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Abstract: Skeletal muscle atrophy, which occurs in lipopolysaccharide (LPS)-induced sepsis, causes
a severe muscle function reduction. The increased autophagy contributes to sepsis-induced
skeletal muscle atrophy in a model of LPS injection, increasing LC3II/LC3I ratio, autophagy flux,
and autophagosomes. Angiotensin-(1-7) (Ang-(1-7)) has anti-atrophic effects via the Mas receptor
in skeletal muscle. However, the impact of Ang-(1-7) on LPS-induced autophagy is unknown.
In this study, we determined the effect of Ang-(1-7) on sepsis-induced muscle autophagy. C57BL6
wild-type (WT) mice and mice lacking the Mas receptor (KO Mas) were injected with LPS together
with the systemic administration of Ang-(1-7) to determine autophagy in skeletal muscle. We also
evaluated autophagy and p38 and c-Jun N-terminal kinase (JNK)activation. Our results show that
Ang-(1-7) prevents LPS-induced autophagy in the diaphragm, tibialis anterior, and gastrocnemius of
WT mice, which is demonstrated by a decrease in the LC3II/LC3I ratio and mRNA levels of lc3b and ctsl.
This effect was lost in KO Mas mice, suggesting the role of the Mas receptor. The results in C2C12
cells show that Ang-(1-7) reduces several LPS-dependent effects, such as autophagy (LC3II/LC3I ratio,
autophagic flux, and autophagosomes), activation of p38 and JNK, B-cell lymphoma-2 (BCL2)
phosphorylation, and disassembly of the Beclin1/BCL2 complex. In conclusion, Ang-(1-7)/Mas
receptor reduces LPS-induced autophagy in skeletal muscle. In vitro assays indicate that Ang-(1-7)
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prevents LPS-induced autophagy and modifies the MAPK signaling and the disassembly of a complex
involved at the beginning of autophagy.

Keywords: renin-angiotensin system; muscle wasting; autophagy; LPS

1. Introduction

Skeletal muscle atrophy is the progressive loss of skeletal muscle mass and strength [1–4].
Different stimuli are responsible for skeletal muscle atrophy. One is sepsis induced by endotoxin
lipopolysaccharide (LPS), a cell wall component of gram-negative bacteria [5]. LPS triggers
an exacerbated inflammatory response that results in severe muscle wasting [6–9]. Patients in intensive
care units are one of the most affected groups by sepsis-induced muscle wasting. Sepsis produces
damage in the muscles necessary for locomotion, such as the tibialis anterior (TA) and gastrocnemius
(GA). However, the most affected muscle is the diaphragm (DFG), which results in the need for
a mechanical ventilator to assist in respiration [10].

In LPS-induced skeletal muscle atrophy, protein degradation increases through the ubiquitin-proteasome
system (UPS), and autophagy increases through toll-like receptor 4 signaling [11,12]. Autophagy
is a homeostatic mechanism via lysosomal machinery for the degradation and recycling of the
bulk cytoplasm of long-lived proteins and organelles incorporated into double-membrane vesicles
called autophagosomes [3,13]. An essential protein in autophagy is microtubule-associated proteins
1A/1B light chain 3B (LC3B) [14]. Post-translational modifications of LC3B protein are required for
biogenesis, elongation, and maturation of the autophagosome. LC3B is cleaved and then conjugated to
phosphatidylethanolamine (PE) to generate LC3-PE (a membrane-bound form of LC3, also referred
to as LC3II). The level of LC3II is known to be correlated with the number of autophagosomes [14].
During the post-translational LC3B processing, two forms are produced: LC3I (inactive protein) and
LC3II (active form). The LC3II/LC3I ratio allows analyzing the conversion to an active form of LC3B
(LC3I to LC3II) as autophagy activation [14]. The guidelines for monitoring autophagy [15] establish
that LC3B protein processing is the mostly marker to study autophagy and autophagosome [16].
Besides, several signaling pathways have been described to initiate and regulate autophagy, and
amongst them are the mitogen-activated protein kinases (MAPKs), specifically p38 and JNK. These
kinases are crucial to activating autophagy in food deprivation [17,18]. Regarding the intracellular
mechanism regulatory of autophagy, MAPKs are involved in the disassembly of the Beclin1/BCL-2
complex via specific phosphorylation of Beclin1 and BCL-2 to enable the interaction of Beclin1 with the
PI3K class III Vps34 complex [19]. Interestingly, LPS also increases p38 and JNK phosphorylation in
skeletal muscle cells [9,11,20].

The renin-angiotensin system (RAS) is mainly composed of classical and non-classical axes,
which have been described as regulators of skeletal muscle mass [21]. On the one hand, the classical
RAS through the principal peptide effector Angiotensin II (Ang II) and the AT1 receptor produces
skeletal muscle atrophy [22]. On the other hand, in the non-classical RAS axis, the G-protein-coupled
Mas receptor and its ligand angiotensin (1-7) (Ang-(1-7)) are the principal effectors [22,23]. There is
increased Mas expression in skeletal muscle atrophy caused by immobilization, sarcopenia, and
sepsis [22,24]. Interestingly, Ang-(1-7) possesses anti-atrophic effects via Mas receptor activation [24,25].
We have previously demonstrated that Ang-(1-7) has anti-atrophic properties via the Mas receptor by
restoring parameters, such as muscle strength and the cross-sectional area of muscle fiber, and reducing
the E3 ubiquitin ligases muscle RING-finger protein-1 (MuRF-1) and atrogin-1/MAFbx (atrogin-1) [9].
Additionally, Ang-(1-7) reduces p38 phosphorylation via Mas receptor activation [9].

In this study, we evaluated the role of Ang-(1-7) and the Mas receptor in LPS-induced autophagy
in skeletal muscle and Ang-(1-7)/Mas receptor effect on MAPK phosphorylation and the disassembly
of the Beclin1/BCL-2 complex in skeletal muscle cells.
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2. Results

2.1. Angiotensin-(1-7) Prevented the Decline of Muscle Function and Tetanic Force via the Mas Receptor in
LPS-Treated Mice

We analyzed the effect of Ang-(1-7) and the Mas receptor on muscle function in a mouse model of
LPS-induced muscle wasting. The weightlifting test results shown in Figure 1A indicate that wild-type
(WT) mice injected with LPS presented a 55% reduction in muscle function compared with the vehicle
group’s WT mice. The same figure shows that this decrease was prevented by Ang-(1-7) administration.

1 
 

Figure 1. Angiotensin-(1-7) (Ang-(1-7)) prevented a lipopolysaccharide (LPS)-induced reduction in
muscle function and tetanic force via the Mas receptor in mice. Wild-type (WT) and Mas knockout
(Mas KO) C57BL/6J male mice were treated with the vehicle, LPS, Ang-(1-7), or LPS + Ang-(1-7) for 14
days. Then, limb muscle strength was measured using the weightlifting test in WT (A) and Mas KO (B) mice.
The score was normalized by body weight, and the results were represented in the graph as mean ± S.E.
Nine animals per group were used in these experiments (*, p < 0.05 vs. vehicle. #, p < 0.05 vs. LPS). The
tetanic force was measured in isolated diaphragm (DFG) from WT (C) and Mas KO (D) mice after 24 h of
treatments with LPS and/or Ang-(1-7). The values are expressed as mean ± S.E. Four animals per group
were used in these experiments (*, p < 0.05 vs. vehicle. #, p < 0.05 vs. LPS). Plus (+) and minus (−)
symbols indicated in the figures or graphics mean presence or absence of treatment.

To evaluate the Mas receptor’s role in the prevention of LPS-induced muscle function decline
observed in Ang-(1-7) administration, we used mice deficient in Mas expression (Mas KO mice).
In these mice, LPS also reduced muscle strength (60% in the vehicle group). However, Ang-(1-7)
was unable to recover the muscle function to the normal levels (Figure 1B) in contrast with the effect
observed in WT mice.
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We also evaluated the tetanic force in isolated diaphragm (DFG) muscle from LPS-treated mice
for 24 h. Figure 1C shows that the LPS-induced decrease in strength (control: 191 ± 14; LPS: 110 ± 15;
Ang-(1-7): 201 ± 10 mN/mm2) was partially prevented when mice were treated with Ang-(1-7)
(LPS + Ang-(1-7): 170 ± 14 mN/mm2). In Figure 1D, we observed that the protective effect of Ang-(1-7)
on the tetanic force was abolished when the experiments were performed in Mas KO mice (control:
152 ± 11; LPS: 76 ± 8; Ang-(1-7): 148 ± 10; LPS + Ang-(1-7): 89 ± 10 mN/mm2).

These results confirm that Ang-(1-7) prevented LPS-induced loss of muscle function and strength
via the Mas receptor. In addition, these results obtained in Mas KO mice are identical and consistent
with findings previously reported using WT mice treated with the antagonist of Mas receptor A779 in
which muscle atrophy and wasting were abolished to be recovered by Ang-(1-7) [9].

2.2. Angiotensin-(1-7) Decreased LPS-Induced Autophagy in the Diaphragm, Tibialis Anterior,
and Gastrocnemius Muscles through a Mas Receptor-Dependent Mechanism

We evaluated the effect of Ang-(1-7) on LPS-induced autophagy in mice. The protein levels of
LC3II and LC3I were detected using Western blot in muscles from WT mice. Figure 2A,E, I show that
the LPS-induced increase in LC3II/LC3I ratio in DFG, tibialis anterior (TA) and gastrocnemius (GA)
muscles were diminished by Ang-(1-7) administration. A quantitative analysis of the LC3II/LC3I ratio
is shown in Figure 2B,F,J, which indicate that Ang-(1-7) prevented the increase induced by LPS from
4.2 ± 0.2-fold to 1.4 ± 0.2-fold in DFG (Figure 2B), from 4.1 ± 0.9-fold to 1.3 ± 0.2-fold in TA (Figure 2F)
and from 3.4 ± 0.4-fold to 1.8 ± 0.3-fold in GA (Figure 2J).

To evaluate the Mas receptor’s role, Mas KO mice were treated with LPS in the absence or presence
of Ang-(1-7). Figure 2C shows that the LPS-dependent increase (relative to its control) in the LC3II/LC3I
ratio was decreased to a minor degree with Ang-(1-7) treatment (10.3 ± 0.7 to 6.9 ± 0.6-fold) compared
with the case in WT mice in DFG (Figure 2D). The results in TA (Figure 2G) and GA (Figure 2K)
muscles from LPS-treated Mas KO mice show that Ang-(1-7) did not affect the LPS-induced increase in
the LC3II/LC3I ratio. Quantitative analysis of these data in TA muscle indicates that the LPS-induced
increase in the LC3II/LC3I ratio (3.8 ± 0.6-fold) was maintained despite Ang-(1-7) administration
(4.8 ± 1.6-fold) (Figure 2H). In the GA muscles, the LPS-induced increase in the LC3II/LC3I ratio
(5.7 ± 1.5-fold) was not altered with Ang-(1-7) treatment (5.1 ± 0.8-fold) (Figure 2L).

As autophagy involves cargo proteins’ participation, we evaluated the effect of LPS and Ang-(1-7)
treatments on p62/SQSTM1 protein levels. The results indicate that p62/SQSTM1 levels are unchanged
for LPS or Ang-(1-7) treatments in DFG (Figure S1A–C), TA (Figure S1D–F), and GA (Figure S1G–I)
from WT and Mas KO mice.

We also evaluated the Ang-(1-7) effect on the LPS-modulated gene expression of Lc3b and Ctsl,
two genes upregulated by autophagy activation. In WT mice, lc3b is increased to 2.0 ± 0.2-fold by LPS,
whereas it is decreased to 1.0 ± 0.1-fold by Ang-(1-7) administration (Figure S2A). Similar results were
obtained for ctsl expression in WT mice: Ang-(1-7) decreased the LPS-induced mRNA levels from
5.1 ± 0.8-fold to 2.8 ± 0.6-fold (Figure S2B). In the KO Mas mice, the effect of Ang-(1-7) was lost for lc3b
expression [LPS: 2.6 ± 0.5-fold vs. LPS + Ang-(1-7): 2.1 ± 0.1-fold] (Figure S2C) and ctsl expression
[LPS: 4.4 ± 0.6-fold vs. LPS + Ang-(1-7): 4.4 ± 0.6-fold] (Figure S2D).

These results demonstrate that Ang-(1-7) decreased LPS-induced autophagy via the skeletal
muscle’s Mas receptor.
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Figure 2. Ang-(1-7) decreased the LPS-induced LC3II/LC3I ratio via the Mas receptor in muscles
from mice. C57BL/6J wild-type or Mas KO male mice were treated with the vehicle, LPS, Ang-(1-7),
or LPS + Ang-(1-7) for 18 h. At the end of the experiment, the mice were sacrificed, and the muscle was
excised and homogenized to evaluate LC3I and LC3II protein levels through Western blot analysis in
DFG (A,C), TA (E,G), and GA (I,K). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels are
shown as loading control. Molecular weight markers are depicted in kDa. The quantitative analysis
of the experiments is shown for DFG (B,D), TA (F,H), and GA (J,L). The results were represented as
LC3II/LC3I ratio and expressed as the mean± S.E. (the fold of change relative to the vehicle group). Nine
animals per group were used in these experiments (*, p < 0.05 vs. vehicle. #, p < 0.05 vs. LPS). Plus (+)
and minus (−) symbols indicated in the figures or graphics mean presence or absence of treatment.

2.3. Angiotensin-(1-7) Decreased LPS-Induced Autophagy in Skeletal Muscle Cells

To evaluate the Ang-(1-7) effect on LPS-induced autophagy in vitro, we determined the LC3II/LC3I
ratio in C2C12 myotubes incubated with LPS in the presence or absence of Ang-(1-7). We used
chloroquine (CQ) to stop the autophagic flux and accumulate LC3II levels. In Figure 3A, we observed
that the LC3II/LC3I ratio could be detected in the presence of CQ. Quantification of these data indicates
that Ang-(1-7) at 100 nM decreased the LPS-induced increment of the LC3II/LC3I ratio (Figure 3B).
We also determined the effect of Ang-(1-7) on LPS-induced autophagic flux increase, which is abolished
at 100 nM of Ang-(1-7) (Figure 3C).
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Figure 3. Ang-(1-7) reduced the LPS-induced LC3II/LC3I ratio and autophagic flux in C2C12 myotubes.
C2C12 cells were pre-treated with or without Ang-(1-7) (1, 10, and 100 nM) for 30 min and then
incubated in the absence or presence of chloroquine (CQ; 50 µM) for 5 min. Next, the cells were
treated with the vehicle, LPS (500 ng/mL), or LPS + Ang-(1-7) for 8 h. Then, we evaluated LC3I and
LC3II protein levels through Western blot (A). GAPDH levels are shown as loading control. Molecular
weight markers are depicted in kDa. The quantitative analysis of the experiment is shown in (B).
The results were represented as LC3II/LC3I ratio and expressed as the mean ± S.E. (the fold of change
relative to the vehicle group). (C) The quantitative analysis of autophagic flux was conducted using
densitometric analysis of LC3II obtained by the difference between the condition with and without CQ
from the representative images shown in (A). The values were normalized to the vehicle condition and
expressed as the mean ± S.E. Three independent experiments were conducted (*, p < 0.05 vs. vehicle.
#, p < 0.05 vs. LPS). Plus (+) and minus (−) symbols indicated in the figures or graphics mean presence
or absence of treatment.

Additional data shows similar results of Ang-(1-7) on the LC3II/LC3I ratio (Figure S3A,B) and
autophagic flux (Figure S3A,C) in undifferentiated C2C12 cells treated with LPS, showing a decrease in
these parameters.

We evaluated the effect of Ang-(1-7) on the LPS-induced amount of autophagosome. C2C12
cells were transduced with an adenovirus carrying a gene sequence to overexpress the fusion
protein LC3B with green fluorescent protein (GFP) (Adv-LC3B-GFP), and the C2C12 cells were then
treated with LPS in the absence or presence of Ang-(1-7). To demonstrate that the GFP positive
puncta correspond to the autophagosome, we performed immunofluorescence to detect LC3B in cells
transduced with Adv-LC3B-GFP. We observed a co-localization between signals for GFP puncta and
signals for LC3B (Figure S4), which confirms that GFP signals correspond to LC3B in autophagosomes,
as previously reported [15,26]. In Figure 4A, we detected autophagosomes in C2C12 cells transduced
with Adv-LC3B-GFP in the absence or presence of CQ. The results of the same figure show that
autophagosomes were only detected in the presence of CQ. Figure 4A shows that the basal amount
of autophagosome (vehicle + CQ) increased with LPS (LPS + CQ). This increase is reduced by
Ang-(1-7) (LPS + Ang-(1-7) + CQ). The quantification of autophagosome amount is shown in Figure 4B
(vehicle + CQ = 24 ± 6; LPS + CQ = 57.3 ± 12.9; LPS + Ang-(1-7) + CQ = 25.3 ± 5.0). To evaluate
the distribution of autophagosomes in each cell, we represented the data in a distribution frequency
histogram (Figure 4C). The results show that LPS increased the percentage of cells present a higher
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number of autophagosomes than the control condition (vehicle). Figure 4C also shows that Ang-(1-7)
prevented the effect of LPS in the increment of cells with high amounts of autophagosomes, reaching
a distribution similar to that in basal conditions (vehicle). This change in frequency distribution
histogram was also represented in a cumulative probability graph (Figure 4D), with a higher number
of autophagosomes in cells with LPS treatment compared to LPS plus Ang-(1-7) treatment.

 

4 

 

 

Figure 4. Ang-(1-7) reduced the LPS-induced LC3II/LC3I ratio and autophagic flux in C2C12 myotubes.
C2C12 cells were pre-treated with or without Ang-(1-7) (1, 10, and 100 nM) for 30 min and then
incubated in the absence or presence of chloroquine (CQ; 50 µM) for 5 min. Next, the cells were
treated with the vehicle, LPS (500 ng/mL), or LPS + Ang-(1-7) for 8 h. Then, we evaluated LC3I and
LC3II protein levels through Western blot (A). GAPDH levels are shown as loading control. Molecular
weight markers are depicted in kDa. The quantitative analysis of the experiment is shown in (B).
The results were represented as LC3II/LC3I ratio and expressed as the mean ± S.E. (the fold of change
relative to the vehicle group). (C) The quantitative analysis of autophagic flux was conducted using
densitometric analysis of LC3II obtained by the difference between the condition with and without CQ
from the representative images shown in (A). The values were normalized to the vehicle condition and
expressed as the mean ± S.E. (D) The cumulative probability distribution of autophagosomes (number
of puncta) in transduced cells with Adv-GFP-LC3B incubated with CQ. Three independent experiments
were conducted (*, p < 0.05 vs. vehicle. #, p < 0.05 vs. LPS). Plus (+) and minus (−) symbols indicated
in the figures or graphics mean presence or absence of treatment. The white arrows are examples
of autophagosomes.
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Together, these results indicate that Ang-(1-7) reduced the LPS-induced LC3II/LC3I ratio and
autophagosomes in skeletal muscle cells.

2.4. Angiotensin-(1-7) Prevented the Phosphorylation of p38, JNK, and BCL-2 and the Disassembly of
the Beclin1/BCL-2 Complex

To elucidate the intracellular mechanism involved in the reduction of LPS-induced autophagy
mediated by Ang-(1-7), we analyzed the signaling pathways activated by LPS in C2C12 cells and that
have been previously described to promote autophagy [11,20]. The results show that LPS increased p38
phosphorylation (2.8± 0.5-fold compared with the control), and Ang-(1-7) prevented this increment from
reaching basal levels (0.8 ± 0.2-fold relative to the control) (Figure 5A,B). Similar results were observed
for JNK phosphorylation. Figure 5C,D show that Ang-(1-7) partially prevented LPS-induced JNK
phosphorylation (compared with the control: LPS = 8.4 ± 1.4-fold; LPS + Ang-(1-7) = 4.4 ± 0.9-fold).
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Figure 5. Ang-(1-7) inhibited the LPS-induced p38, JNK, and BCL-2 phosphorylation in C2C12 cells.
C2C12 cells were pre-incubated in the absence or presence of Ang-(1-7) for 30 min (100 nM). Then,
the cells were incubated without or with LPS (500 ng/mL) for 30 min to analyze p38 (A) or JNK (C)
phosphorylation and for 4 h for BCL-2 phosphorylation (E) by Western blot. The levels of GAPDH
are shown as loading control. Molecular weights are shown in kDa. (B,D,F) show the quantitative
analysis of the experiments represented in (A,C,E), respectively. The protein levels of phospho-p38,
phospho-JNK, and phospho-BCL-2 were normalized to GAPDH and expressed as the mean ± S.E.
(the fold of change relative to the control). Three or four independent experiments were performed
(*, p < 0.05 vs. vehicle. #, p < 0.05 vs. LPS). Plus (+) and minus (−) symbols indicated in the figures or
graphics mean presence or absence of treatment.

The activation of the signaling pathway downstream p38MAPK that promotes autophagy involves
the Beclin1/BCL-2 complex and specifically the BCL-2 phosphorylation in serine 70 [19]. We analyzed
the effect of Ang-(1-7) on LPS-induced BCL-2 phosphorylation in C2C12 cells. The results show that
LPS increased BCL-2 phosphorylation (2.1-fold compared with the control), which was reduced by
Ang-(1-7) to basal levels (0.98-fold relative to the rule) (Figure 5E,F).

The MAPK-induced BCL-2 phosphorylation promotes autophagy via the disassembly of the
Beclin1/BCL-2 complex [19,27]. As LPS induced BCL-2 phosphorylation, we evaluated the effect
of LPS in the disassembly of the Beclin1/BCL-2 complex in skeletal muscle cells. For this, C2C12
cells were incubated with LPS at different times and evaluated by co-immunoprecipitating the
Beclin1/BCL-2 interaction. The results show a reduced co-immunoprecipitation of Beclin1 with BCL-2
at 4 h after incubation with LPS (Figure 6A,B), suggesting a reduction in interaction between both
proteins. Ang-(1-7) effect on the LPS-dependent reduced interaction between Beclin1 and BCL-2 was
evaluated in C2C12 cells. These cells were incubated with LPS in the absence or presence of Ang-(1-7).
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The results show that Ang-(1-7) prevented the decreased co-immunoprecipitation of Beclin1 with
BCL-2 (Figure 6C,D).
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Figure 6. Ang-(1-7) prevented the LPS-induced disassembly of Beclin1/BCL-2 complex C2C12 cells.
(A) C2C12 cells were incubated with LPS (500 ng/mL) at different times from 0 to 4 h. The interaction
between Beclin1 and BCL-2 was analyzed using immunoprecipitation with anti-BCL-2. From the eluate,
the Beclin1 and BCL-2 protein levels were detected by Western blot. The protein levels of GAPDH are
shown as loading control. Molecular weights are shown in kDa. (B) Quantification of three independent
experiments represented in (A). The Beclin1/BCL-2 ratio from the eluate was normalized to GAPDH and
expressed as the mean ± S.E. (fold of change relative to time 0. *, p < 0.05 vs. vehicle). (C) C2C12 cells
were pre-incubated in the absence or presence of Ang-(1-7) (100 nM) for 30 min. Then, the cells
were incubated without or with LPS (500 ng/mL) for 4 h. The interaction between Beclin1 and BCL-2
was determined as in (A). (D) Quantification of three independent experiments represented in (C).
The Beclin1/BCL-2 ratio from the eluate was normalized to GAPDH and expressed as the mean ± S.E.
(the fold of change relative to the control. *, p < 0.05 vs. vehicle. #, p < 0.05 vs. LPS). Plus (+) and
minus (−) symbols indicated in the figures or graphics mean presence or absence of treatment.

These results indicate that Ang-(1-7) reduced the LPS-induced autophagy and two
downstream events: the reduction in the phosphorylation of p38, JNK, and BCL-2 and the prevention
of LPS-induced disassembly of the Beclin1/BCL-2 complex.

3. Discussion

The RAS is a crucial regulator of skeletal muscle mass [28]. Ang-(1-7) mainly reduces Ang
II-induced skeletal muscle atrophy via the Mas receptor by preventing the diminution of muscle
strength, fiber diameter, and myosin heavy chain levels, which are related to an increase in UPS
activation [29]. Interestingly, the Ang-(1-7)/Mas axis has also been described as an anti-atrophic peptide
in Ang II-independent models of skeletal muscle atrophy, such as immobilization or sepsis induced by
LPS [9,24]. In this work, we demonstrated that Ang-(1-7) could reduce autophagy via the Mas receptor
in a model of LPS-induced muscle wasting. The results show that the activation of the Ang-(1-7)/Mas
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axis prevents the LPS-induced increase in autophagy in DFG, TA, and GA skeletal muscle. We also
show that the reduction in autophagy in skeletal muscle cells is concomitant with the decrease in
phosphorylation of p38, JNK, and BCL-2 and the prevention of Beclin1/BCL-2 complex disassembly,
which is a pivotal event that commences autophagy.

Some studies indicate that Ang-(1-7) reduces autophagy in cells, such as fibroblasts [30],
cardiomyocytes [31], and cerebrum cells [32]. In skeletal muscle, only the classical RAS components as
Ang II have been demonstrated to regulate autophagy [33]. However, there are no antecedents about
the regulation of autophagy by Ang-(1-7) in a model of skeletal muscle atrophy. Thus, this is the first
report that shows a reduction in autophagy by Ang-(1-7) in LPS-induced skeletal muscle atrophy.

Autophagy is an essential cellular mechanism to maintain homeostasis, especially in skeletal
muscle health [34,35], however, when autophagy is deregulated, it contributes to skeletal muscle
atrophy through protein organelle degradation [11,12].

Sepsis, evaluated by LPS-induced animal models, has been reported to produce skeletal
muscle atrophy by increasing UPS activity and p38 phosphorylation [9]. In this sense, the skeletal
muscle is severely damaged by sepsis, resulting in organelles’ degradation as mitochondria through
autophagy [12]. Furthermore, LPS increases autophagy with p38 phosphorylation [11]. Interestingly,
one of the signaling pathways that regulate autophagy is dependent on p38, JNK, and the disassembly
of the Beclin1/BCL-2 complex [36,37]. In our results, we described, for the first time, that LPS
induces autophagy with an increase in p38, JNK, and BCL-2 phosphorylation and the disassembly
of the Beclin1/BCL-2 complex. However, our result showing that Ang-(1-7) prevents autophagy
concomitant with the abolition of p38, JNK, BCL-2 phosphorylation, and the maintenance of
the Beclin1/BCL-2 complex is more critical. All these events can explain the Ang-(1-7)-dependent
autophagy reduction.

Several antecedents propose p38 and JNK MAPKs as pharmacological targets that prevent skeletal
muscle atrophy [9,11,38]. In this context, different reports show that the Ang-(1-7)/Mas receptor axis
reduces p38 and JNK phosphorylation in the kidney and pulmonary epithelial cells [39,40], which agrees
with our results. The mechanism involved in reducing MAPK phosphorylation induced by Ang-(1-7) in
the skeletal muscle is unknown. One possible explanation is that Ang-(1-7) reduces p38 phosphorylation
via the Mas receptor through increased activity of Src homology 2 domain-containing protein tyrosine
phosphatase 1 (SHP-1), such as is reported in renal cells [39]. Another possibility is that MAP
kinase phosphatase-2, activated by the Ang-(1-7)/Mas receptor axis, decreases JNK phosphorylation,
as reported in pulmonary epithelial cells [40]. Another candidate is protein phosphatase 2A, activated
by Ang-(1-7) [40] and reduces p38 phosphorylation. Thus, we can speculate that this phosphatase
could decrease p38 phosphorylation and, subsequently, Beclin1 phosphorylation, which is responsible
for preventing autophagy. Further studies must be carried out to evaluate and determine the role of
phosphatases in the effect of Ang-(1-7) in autophagy and skeletal muscle atrophy.

Downstream of MAPKs, our results indicate that Ang-(1-7) reduces BCL-2 phosphorylation in
serine 70. In addition to its role in autophagy, BCL-2 is described as an anti-apoptotic protein in skeletal
muscle atrophy, and Ang-(1-7) prevents muscle apoptosis by preventing a decrease in BCL-2 protein
levels [29]. Thus, Ang-(1-7) regulates apoptosis and autophagy by modulating BCL-2 protein levels
and phosphorylation, respectively. These facts are consistent with the possibility of the two pools
of BCL-2, as previously suggested [41,42].

For the first time, our results show the effect of Ang-(1-7) on the Beclin1/BCL-2 complex. Thus,
our data show that Ang-(1-7) prevents the LPS-induced disassembly of the Beclin1/BCL-2 complex.
We can hypothesize that BCL-2 sequesters Beclin1, avoiding the interaction of Beclin1 with PI3K class 3
to prevent PI3P and autophagosome formation, which results in a reduction in autophagy. A BH3
domain of Beclin1 mediates the interaction between Beclin1 and BCL-2. Other proteins of the BCL-2
family, such as BCL-2xL, Bcl-2-like protein 11, and BCL-2L1, can interact with Beclin1 and sequester it
to potentially avoid autophagy [19,43]. Additionally, it has been described that AMP-activated protein
kinase (AMPK) can promote the disassembly of the Beclin1/BCL-2 complex with an increase in JNK



Int. J. Mol. Sci. 2020, 21, 9344 11 of 18

and BCL-2 phosphorylation [44]. Further experiments could be performed to evaluate the possible
role of members of the BCL-2 family and AMPK in decreasing LPS-induced autophagy mediated
by Ang-(1-7).

Mammalian Target of Rapamycin (mTOR) is a crucial protein amongst the different signaling
pathways that promote the beginning of autophagy [45,46]. mTOR activation inhibits autophagy.
Although the effect of Ang-(1-7) on mTOR activation was not evaluated in this study, antecedents
suggest that mTOR could be activated by Akt, which is activated by Ang-(1-7) via the Mas receptor in
skeletal muscle [24].

In our results, we have observed that p62/SQSTM1 levels are unchanged with LPS and/or Ang-(1-7)
treatment. Another group has reported decreased p62/SQSTM1 protein after LPS treatment, specifically
in the TA muscle, but not in the DFG and soleus [12]. The main difference between our results and this
report is the higher amount of LPS injected relative to our study (20-fold higher), which could explain
the possible recruitment of adaptor proteins that, under a mild treatment with LPS (as in our study),
could not be participating in autophagy. Although p62/SQSTM1 has been the most studied adaptor
protein in autophagy, other proteins carry out this function, such as neighbor of BRCA1 gene 1 (NBR1)
and optineurin (OPTN) [47,48]. Thus, p62-independent autophagy has been reported in inflammatory
diseases, such as sepsis [48,49]. Studies on skeletal muscle have reported the role of NBR1 and OPTN
in autophagy [50–52]. Therefore, further research could be performed to analyze and identify other
adaptor proteins that participate in LPS-induced autophagy in skeletal muscle.

An important observation from our results is based in the relative levels of autophagic markers
which suggest that there is a higher autophagy in the Mas KO mice than in WT mice. As Ang-(1-7) can
decrease autophagy, one possible explanation for our results is that in WT mice, the basal levels of
Ang-(1-7) could be acting on muscle autophagy. In Mas KO mice, this effect of Ang-(1-7) on autophagy
is lost and can produce a higher basal or LPS-induced autophagy than in WT mice.

4. Materials and Methods

4.1. Animals and Experimental Protocols

Twelve-week-old male C57BL/6J wild-type (WT) and Mas knockout (Mas KO) were used [53].
The animals were randomized and separated into the following experimental groups for WT, or Mas KO
mice (9–12 animals/group) were designed according to their treatments: PBS (Vehicle), LPS, Ang-(1-7),
LPS plus Ang-(1-7) (LPS + Ang-(1-7)). A single sub-clinical dose of LPS (1 mg/kg) was intraperitoneally
(i.p.) injected [9,11]. The treatments were performed by 18 h, except for muscle strength (14 days) or
contractile measurements (24 h) such as we and others have previously reported [9,54]. The Ang-(1-7)
peptide (100 ng/kg/min) was administrated through osmotic micropumps (Alzet-Durect, Cupertino,
CA, USA) accordingly to our previous reports [9]. At the end of the experiment, the animals were
euthanized under anesthesia, and the diaphragm (DFG), tibialis anterior (TA), and gastrocnemius
(GA) muscles were dissected, removed and rapidly frozen, and stored at −80 ◦C until processing.
All the experiments and protocols were carried out as per the Animal Research: Reporting of In Vivo
Experiments (ARRIVE) guidelines and following the National Institutes of Health (NIH) guide for
the care and use of Laboratory animals (revised 1978). Under the Animal Ethics Committee’s formal
approval at the Universidad Andrés Bello (Approval number 030/2012, date: 20 August 2012).

4.2. Strength Test

At the end of treatment, mice were analyzed to measure forelimb force with a weightlifting test
described previously [55]. The mice must briefly maintain with its forepaws chain links with increasing
weights attached to a ball of tangled fine wire. They were seven different weights from 15 to 55 g.
Previous to the test, the mice were trained once per day for two weeks. The mouse grasps the different
weights with forepaws to perform the analysis, and the score is assigned. The final score was calculated
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as the summation of the product between the link weight and the time held. The average of three
measures from each mouse was normalized by body weight. All the steps were performed blindly.

4.3. Contractile Measurements

After treatment, the mice were anesthetized, the DFG muscles were removed, and the muscle
contractile properties were measured as previously described [56,57]. The maximum isometric tetanic
force was determined. The muscle mass and the optimum muscle length (Lo) were used to calculate
the specific net force (force normalized per total muscle fiber cross-sectional area [CSA], mN/mm2).
All the contractile measures were performed blindly.

4.4. Cell Cultures

The skeletal muscle cell line C2C12 (American Type Culture Collection, Manassas, VA, USA) was
grown and differentiated until day 4, as described previously [58]. The myotubes were pre-incubated
with Ang-(1-7) (1 up to 100 nM) (Sigma-Aldrich, St Louis, MO, USA) at 30 min before the incubation
with chloroquine (CQ) (50 µM) (Sigma-Aldrich, St Louis, MO, USA) for 5 min before LPS treatment
for 8 h. Both Ang-(1-7) and CQ were maintained during the treatment with LPS [500 ng/mL from
Escherichia coli 0127:B8 (Sigma-Aldrich, St Louis, MO, USA)]. The evaluation of intracellular signaling
pathways was performed in C2C12 cells, which were pre-incubated with Ang-(1-7) (100 nM) for 30 min
before LPS treatment (500 ng/mL). Ang-(1-7) was maintained during incubation with LPS.

4.5. Immunoblot Analysis

DFG, TA, and GA muscles were homogenized in Tris-ethylenediaminetetraacetic acid (EDTA)
buffer (50 mM Tris, 10 mM EDTA, pH 8,3) with a cocktail of protease inhibitors (Sigma-Aldrich,
St Louis, MO, USA) and 1 mM phenylmethylsulfonyl fluoride (PMSF) (Sigma-Aldrich, St Louis,
MO, USA). C2C12 cells were homogenized in radioimmunoprecipitation assay (RIPA) buffer with
a cocktail of protease inhibitors and 1 mM PMSF. Proteins were separated into SDS-PAGE, transferred
onto polyvinylidene difluoride (PDVF) membranes (Merck, Temecula, CA, USA), and probed with
rabbit anti-LC3B (1:1000, Cell Signaling, Danvers, MA, USA), rabbit anti-phospho-p38 (1:1000,
Cell Signaling, Danvers, MA, USA), rabbit anti-phospho-JNK (1:1000, Cell Signaling, Danvers, MA,
USA), rabbit anti-phospho-BCL-2 (1:1000, Cell Signaling, Danvers, MA, USA), rabbit anti-Beclin1
(1:1000, Cell Signaling, Danvers, MA, USA), rabbit anti-BCL-2 (1:500; Santa Cruz, Dallas, TX, USA) and
mouse anti-GAPDH (1:2000; Santa Cruz, Dallas, TX, USA). All immunoreactions were visualized by
enhanced chemiluminescence (Thermo Scientific, Waltham, MA, USA) which were detected through
an image documentation system, Fotodyne (Fisher Scientific, St. Waltham, MA, USA).

4.6. Reverse Transcription and Quantitative Real-Time PCR

Total RNA was isolated from the DFG muscle using TRIzol (Thermo Scientific, Waltham, MA,
USA). The total RNA (1 µg) was reverse transcribed to cDNA using random hexamers and Superscript
II reverse transcriptase (Thermo Scientific, Waltham, MA, USA). TaqMan quantitative real-time PCR
was performed in triplicate, using an Eco Real-Time PCR System (Illumina, San Diego, CA, USA)
with pre-designed primers for mouse lc3b, ctsl and the housekeeping gene β-actin (TaqMan Assays
on-Demand; Thermo Scientific, Waltham, MA, USA). The mRNA expression was quantified using
the comparative ∆CT method (2-∆∆CT), with β-actin as the reference gene [59]. The mRNA levels
were expressed relative to the mean expression in the vehicle-treated mice [60].

4.7. Co-Immunoprecipitation Analysis

C2C12 cells were homogenized in co-immunoprecipitation buffer (Tris 20 mM, NaCl 137 mM,
EDTA 2 mM, NP-40 1%), with a cocktail of protease inhibitors (Sigma-Aldrich, St Louis, MO, USA)
and 1 mM PMSF (Sigma-Aldrich, St Louis, MO, USA). Immunoprecipitation of endogenous BCL-2
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was performed overnight at 4 ◦C using rabbit anti-BCL-2. The immune complex was precipitated
with protein an agarose plus beads (Thermo Scientific, Waltham, MA, USA) for 1 h at 4 ◦C. SDS-PAGE
separated eluates from precipitated beds, and Beclin1, BCL-2, or GAPDH were detected by Western blot.

4.8. Indirect Immunofluorescence

C2C12 cells were grown, transduced with adenovirus, and treated on glass coverslips. At the end
of the experiment, cells were washed twice in ice-cold PBS-Ca+2/Mg+2, fixed in methanol, blocked for
1 h in 10% (v/v) goat serum in PBS, and incubated for 1 h with specific antibody rabbit anti-LC3B (1:200;
Cell Signaling, Danvers, MA, USA). The bound antibodies were detected by incubating the cells for 1 h
with 1:10,000 affinity-purified Alexa Fluor dye-conjugated goat anti-rabbit antibody (Thermo Scientific,
Waltham, MA, USA). After rinsing, the cells were mounted with fluorescence mounting medium
(Agilent Dako, Santa Clara, CA, USA) under a glass slide and viewed and photographed using
the Motic BA310 fluorescence microscopy (Motic, Hong Kong, China).

4.9. Adenovirus Transduction and Analysis of GFP-LC3B Puncta

C2C12 cells were grown and transduced with an adenovirus carrying the sequence for expression
of GFP-LC3B (Adv-GFP-LC3) [61]. Briefly, cells were transduced at a multiplicity of infection (MOI) of
1000 and maintained for 16 h. After that, the medium was removed, and a fresh medium supplemented
with 10% v/v of fetal bovine serum was added. After 20 h, incubation with LPS, CQ, and/or Ang-(1-7)
was performed as was described in each figure. Images were acquired with Motic BA310 fluorescence
microscopy (Motic, Hong Kong, China). The number of GFP-LC3B puncta was determined by using
customized ImageJ software (NIH, Bethesda, MD, USA). Analysis of these data was performed to
determine the mean of autophagosome per cells, percentage of distribution, and cumulative probability
of cells with autophagosome.

4.10. Autophagy Assay

The protein levels of LC3I, LC3II, and p62 were detected by Western blot. The LC3II/LC3I ratio
was analyzed as a parameter of autophagy. Autophagic flux was determined by analysis of LC3II
protein levels in cells incubated with chloroquine (CQ), as described previously [16]. The amount
of autophagosome was determined in C2C12 cells expressing GFP-LC3B by transduction with
Adv-GFP-LC3B [15]. The fluorescent detection of GFP was performed using the BA310 fluorescence
microscopy (Motic, Hong Kong, China).

4.11. Statistics

For statistical analysis, we used a t-test to compare two groups. To compare three or more
groups, we used one or two-way analysis of variance (ANOVA) with a post hoc Bonferroni’s
multiple-comparison test (Prism 8, GraphPad Software, San Diego, CA, USA). To analyze
the accumulative frequency of fiber sizes, we used Kruskal-Wallis and Wilcoxon test (IBM SPSS
Statistics Software. IBM Corp., New York, NY, USA). A difference was considered statistically
significant at p value < 0.05, as is indicated in each figure.

5. Conclusions

In conclusion, this study reports, for the first time, a reduction in autophagy by Ang-(1-7) via
the Mas receptor in an LPS-induced model of skeletal muscle wasting. We also demonstrate in C2C12
culture cells that Ang-(1-7) prevents LPS-induced key events that could be related to the increase
of autophagy, namely, the activation of signaling pathways, such as p38 and JNK MAPKs, and
the formation of the Beclin1/BCL-2 complex.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/24/
9344/s1.
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AMPK AMP-activated protein kinase
Ang-(1-7) Angiotensin (1-7)
Atrogin-1 atrogin-1/MAFbx
AT1 Angiotensin II receptor type 1
BCL-2 B-cell lymphoma-2
CQ Chloroquine
DFG Diaphragm
EDTA Ethylenediaminetetraacetic acid
GA Gastrocnemius
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GFP Green fluorescent protein
JNK c-Jun N-terminal kinase
LC3B Microtubule-associated proteins 1A/1B light chain 3B
LPS Lipopolysaccharide
kDa Kilodalton
KO Knock out
MAPK Mitogen-activated protein kinase
Mas KO Mas knockout (deficient in Mas receptor)
MOI Multiplicity of infection
MuRF-1 Muscle RING-finger protein-1
NBR1 Neighbor of BRCA1 gene 1
OPTN Optineurin
PE Phosphatidylethanolamine
p62/SQSTM1 Sequestosome 1
PI3P Phosphatidylinositol 3-phosphate
PMSF Phenylmethylsulfonyl fluoride
PVDF Polyvinylidene fluoride
qPCR Quantitative polymerase chain reaction
RAS Renin-angiotensin system
RIPA Radioimmunoprecipitation assay
ROI Region of interest
ROS Reactive oxygen species
RT Reverse transcription
RAS Renin angiotensin system
SHP-1 Src homology 2 domain-containing protein tyrosine phosphatase 1
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TA Tibialis anterior
UPS Ubiquitin proteasome system
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