 µm/s) than in the anterograde 

direction (0.44 µm/s). A recent study on the chordotonal neurons in 

developing Drosophila pupa found a similar anterograde velocity for IFT88 (~0.44 

μm/s), whereas retrograde velocities varied (~0.12 and ~0.7 μm/s) between ciliary 

compartments (Lee et al., 2018). These observations suggest that anterograde 

DmIFT88 velocities in different Drosophila chordotonal cilia types are largely constant, 

while retrograde velocities vary between developmental stages, cell types, and ciliary 

compartments.  In fact, the IFT velocities are known to vary considerably between 
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species and cell types of a given organism ((Besschetnova et al., 2010; Williams et 

al., 2014); an overview of different IFT velocities is provided in Supplemental Table 

04). We also noticed that the signal intensities of the anterograde trains of 

eGFP::DmIFT88 appear stronger than the retrograde train intensities (Figure 1Biii). 

This result suggests that anterograde trains are longer than retrograde trains, similar 

to observations in other species (Fort et al., 2016; Pigino et al., 2009).  

We next asked whether DmIFT88 is also present in chordotonal cilia of the 2nd 

antennal segment in adults (Supplemental Figure 1B). We could detect both Dmift88 

isoforms in mRNA isolated from adult antenna (Supplemental Figure 2B), suggesting 

this gene continues to be expressed after ciliogenesis. Because live imaging was not 

possible, we immuno-stained antennal sections of flies expressing GFP::DmIFT88 

under endogenous promoter, and observed an enrichment of the protein at the ciliary 

base, as well as at the ciliary dilation of the chordotonal neurons (Figure 1C). The 

strong signals near the ciliary base and the dilation may represent an immobile fraction 

of the DmIFT88 pool, which is also supported by kymograph analysis (Figure 1Biii). 

Additional smaller and weaker GFP dots, similar to the ones observed in the larvae 

(Figure 1B, filled arrowhead), were detected along the axoneme, likely representing 

IFT trains (inset on Figure 1C). Together, our observations on both larval and adult 

cilia (Figure 1B, C) suggest that DmIFT88 is actively transported into the cilia beyond 

biogenesis.  

 

Conditional knockdown of DmIFT88 in adult cilia causes climbing defects  

We thus investigated whether DmIFT88 has any significant role in the maintenance of 

cilia. Since this protein is essential for ciliogenesis in sensory neurons (Han et al., 

2003), we could not take advantage of the available mutant, as it lacks cilia. We thus 

used a Gal4-RNAi system to knockdown Dmift88 expression in a certain subset of 

sensory neurons only after cilia are fully formed. We first tested for the specificity and 

efficacy of the RNAi line (with a hairpin that targets an exon common to both Dmift88 

isoforms) using a constitutively active promoter (Gal4Tub). We found that the mRNA 

levels of both isoforms are strongly reduced in antenna of flies expressing the Dmift88 

hairpin (UAS-Dmift88-IR), as compared to negative controls (UAS-mCherry-IR, as 

mCherry is not encoded in the fly genome; Supplemental Figure 2A and B). 

Importantly, sound stimulation evoked much weaker compound action potentials of 

the sound-sensitive antennal chordotonal neurons in DmIFT88 knockdown flies than 
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in control flies (Supplemental Figure 2C), consistent with previously reported 

Dmift88/nompB mutant phenotypes (Han et al., 2003). Interestingly, we found that 

while flies with DmIFT88 knockdown do not assemble cilia, they can still build the 

transition zone (Supplemental Figure 2D-G), similar to the phenotype observed in ift88 

and kinesin-2 mutants in various model organisms (Pazour et al., 2002; Sarpal et al., 

2003).  

As mentioned above, to test for defects in cilium maintenance, we used an inducible 

promotor system (Gal4Chat19b-TubGal80ts; explained in Figure 2A), which responds to 

the shift in temperature and can repress (18º) or allow for hairpin expression (29º) 

((McGuire et al., 2003); for further details, see “Material and Methods” and Figure 2A). 

The Gal4Chat19b driver expresses in the peripheral and central nervous system in all 

developmental stages (Salvaterra and Kitamoto, 2001). Since cilia biogenesis occurs 

during Drosophila development (Han et al., 2003), flies were first grown at 18°C, and 

only shifted to 29°C after eclosure, when ciliogenesis is complete. Because gravity 

sensing in Drosophila is mediated by chordotonal neurons, flies were then submitted 

to a behavioural (climbing) assay at different times for up to two weeks (Figure 2A, B; 

(Kamikouchi et al., 2009)). At 18°C, the flies with both experimental and control 

genotypes were nearly indistinguishable in their climbing performance (Figure 2C 

right), documenting that neither the genetic background nor the hairpins have 

behavioural adverse effects. Importantly, Dmift88 RNAi flies developed climbing 

defects within 3 days after shifting to 29°C (Figure 2C left).  DmIFT88 is thus important 

for maintaining sensory behaviour after ciliogenesis is complete. Sensory defects 

caused by conditional DmIFT88 knockdown do not associate with morphological gross 

defects of chordotonal neuron cilia, yet, after 9 days post knockdown, the curvature of 

the base of cilia increased (Supplemental Figure 3). Interestingly, in larval Drosophila 

chordotonal neurons, the bending of the cilium at its base was described to be 

associated with cilium dysfunction (Zanini et al., 2018). Altogether, our data suggests 

that DmIFT88 is required for chordotonal cilia structure and function maintenance.  

To assess whether the defects caused by DmIFT88 knockdown might be associated 

with an impairment in the transport of some components of the sensory apparatus, we 

stained the cilia with an antibody against the TRPV channel subunit, Inactive (Iav), 

which resides in the proximal cilium region of chordotonal neurons and is required for 

sound and gravity sensing (Sun et al., 2009). After 9 days of DmIFT88 knockdown, 

staining intensities were slightly, but significantly, reduced (Figure 2D). We further 
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hypothesised that the climbing phenotype might also reflect mislocalisation of other 

unknown cargoes of DmIFT88, which are involved in signal transduction, besides Iav. 

Given that heterozygous mutations in ift88 give raise to retinal degeneration in 

humans, it is possible that some of its cargoes would show a similar phenotype 

(Chekuri et al., 2018). 

Interestingly, in IMCD3 cells, IFT88 transports ectopically expressed mouse Gucy2e, 

a membrane bound (particulate) cGMP-generating enzyme, to its primary cilium 

(Bhowmick et al., 2009, Besharse et al. 1990). Gucy2e is also essential for the function 

of vertebrate photoreceptors and is implicated in retina-specific ciliopathies that can 

be related to the development/maintenance of ciliary function, such as Leber 

congenital amaurosis (LCA) and retinitis pigmentosa (Zagel and Koch, 2014). Gucy2e 

seemed an interesting candidate DmIFT88 cargo as it is evolutionarily conserved, with 

homologues being found in several animals, such as C. elegans, mouse, and humans, 

where those signalling molecules regulate a wide range of sensory functions (reviewed 

in (Johnson and Leroux, 2010; Maruyama, 2016; Wen et al., 2014); Supplemental 

Table 03). We thus hypothesised that IFT88 might be generally involved in cilium 

maintenance in sensory neurons, in part by transporting particulate guanylyl cyclases 

such as Gucy2e.  

 

CG34357, a homologue of mouse Gucy2e, localises to chordotonal cilia and is 

required for maintaining their function in adult flies  

We decided to search first for a Drosophila melanogaster homologue of Gucy2d/e and 

then to investigate its possible relation with DmIFT88. The Drosophila genome 

encodes several particulate guanylyl cyclases (Morton, 2004), but none of them has 

been previously associated with climbing behaviour, mechanosensation, or cilium 

function. Using the protein sequence of the mouse Gucy2e (an orthologue of human 

Gucy2d) in PSIBlastp search (Altschul et al., 1997) against the Drosophila 

melanogaster protein database, we identified several putative particulate guanylyl 

cyclases (Supplemental Figure 4A). We reasoned that knockdown of any guanylyl 

cyclase that functions in chordotonal sensory neurons would impair climbing 

behaviour. Given that RNAi reagents for four of those putative guanylyl cyclases were 

available, we used them to knockdown the respective genes using Gal4Chat19b. The 

climbing assays performed showed that the knockdown of three out of four candidates 

caused climbing defects, one of them being the gene CG34357 (Supplemental Figure 
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4A).  For follow-up studies, we focused on this gene because it is the closest 

Drosophila homologue of mouse Gucy2e and, accordingly, was named as DmGucy2d.  

To test if DmGucy2d is normally expressed in chordotonal neurons, we used an 

enhancer (Gal4)-trap line (NP0270), in which yeast Gal4 is inserted after the second 

exon 2 of DmGucy2d (Hayashi et al., 2002), to express a membrane-bound GFP 

reporter (UAS-mCD8::GFP) (Figure 3A and B). We observed that the enhancer is 

expressed in the chordotonal neurons in both L3 larvae and adult 2nd antennal 

segment (Figure 3C and D). Notably, in the adult antenna, we detected GFP signal 

only in a few chordotonal neurons, suggesting that only a subset of chordotonal 

neurons express DmGucy2d or that the enhancer trap line might not fully recapitulate 

the endogenous gene expression (Figure 3D).  

The predicted protein product of DmGucy2d has all the features of a typical particulate 

guanylyl cyclase (i.e. signal peptide, transmembrane domain, kinase homology 

domain, dimerization domain and cyclase domain, see Supplemental Figure 4B and 

C). Three transcripts are expressed from the DmGucy2d gene locus and two of those 

differ only in the length of the 3’-untranslated regions (DmGucy2d -RD and -RC). We 

focused on the two longer transcripts as the third transcript leads to a small truncated 

protein that only contains the extracellular part of the protein and in principle should 

not be able to bind to DmIFT88, which is an intracellular protein. To further assess 

DmGucy2d localisation, we cloned the coding sequence of its longer isoform (RD/RC, 

as they only differ in their UTRs) and generated transgenic flies in which the construct 

was expressed under an UAS promotor. The protein was tagged with GFP at the C-

terminus to avoid cleavage of the tag due to the existing signal peptide (Supplemental 

Figure 4B). When UAS-DmGucy2d::GFP  was expressed using a chordotonal neuron-

specific driver (Gal4Iav), GFP fluorescence was observed in the dendrites as well as 

along their cilia  (Figure 3E).  

We next wanted to test whether DmGucy2d is important for maintaining cilium function. 

We used the inducible promotor system (Gal4Chat19b-TubGal80ts) to express the hairpin 

against DmGucy2d in adult ciliated cells. The flies with UAS-DmGucy2d RNAi showed 

marginal reduction in their climbing performance already at 18°C (Figure 3F, right 

graph), possibly reflecting leaky expression of the construct. Importantly, after 

temperature shift to 29ºC, flies with DmGucy2d knockdown developed climbing 

defects within 2 days, which became more severe after 9 days (Figure 3F, left graph). 
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Collectively, our results suggest that DmGucy2d localises to adult chordotonal cilia 

and is needed for the maintenance of climbing behaviour. 

  

DmIFT88 binds to DmGucy2d intracellular domain and is required for the 

cyclase´s ciliary localisation  

To test whether DmGucy2d is a DmIFT88 cargo, we first examined whether 

DmGucy2d binds to DmIFT88. We used Drosophila melanogaster cultured (Dmel) 

cells, which normally express neither of these proteins nor any other IFT proteins, 

making them an appropriate system to test for the interactions of these proteins (Hu 

et al., 2017). We co-expressed either GFP-tagged DmGucy2d or GFP alone, together 

with HA-tagged DmIFT88. Unlike the GFP control, DmGucy2d::GFP (full length, FL) 

was able to bind to HA::DmIFT88 (Figure 4A). To narrow down the region of 

DmGucy2d required to bind DmIFT88, we generated several fragments of the cyclase. 

The T1 fragment contains the entire intracellular part of the protein. The other four 

fragments (T2-T5) contain the extracellular and the transmembrane domains (which 

might be necessary for the cyclases´s membrane localisation), as well as parts of the 

intracellular domain. T2-to-T5 fragments are successively longer with larger parts of 

the intracellular domain (Figure 4B). Our co-immunoprecipitation experiments 

revealed that T1, T4 and T5 co-immunoprecipitate DmIFT88 (Figure 4C), suggesting 

that a large part of the intracellular domain is required for the interaction.  

Given that the T1 fragment of DmGucy2d encompasses the whole intracellular domain 

that interacts with DmIFT88, we next investigated this fragment´s localisation to the 

chordotonal neurons (Figure 4C). UAS-T1-DmGucy2d::GFP, when expressed in 

chordotonal neurons of adult flies using Gal4Iav, localised, like the full protein, to the 

dendrites and cilia of adult chordotonal cilia (Figure 3E and 5A). These data suggest 

that DmGucy2d intracellular domain plays a key role in its localisation, presumably 

through its transport by DmIFT88. To test whether DmIFT88 transports this cyclase to 

the cilia, we investigated the localization of GFP-tagged T1-fragment, while knocking 

down DmIFT88. We observed that the percentage of cilia with T1-DmGucy2d::GFP 

signal at the ciliary dilation, as well as the mean intensity of T1-DmGucy2d::GFP at 

the proximal axoneme, were significantly reduced in DmIFT88 knockdown flies when 

compared to controls, while the signal intensity at the cilia base remained unaffected 

(Figure 5B-F). These results show that DmIFT88 is required to transport the cyclase 

to the cilia. 
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In summary, we show that DmIFT88 binds the intracellular domain of DmGucy2d and 

transports it towards the ciliary dilation of the chordotonal cilia in adult flies. Both 

DmIFT88 and DmGucy2d are important for the maintenance of ciliary function. Given 

the importance of the intracellular domain of DmGucy2d for its transport we wondered 

whether this domain might be commonly mutated in disease. Indeed, in LCA patients, 

several mutations have been reported in the evolutionarily conserved intracellular 

domain of human Gucy2d (Supplemental Figure 5), suggesting that defective transport 

of Gucy2d into photoreceptor cilia might be one of the causes of the disease (de 

Castro-Miro et al., 2014; Feng et al., 2020; Jacobson et al., 2013; Li et al., 2011; Liu 

et al., 2020; Salehi Chaleshtori et al., 2020; Tucker et al., 2004; Zagel and Koch, 2014). 

 

Discussion and Conclusion: 

Cilia biogenesis depends on the activity of an exclusive transport system called IFT 

(Eguether et al., 2014; Jiang et al., 2015; Pazour et al., 2002), yet whether IFT also 

has a role in maintaining metazoan cilia had been little explored (Hao et al., 2011; 

Jiang et al., 2015; Marshall et al., 2005). Here we show that DmIFT88 expresses in-

and is continuously mobile along the length of- fully formed sensory cilia. Furthermore, 

depletion of DmIFT88 after ciliogenesis in ciliated neurons leads to sensory 

behavioural phenotypes, suggesting a function for IFT in cilium maintenance, beyond 

its known role in ciliogenesis. We observe changes in the bending of the DmIFT88-

depleted cilia at their bases, suggesting that IFT88 is required for maintaining the 

bending angle of the cilium. We also find a strong role for DmIFT88 in transporting 

Gucy2d, a particulate guanylyl cyclase, with a widespread signalling role in eukaryotes 

and an involvement in human disease. We additionally show that DmGucy2d localises 

to chordotonal cilia and its depletion in fully formed sensory neurons impairs behaviour 

(Figure 3). Finally, we demonstrate that DmIFT88 binds to the intracellular domain of 

DmGucy2d and is necessary for the cyclase’s ciliary localisation (Figure 4). Our 

findings identify a novel mechanism for ciliary maintenance.  

 

IFT88 plays differential roles in cilia assembly and maintenance  

Multiple mechanisms have been implicated in the regulation of cilium homeostasis in 

diverse model organisms (Fort et al., 2016; Hao et al., 2011; Jiang et al., 2015; 

Marshall et al., 2005; Mourao et al., 2016). Ciliary structure and composition have to 
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be maintained and they might alter in response to external stimuli, as found in C. 

elegans sensory cilia (DiTirro et al., 2019; Mykytyn and Askwith, 2017). Studies in 

Chlamydomonas, worm and mouse suggest that continuous tubulin turnover at the 

ciliary tip is required to maintain flagellum/cilium length (Hao et al., 2011; Jiang et al., 

2015; Marshall et al., 2005). In contrast, in fruit flies, even though IFT88 is required for 

ciliary assembly (Han et al., 2003; Kohl et al., 2003; Pazour et al., 2002), we show that 

it has a mild role in maintaining the ciliary structure, while being critical for the 

maintenance of cilium function (Figure 1, 2). This result is similar to what was reported 

in Trypanosoma, suggesting that IFT88 plays an evolutionarily conserved role in the 

maintenance of the ciliary sensory function (Figure 2) (Fort et al., 2016).  

Auditory chordotonal neurons are incredibly sensitive mechanical and sound receivers 

that can detect vibrations exerted by even Brownian motion (Nadrowski et al., 2008). 

DmGucy2d, shown here to be a ciliary cargo of DmIFT88, could contribute to signal 

amplification in multiple ways; on the one hand, DmGucy2d might be activated by low-

level external stimulation, as Ca2+ regulates the activity of Gucy2d in mouse 

photoreceptor cells (Johnson and Leroux, 2010; Maruyama, 2016; Wen et al., 2014). 

On the other hand, it might also be involved in modifying the mechanical properties of 

the cilium in response to stimulation by adjusting the activities of dynein arms that are 

critical for mechanosensation of chordotonal cilia (Karak et al., 2015). Our data 

suggests that transport of DmGucy2d by DmIFT88 in fully formed sensory cilia is an 

important function of DmIFT88 in the maintenance of ciliary function. The mouse 

homologue of human Gucy2d, Gucy2e/GC-1, reportedly is transported by IFT88 into 

primary cilia in IMCD3 cells (Bhowmick et al., 2009), whereas this cyclase is 

transported into mouse photoreceptor cilia by rhodopsin (Pearring et al., 2015). It is 

thus possible that different modes of cyclase transport exist in different cell types and 

might even co-exist within the same cell. The fact that opsins localise to the dendrites 

of the fly chordotonal neurons and are required for their mechanotransduction function 

(Katana et al., 2019; Zanini et al., 2018) (Figure 1), makes it possible that opsins and 

DmIFT88 act together in DmGucy2d cilium localisation. To fully appreciate the 

potential of IFT in regulating various ciliary properties, such as structural maintenance 

and plasticity, as well as composition and function, it will be important to identify other 

cargoes that are transported by diverse IFT proteins in the future. Moreover, to fully 

understand how cilia are maintained, it will be important to uncover whether and how 

IFT-independent transport plays a role in that process. 
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Implications of human Gucy2d evolutionarily conserved residues in its function 

and transport  

Several mutations spread along the entire length of Gucy2d lead to Leber congenital 

amaurosis (LCA), a retina-specific ciliopathy (den Hollander et al., 2008). However, 

we know little about how those mutations cause the disease. Given that Gucy2d is a 

ciliary guanylyl cyclase, the mutations affecting either the protein´s stability, cyclase 

activity (Jacobson et al., 2013), or transport into the cilia can potentially be harmful. 

We uncovered that the intracellular domain of the cyclase, which we found to be 

essential for its transport into the cilium, is evolutionarily conserved. Furthermore, 

several of the Gucy2d residues, which are present in the intracellular part and mutated 

in patients, are conserved in Drosophila Gucy2d (Supplemental Figure 5 and 

Supplemental Table 8). These observations suggest that some of the phenotypes of 

LCA patients’ arise from insufficient delivery of Gucy2d to the photoreceptor cilia (de 

Castro-Miro et al., 2014; Feng et al., 2020; Jacobson et al., 2013; Li et al., 2011; Liu 

et al., 2020; Salehi Chaleshtori et al., 2020; Tucker et al., 2004; Zagel and Koch, 2014). 

Further studies to test this prediction would help to better understand Gucy2d transport 

and function, as well as the cellular basis of LCA and other related diseases. 
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Figures and Legends: 

  

Figure 1: DmIFT88 is evolutionarily conserved and its trains are visible in 

Drosophila sensory cilia. (A) Drosophila IFT88 shows structural-domain 

conservation despite low amino acid sequence conservation. (i) Schematic 

representation of the two annotated DmIFT88 isoforms (RNA and proteins) in the fly. 
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The grey boxes represent coding sequences. (ii) Left: Maximum-likelihood 

phylogenetic tree for IFT88 from various vertebrate and insect species, displaying 

bootstrap branch “support values” in percentages (%). The accession numbers of the 

proteins used in this analysis and a list of abbreviations are provided in the 

Supplemental Table 02. NA: the “support value” could not be calculated due to the 

method used to generate the sequence alignment. The amino acid identity of each 

sequence compared to Drosophila melanogaster is shown in percentages (%), and 

the number of predicted tetratricopeptide repeat (TPRs) domains in each species is 

displayed. Right: Multiple sequence alignment of IFT88 from eleven species 

represented as a heat map generated using JProfileGrid2. Each position in the 

alignment is shown as a box, colour-coded according to the similarity score. The 

relative positions of the ten TPRs of Drosophila melanogaster are indicated by black 

boxes. (B) GFP::DmIFT88 trains are visible in wandering L3 larvae. (i) Schematic 

representation of a L3 larva showing the segmentally arranged groups of chordotonal 

neurons (a group of five neurons is called lch5). Membrane-bound GFP (UAS-

mCD8::GFP) is expressed using Gal4Iav to visualise the morphology, including cilia 

(arrowhead), of one such group (lch5) of neurons. (ii) A movie still showing ectopically 

expressed GFP::DmIFT88 in the dendrite tip and cilia in lch5 neurons using Gal4Iav. 

Empty and filled arrowheads mark ciliary dilation and IFT particles, respectively. (iii) 

Left: A scheme of a cilium showing the IFT particles moving in anterograde (magenta) 

and retrograde (green) directions. Below the scheme, a hypothetical kymograph is 

shown that would result from the two types of particles moving in time along the cilium. 

Right: An example kymograph with DmIFT88 particles (colour-coded depending on 

their direction). The train-tracks were extracted using the KymographClear macro 

toolset from ImageJ. Vertical lines in all kymographs suggest that DmIFT88 also 

accumulates at the ciliary dilation. (iv) Quantifications of the speed of the anterograde 

and retrograde DmIFT88 particles, extracted from 20-25 movies from five different 

larvae. (C) DmIFT88 protein is found in fully formed cilia in the adult. Top: 

Representation of the transgene (from (Han et al., 2003)), expressing GFP::DmIFT88 

near endogenous level, used to observe the DmIFT88 localisation in fly cilia. Left: A 

scheme of the chordotonal neuron architecture in the 2nd antennal segment of adult 

flies showing the expected localisation of Drosophila Pericentrin-like protein (PLP) and 

glutamylated tubulin (GT335) in the basal bodies and the axoneme, respectively. 

Right: representative image of the localisation of endogenous GFP::DmIFT88 with 
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respect to the two aforementioned markers in the adult chordotonal cilia. In C, 

GFP::DmIFT88 signals were enhanced with an anti-GFP antibody.  

 

 

Figure 2: Acute removal of DmIFT88 in adult flies leads to impaired sensory 

functions and defective localisation of ciliary proteins. (A) Scheme of the 

approach and timeline of the conditional knockdown (Dmift88 and mCherry RNAis) 

experiments. Dmift88 and mCherry genes are knocked-down in cholinergic neurons, 
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including chordotonal neurons, using Gal4Chat19b. Flies are reared at 18ºC to repress 

the expression of the hairpin during development through the co-expression of a 

temperature-sensitive version of Gal80 ubiquitously (TubGal80ts). Upon eclosure, 

adult flies are shifted to 29ºC (non-permissive temperature for Gal80ts) to activate the 

expression of RNA hairpins. (B) Schematic representation of the climbing (negative-

gravitaxis) assay. The effect on sensory cilia function is approximated by quantifying 

climbing behaviour of the adult flies on specific days (arrows) after temperature shift. 

(C) Time-dependent changes in climbing behaviour at 18°C (left) and 29°C (right) in 

(control (mCherry) and Dmift88) RNAi flies. Each boxplot corresponds to a total of 60 

flies measured in sets of ten animals each. The data are fitted using linear regression. 

The curve fitted to the data is shown as a solid line, and the area around the curve 

represents the 95% confidence interval. The two lines are significantly different at 

29°C, but no significant difference can be detected at 18°C. (D) Left: Representative 

immunofluorescence images of adult chordotonal cilia (with Inactive (Iav) and NOMPC 

in the proximal and distal zone of the cilia, respectively) from flies with control 

(mCherry) and Dmift88 RNAi. Scale bar: 1 μm. Right: Box plots of the normalised 

average Iav signal along the proximal part of the axoneme in flies with different 

genotypes. p-value is calculated using Mann-Whitney test (**-p-value < 0.01).   
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Figure 3: CG34357, a Drosophila homologue of Gucy2d, localises to chordotonal 

cilia and its removal impairs sensory function in adult flies. (A) Schematic 

presentation of the enhancer line used to determine CG34357 expression. The P-

element contains a Gal4 gene which was randomly inserted after CG34357 exon 2. 

(B) The upper box contains a schematic representation of the P{GawB} element 
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showing two P-element arms flanking a Gal4 gene and a mini-white gene. The lower 

box shows schematically how it is used to determine CG34357 expression pattern: 

presumably the same enhancers that activate CG34357 also activate the Gal4 gene, 

which then drives expression of the GFP reporter gene inserted at the 3´-end of UAS. 

(C) Using the enhancer line to drive UAS-mCD8::GFP expression, CG34357 

expression is detected in chordotonal neurons in L3 larvae (dashed box) as well as in 

other neurons, including non-ciliated class-I dendritic arborisation neurons, in the 

peripheral nervous system (arrowhead). (D) Fluorescence image shows CG34357 

expression pattern in the antennae of adult flies. The image stack was converted into 

a 3D model using Imaris software (see Supplemental video 02). The outline of the 2nd 

and 3rd antenna segment is drawn using the autofluorescence of the cuticle. Two 

chordotonal neurons in the second antenna segment are highlighted in magenta 

indicating the cell body (arrow) and the dendrite (arrowhead). (E) Immunofluorescence 

image shows that though the ectopically expressed DmGucy2d::GFP protein (using 

Gal4Iav) primarily accumulates in the dendrites of the adult chordotonal neurons, it also 

localises to the cilia. Insets (2x of the dashed boxes) show that the GFP signal can 

also be detected in the ciliary dilation (distal to the Iav protein signal). (F) Quantification 

of climbing behaviour in flies with conditional knockdown of DmGucy2d knockdown 

and mCherry (as internal control) at 18°C (left) and 29°C (right). Each boxplot 

corresponds to a total of 60 flies measured in sets of ten animals each. The data are 

fitted using linear regression. The curve fitted to the data is shown as a solid line, and 

the area around the curve represents the 95 % confidence interval. The two lines are 

significantly different at 29°C (experiment), but marginal difference can be detected at 

18°C (control). 
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Figure 4: DmGucy2d binds DmIFT88 through its intracellular portion in cultured 

Drosophila (Dmel) cells. (A) Immunoprecipitation (IP) assay performed upon co-

overexpression of 3xHA::DmIFT88, and DmGucy2d::GFP or GFP in Dmel cells. 

DmIFT88 co-immunoprecipitates with DmGucy2d::GFP, but not GFP alone. (B) Left: 

Schematic representation of DmGucy2d truncation constructs used to determine its 

binding region to DmIFT88, showing also the domain structures and constructs length 

(aa). Right: A summary of the various DmGucy2d truncated peptides ability to bind 

DmIFT88 (from C) is shown. (C) IP assay performed upon co-overexpression of full-

length 3xHA::DmIFT88 and GFP-tagged fragments of DmGucy2d in Dmel cells.  Right: 

Bar plots (overlaid with scattered dots) of the fraction of DmIFT88 (with respect to the 

inputs) binding to the GFP-tagged fragments of DmGucy2d and GFP alone.  Each bar 

contains fractions of bound DmIFT88 intensity values (= values in the IP/ values in the 

Input) measured on the western blots, for at least three independent experiments. In 

A and C, co-overexpressed GFP and 3xHA::DmIFT88 serves as a negative control in 

the experiments (green boxes). Note that we also detect a faint non-specific HA-

positive band in the IPs from extracts that co-express GFP and 3xHA::DmIFT88. The 

bands of expected molecular weight are marked with green asterisks. The p-values 

are calculated using Mann-Whitney tests (*-p-value < 0.05; ns- not significant). 
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Figure 5: DmIFT88 is required for the ciliary localisation of DmGucy2d 

intracellular part. (A) Immunofluorescence images show that the ectopically 

expressed GFP-tagged T1-truncation of DmGucy2d (using Gal4Iav) accumulates in 

chordotonal neurons cell body, dendrite and ciliary dilation. Insets highlight that the 

GFP signal is also seen in the cilium. Proximal and distal cilia zones are marked with 

Iav and NOMPC antibodies, respectively. (B) Scheme summarises the experimental 

strategy in which T1-DmGucy2d::GFP is expressed in the chordotonal neurons (using 

Gal4Iav) with or without RNAi against Dmift88. The resulting flies were analysed 6 days 

after eclosion. (C) Representative immunofluorescence images of the adult 

chordotonal cilia from flies with different genotypes (described in B). Insets show T1-

GFP localisation along the proximal zone of the cilium (marked with dashed grey lines 

based on the anti-Iav antibody signal). Scale bars: 1 μm. (D, E, F) Box plots of the 

percentage of cilia with: GFP signal at the ciliary dilation (D), the average GFP signal 

along the proximal zone of the cilium (E), and normalised signal intensities of GFP at 

the ciliary base (F). The p-values are calculated using Welch corrected unpaired t-test 

(**- p-value < 0.01; *-p-value < 0.05; ns- not significant). Note that while no difference, 
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in T1-DmGucy2d::GFP signal, is observed at the ciliary base, there is a clear 

difference both at the ciliary dilation and ciliary proximal zone. 
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