SUPPLEMENTAL MATERIAL

Kazmierczak et al.

The CONJUDOR pipeline for multiplexed knockdown of gene pairs identifies RBBP-5 as a germ cell reprogramming barrier in C. elegans

Marlon Kazmierczak^{1,2}, Carlota Farré i Díaz^{1,2}, Andreas Ofenbauer^{1,2}, Sergej Herzog^{1,2}, Baris Tursun^{1,2#}

Affiliations:

¹Berlin Institute of Medical Systems Biology, Berlin 10115, Germany

²Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany

[#]Correspondence to:

baris.tursun@mdc-berlin.de (BT)

SUPPLEMENTAL FIGURES

Supplemental Figure 1: Double RNAi in *C. elegans* **by mixing bacteria.** RNAi in *C. elegans* is straightforward and can be applied by feeding worms with bacteria that produce dsRNA against the target gene. The standard procedure to perform simultaneous knockdown of two genes is to mix two bacterial strains each producing specific dsRNAs. The illustration shows mixing of bacteria that produce dsRNA against *GFP* or *RFP*. The dsRNA is produced by *HT115 E. coli* bacteria that contain the RNAi plasmid L4440 plasmid. The gene of interest is cloned into L4440, which allows IPTG-induced dsRNA production.

Supplemental Figure 2: Generating a bacterial conjugation system to combine RNAi plasmids. (A) Competence for bacterial conjugation requires presence of the fertility factor, also termed F-plasmid, which contains several genes of the *tra* locus for the formation of a pilus appendage. Bacteria with the F-plasmid are denoted as F^+ (donor) connect via the pilus to F^- bacteria (recipient) and transfer plasmids or other genetic material containing an *oriT* to the recipient. (B) Generating the selectable 'donor' RNAi plasmid based on *L4440*, which can be transferred by conjugation, needed the addition of the *oriT* and replacement of AmpR with Chloramphenicol (CamR) resistance. This allows selection for presence of the transferred RNAi plasmid together with the resident AmpR-containing *L4440* RNAi plasmid after conjugation. We termed the newly generated donor plasmid '*LoriT*', which is basically L4440 carrying *oriT* and CamR instead AmpR. (C) To adopt bacterial conjugation for combining RNAi plasmids, we made the F-plasmid *pRK24* (1) we replaced the Ampicillin resistance (AmpR) of *pRK24* with Kanamycin resistance (KanR) since *L4440* used in the standard 'Ahringer' *C. elegans* RNAi library (2, 3) already carries AmpR. To exchange AmpR with KanR we used recombineering, as previously described (4) due to the extensive size of *pRK24*.

Supplemental Figure 3: Assessment of conjugation procedures for efficient transfer. (A) Conjugation in liquid culture by combining F^+ donor bacteria (*SW105* or *EPI300* containing *pRK24-Kan*) and recipient *HT115*. Incubation of donor and recipient bacteria in liquid LB media containing Amp/Cam for 1h and subsequent plating on LB-Agar plates for 12h. The last step of streaking 8 colonies (if any grown) was to test for colony PCR to verify presence of donor (*LoriT-hsp-1*, CamR) and recipient (*L4440ogt-1*, AmpR). (B and C) The two *E.coli* strains *SW105* or *EPI300* were used previously to handle large DNA constructs such as fosmids (4) and therefore chosen as the host strains for the *pRK24-KanR* episome (F-plasmid for conjugation competence). We aimed for testing 8 colonies from each procedure of conjugation either combing a ratio of 1:1, 1:5, or 5:1 of donor D and recipient R bacteria. In some cases no colonies were obtained. Obtained colonies were tested by PCR to confirm successful conjugation. The procedure as shown in (A) performed overall poorly. (D) Conjugation by combining donor and recipient bacteria in liquid LB media without antibiotics for 1h, and then with Amp/Cam for 1h with subsequent plating on LB-agar plates to select at least 8 colonies (if any grown) for examining by PCR. (E and F) As for (B and C) but with more obtained colonies. Still the yield is low and *SW105* F⁺ donor bacteria appeared to perform very poorly. As before, we could not even obtain 8 colonies for this procedure as shown in (D) to test. (G) Conjugation on solid LB-agar without antibiotics by combining donor and recipient bacteria for 1h. Afterwards, incubation in liquid LB broth with Amp/Cam for 1h (either directly adding liquid LB, if performed in 96-well or transferring colony to culture tube) with subsequent plating on LB-Agar plates (Amp/Cam) to select at least 8 colonies for examining by PCR. (H and I) this procedure yielded the most efficient conjugations; however the use of *SW105*-based donor bacteria showed less robustness. The use of 5:1 (donor D : recipient R) yielded highly efficient conjugation with correct conjugation in all tested cases.

Supplemental Figure 4: Synthetic lethality induced upon co-depletion of proteasomal subunits. (A) We targeted the 26S-Proteasome subunit genes rpn-10 and rpn-12, which cause synthetic lethality when co-depleted (5). (B) CONJUDOR-mediated simultaneous knockdown of rpn-10 and rpn-12 reduced survival by around 50%. In contrast, 25% of the animals fed with mixed rpn-10 and rpn-12 RNAi bacteria died indicating that CONJUDOR is more efficiently depleting rpn-10 and rpn-12 simultaneously. Control: Rluc RNAi. Statistics: t-test with two-tailed distribution. p1 = 0.0001; p2 = 0.007; p3 = 0.007; Total analyzed animals (triplicate) n= 1375; Error bars represent SEM. For detailed scoring numbers see Suppl. Table 4.

Supplemental Figure 5: Quantification of mRNA levels by qPCR upon *lin-53* and *rbbp-5* knockdown. RNAi was performed as described before with Rluc as control, which was also used to mix 1:1 for single RNAi experiments. Quantitative PCR (qPCR) was performed and quantified by comparative $2^{-\Delta\Delta CT}$ method as described previously (6, 7) and in material and methods. As reference genes *cdc-42* and *pmp-3* were used. 4 biological repeats each with triplicate measurements were performed. Statistics: Student's t-Test with two-tailed distribution with homoscedastic variance. p1= < 0.0001; p2= < 0.0001; p3= 0.024; p4= 0.012; p5= 0.039; p6= 0.004 Error bars represent SEM. Primer sequences are provided in Suppl. Table 2.

SUPPLEMENTAL TABLES

Target Gene	Function	Source
lin-53	histone-chaperone LIN-53ortholog of human	Chromatin RNAi library;
	RBBP4	Hajduskjova et al., 2019
rpn-10	proteasome subunit	Chromatin RNAi library;
		Hajduskjova et al., 2019
rpn-12	proteasome subunit	Chromatin RNAi library;
		Hajduskjova et al., 2019
rbbp-5	Retino blastoma protein binding Protein;	Chromatin RNAi library;
	Set1/MLL methyltransferase complex member	Hajduskjova et al., 2019
oma-1	Oocyte Maturation defective; Zn-Finger	Ahringer RNAi library;
		Kamath et al., 2003
oma-2	Oocyte Maturation defective; Zn-Finger	Ahringer RNAi library;
		Kamath et al., 2003
gld-1	Translational regular; ortholog of human QKI - KH	Ahringer RNAi library;
	domain containing RNA binding	Kamath et al., 2003
mex-3	ortholog of human MEX3A RNA binding family	Ahringer RNAi library;
	member	Kamath et al., 2003

Supplemental Table 1: RNAi clones used in the study

RNAi clones used for CONJUDOR screen in combination with *LoriT-lin-53* (Figure 6) were derived from the Chromatin RNAi library described in Hajduskova et al., 2019 (see Table S1 from Hajduskova et al., 2019; Genetics; doi: 10.1534/genetics.118.301674) (8).

Supplemental Table 2: Primers used in the study

cloning rpn-10	
oMK03 FWD	tgg atc cac cgg ttc cat ggT GGA ATT CTG TCA ATG GCA AAG
oMK04 REV	gg atc cac gcg tca cgt ggG AGC TCC ATC CAC ATC CAT TTG
cloning rpn-12	
oMK05 FWD	tgg atc cac cgg ttc cat ggA AAT CTT CTG GCT GTG TG
oMK06 REV	ggg atc cac gcg tca cgt ggT GCT AAA ACA ATG CAT CG
cloning oma-1	
oMK33 FWD	tgg atc cac cgg ttc cat ggC CGA ATG CAG AAA CCA GAA TC
oMK34 REV	ggg atc cac gcg tca cgt ggG GCC AAG TTT CTA TGG GAC
cloning oma-2	
oMK35 FWD	tgg atc cac cgg ttc cat ggC CGA ATG CAG AAA CCA GAA TC
oMK36 REV	ggg atc cac gcg tca cgt ggA AAC GGA CTG ATT GGA CG
cloning Cam	
oBT1135 FWD	taa act tgg tct gac agT TAC GCC CCG CCC TGC CA
oBT1137 REV	ttg ttt att ttt cta aat aca ACG TAA GAG GTT CCA ACT TTC ACC ATA ATG AAA TAA GAT CAC
cloning Kan	
oBT1263 FWD	ttc gag ctc cac cgc CCT GTG ACG GAA GAT CAC TTC
oBT1264 REV	gag ctc aaa atc ccg cAG CGC TTT TCC GCT GCA T
oBT1414 FWD	GAA GTT TTA AAT CAA TCT AAA GTA TAT ATG AGT AA ACT TGG TCT GAC AGt tat tag aaa aat tca tcc agc aga cg
oBT1415 REV	TGT ATT TAG AAA AAT AAA CAA ATA GG GGT TCC GCG CAC ATT TCC CCG AAA AGc gcg gaa ccc cta ttt gt tta ttt ttc

cloning oriT	
oBT1285 FWD	cca ccg gtt cca tgg GGC GCT CGG TCT TGC CTT
oBT1286 REV	cca cgc gtc acg tgg AGC GCT TTT CCG CTG CAT AAC
cloning lin-53	
oBT2241 FWD	tgg atc cac cgg ttc cat ggC TCG TAA TGA CAC ATG CG
oBT2242 REV	tga tat cga att cct gca gcG AGA AAT CGC TGA TCT TGG
oBT2391 FWD	tgg atc cac cgg ttc cat ggC TCG TAA TGA CAC ATG CG
oBT2392 REV	tga tat cga att cct gca gcG AGA AAT CGC TGA TCT TG
qPCR <i>lin-53</i>	
oBT4235 FWD	ATGGAACCTCCGAAGATCGC
oBT4236 REV	CGCTGTTATCCTTCGCAACG
qPCR rbbp-5	
oBT4239 FWD	TGATGGCAGGGTGCTGATTT
oBT4240 REV	TGTCGTTTGCAAGAACTGTTTGA
qPCR cdc-42	(reference gene for normalization)
oBT4231 FWD	CGACAATTACGCCGTCACAG
oBT4232 REV	AAACACGTCGGTCTGTGGAT
qPCR pmp-3	(reference gene for normalization)
oBT873 FWD	GTT CCC GTG TTC ATC ACT CAT
oBT874 REV	ACA CCG TCG AGA AGC TGT AGA

Supplemental Table 3: Media recipes used in the study

LB (Luria Bertani), (liquid medium) (1L): 25 g LB broth (Carl Roth GmbH + Co. KG), ddH2O

LB/Amp medium (1 L): 25 g LB broth (Carl Roth GmbH + Co. KG), ddH2O, Ampicillin (100 µg/ml final concentration)

LB/Amp plates (1 L): 25 g LB broth (Carl Roth GmbH + Co. KG), 15 g Agar (Carl Roth GmbH + Co. KG), ddH2O, Ampicillin (100 µg/ml final concentration)

LB/Amp+Tet plates (1 L): 25 g LB broth (Carl Roth GmbH + Co. KG), 15 g Agar (Carl Roth GmbH + Co. KG), ddH42O, Ampicillin (100 µg/ml final concentration), Tetracycline (12.5 µg/ml final concentration)

LB/Amp+Tet+Cam plates: 25 g LB broth (Carl Roth GmbH + Co. KG), 15 g Agar (Carl Roth GmbH + Co. KG), ddH2O, Ampicillin (100 µg/ml final concentration)

LB/Amp+Tet plates (1 L): 25 g LB broth (Carl Roth GmbH + Co. KG), 15 g Agar (Carl Roth GmbH + Co. KG), ddH42O, Ampicillin (100 µg/ml final concentration), Tetracycline (12.5 µg/ml final concentration), Chloramphenicol (20 µg/mL final concentration)

LB/Cam plates: 25 g LB broth (Carl Roth GmbH + Co. KG), 15 g Agar (Carl Roth GmbH + Co. KG), ddH42O, Chloramphenicol (20 µg/mL final concentration)

NGM (1 L): 3 g NaCl, 20 g Agar (CarlRothGmbH+Co.KG), 2,5g Peptone (Becton, Dickinson and Company), ddH2O, after autoclaving add: 1 ml Cholesterol (5 mg/ml in 95% EtOH stock solution), 1 ml 1 M MgSO4, 1 ml 1 M CaCl2, 25 ml 1 M K2PO4, 1 ml fungizone (Amphotericin B 2.5 mg/ml stock)

NGM for RNAi (1 L): 3 g NaCl, 20 g Agar (CarlRothGmbH+Co.KG), 2,5g Peptone (Becton, Dickinson and Company), ddH2O after autoclaving add: 1 ml Cholesterol (5 mg/ml in 95% EtOH), 1 ml 1 M MgSO4, 1 ml 1 M CaCl2, 25 ml 1 M K2PO4, 1 ml fungizone (Amphotericin B 2.5 mg/ml stock), add 50 µg/ml ampicillin and 1 mM (final) IPTG

Supplemental Table 4: Scoring data of RNAi phenotypes

BAT1616: myo-3prom::GFP::NLS; myo-3prom::RFP::NLS

BAT1616: myo-3prom::GFP::NLS; myo-3prom::RFP::NLS

		R	NAi control (R	luc)			RNAi L4440-GFP in HT115 mixed with RNAi L4440-RFP in HT115							
	e)	(p1	e	p2	exp	3		ex	p1	e	xp2	exp3		
	#GFP- #RFP-		# GFP-	# RFP- # GFP-positive		# RFP-		# GFP-	# RFP-	# GFP-	# RFP-	# GFP-	# RFP-	
	positive	positive	positive	positive	muscle nuclei	positive		positive	positive	positive	positive	positive	positive	
animal	muscle	muscle	muscle	muscle		muscle	animal	muscle	muscle nuclei	muscle	muscle nuclei	muscle	muscle	
1	90,000	94,000	94,000	95,000	95,000	92,000	1	38,000	42,000	28,000	26,000	49,000	64,000	
2	90,000	91,000	92,000	89,000	95,000	93,000	2	63,000	60,000	43,000	43,000	72,000	69,000	
3	94,000	96,000	91,000	87,000	93,000	95,000	3	54,000	60,000	55,000	65,000	80,000	79,000	
4	93,000	94,000	93,000	88,000	88,000	94,000	4	27,000	19,000	26,000	33,000	41,000	45,000	
5	93,000	91,000	94,000	90,000	93,000	89,000	5	65,000	82,000	41,000	55,000	76,000	77,000	
6	92,000	94,000	93,000	93,000	88,000	93,000	6	23,000	40,000	60,000	69,000	61,000	60,000	
7	93,000	94,000	92,000	95,000	90,000	90,000	7	38,000	33,000	44,000	61,000	21,000	43,000	
8	94,000	93,000	93,000	95,000	90,000	90,000	8	29,000	31,000	27,000	33,000	39,000	29,000	
9	95,000	92,000	91,000	91,000	87,000	94,000	9	78,000	80,000	13,000	21,000	62,000	71,000	
10	94,000	92,000	91,000	90,000	90,000	95,000	10	77,000	60,000	67,000	78,000	11,000	37,000	
AVERAGE	92,800	93,100	92,400	91,300	90,900	92,500	AVERAGE	49,200	50,700	40,400	48,400	51,200	57,400	
STDEV	1,687	1,595	1,174	3,020	2,923	2,173	STDEV	20,826	21,066	17,050	19,817	23,275	17,652	
SEM	0,533	0,504	0,371	0,955	0,924	0,687	SEM	6,586	6,662	5,392	6,267	7,360	5,582	
Multiple T.Test using	g GraphPad Pri	sm7:	control vs mi	xed for GFP: <	0.00001		control vs mixed for RFP: <0	0.00001						

e linear step-up procedure of Benjamini, Krieger and Yekutieli, was analyzed individually, without assuming a consistent SD. Each row

BAT1616: myo-3prom::GFP::NLS; myo-3prom::RFP::NLS BAT1616: myo-3prom::GFP::NLS; myo-3prom::RFP::NLS RNAi L4440-GFP in HT115 mixed with RNAi L4440-RFP in HT115 RNAi LoriT-GFP conjugated with L4440-RFP in HT115 exp3 exp1 # RFPexp2 # RFPexp1 # RFPexp2 # RFP-# GFP-# GFP-# GFP-pd # GFP-# GFP-# GFP # RFP # GFP-positive muscle nuclei positive positive muscle nucle positiw positive
 ruscle
 muscle

 clei
 nuclei
 nuclei

 5,000
 7,000
 18,000

 17,000
 18,000
 18,000

 10,000
 5,000
 7,000

 11,000
 5,000
 7,000

 10,000
 15,000
 13,000

 4,000
 21,000
 7,000

 15,000
 13,000
 4,000

 16,000
 11,000
 22,000

 18,000
 11,000
 22,000

 10,000
 12,000
 14,000

 10,000
 11,000
 22,000

 11,000
 12,200
 14,500

 5,208
 6,197
 5,622

 1,647
 1,960
 1,778

 CON vs mixel for GFW: e0.0001
 amini, Krieger and Yekutek, with Q = 1%, assuming a consistent SD.
muscle nuclei muscle nucle muscle nuclei
 ↓
 15,000

 2
 26,000

 3
 7,000

 4
 3,000

 5
 9,000

 6
 8,000

 7
 7,000

 9
 10,000

 9
 10,000

 AVERAGE
 10,300

 STDEV
 6,550

 SEM
 2,071

 Multiple T-test using GraphPad Prism7

 Two-stage linear step-up procedure of the Each row was analyzed individually, without
anima 52,000 31,000 33,000 43,000 55,000 31,000 27,000 75,000 70,000 26,000 39,000 72,000 47,100 19,365 6,124 15,000 17,000 48,000 54,000 56,000 42,000 70,000 31,000 63,000 56,000 34,000 78,000 47,000 37,000 51,400 15,862 5,016 52,000 70,000 24,000 50,000 25,000 68,000 28,000 49,000 54,000 67,000 48,900 17,698 5,597 6,000 17,000 15,000 7,000 4,000 5,000 11,000 10,100 4,841 1,531 20,000 59,000 59,000 86,000 57,000 34,000 70,000 54,000 52,000 57,300 13,557 4,287 58,000 61,000 27,000 32,000 56,000 41,000 41,000 45,000 44,100 11,902 3,764 5,000 46,000 36,000 27,000 47,000 34,000 63,000 63,000 61,000 46,700 11,567 3,658 6,000 16,000 5,000 24,000 10,000 24,000 13,000 8,179 2,586 9 10 AVERAGE STDEV SEM d for RFP: <0.0001 CON vs m

BAT1616: myo-3prom::GFP::NLS; myo-3prom::RFP::NLS BAT1616: myo-3prom::GFP::NLS; myo-3prom::RFP::NLS RNAI L4440-RFP in H7115 mixed with control RNAI Rluc in H7115 # GFP- # RFP- # GFP- # GFP-positive positive positive positive muscle muscle muscle muscle muscle muscle muscle nuclei muscle RNAi L4440-GFP in H7115 mixed with control RNAi Rluc in H7115 # GFP- # RFP- # GFP- # RFP- # GFP-positive positive positive positive muscle muscle nucle muscle muscle nuclei nuclei nuclei # RFP-# RFP-# GFP-positive muscle nuclei positive muscle nuclei positive muscle nuclei
 nuclei
 nuclei

 1,000
 19,000
 5

 4,000
 12,000
 5

 5,000
 8,000
 2

 5,000
 2,000
 5

 5,000
 2,000
 1

 1,000
 19,000
 5

 3,000
 6,000
 5

 3,000
 6,000
 5

 3,000
 14,000
 5

 3,000
 15,100
 5

 1,567
 6,906
 6,942

 0,492
 2,152
 Control vs GFP RNAI.

 Kreiger and Yekuteli, wit summa a consistent SD.
 500
90,000 95,000 95,000 15.000 24.000 21,000 91,000 94,000 95,000 95,000 91,000 93,000 93,000 93,000 93,000 93,300 1,567 0,496 94,000 92,000 14.000 90,000 94,000 95,000 92,000 94,000 94,000 92,000 91,000 93,000 93,000 94,000 95,000 91,000 94,000 93,000 93,000 93,600 1,174 0,371 9,000 21,000 20,000 11,000 31,000 50,000 13,000 29,000 17,000 24,000 22,500 12,095 3,825 17,000 17,000 21,000 21,000 18,000 9,000 13,000 19,000 20,000 11,000 16,300 4,296 1,359 c0.00001 37,000 93,000 95,000 91,000 92,000 92,000 92,000 92,000 92,000 92,000 92,600 1,578 0,499 29,000 24,000 10,000 27,000 16,000 29,000 11,000 12,000 37,000 21,900 9,171 2,900 16,000 93,000 94,000 93,000 94,000 93,000 94,000 93,000 94,000 93,000 93,400 0,966 0,306 NAi only for C i, with Q = 1%. 39,000 19,000 23,000 94,000 11,000 17,000 16,000 41,000 21,000 31,000 25,000 25,400 10,997 3,478 91,000 95,000 92,000 95,000 94,000 94,000 93,500 1,841 0,582 28,000 12,000 12,000 19,000 14,000 17,800 5,181 1,638 raphPad Priss 93,000 94,000 93,200 1,476 0,467 9 10 AVERAGE STDEV SEM RNAi only AVERAGE STDEV SEM Multiple T.Test using Gi

inear step-up procedure of B as analyzed individually, with

F	NAi L4440-om	a-1; L4440-or	na-2; LoriT-on	na-1 conjugate	d with oma-2										
		exp1			exp2			exp3		Average	STDEV	SEM	T.Test with two-tailed dis	tribution using Excel fur	nction
	fertile	sterile	sterile %	fertile	sterile	sterile %	fertile	sterile	sterile %	sterile %	sterile	sterile			
RNAi															
control (Rluc)	40,000	0,000	0,000	39,000	1,000	2,500	40,000	0,000	0,000	0,833	1,443	0,833			
oma-1	40,000	0,000	0,000	40,000	0,000	0,000	40,000	0,000	0,000	0,000	0,000	0,000	1		
oma-2	40,000	0,000	0,000	40,000	0,000	0,000	39,000	1,000	2,500	0,833	1,443	0,833			
oma-1 mix oma-2	24,000	13,000	35,135	35,000	5,000	12,500	29,000	10,000	25,641	24,425	11,366	6,562			
oma-1 CON oma-2 (1)	10,000	30,000	75,000	19,000	20,000	51,282	9,000	29,000	76,316	67,533	14,089	8,134	0,015 vs mix	0,428 vs CON(2)	
oma-1 CON oma-2 (3)	17,000	23,000	57,500	10,000	23,000	69,697	21,000	19,000	47,500	58,232	11,117	6,418	0,021 vs mix	0,509 vs CON(3)	
oma-1 CON oma-2 (3)	13,000	27,000	67,500	12,000	27,000	69,231	18,000	22,000	55,000	63,910	7,765	4,483	0,008 vs mix	0,725 vs CON(1)	
oma-1 stitched oma-2	15,000	56,000	78,873	18,000	61,000	77,215	21,000	37,000	63,793	73,294	8,270	4,774	0,031 vs CON(3)	0,032 vs CON(2)	
number of animals	199.000	149.000		213.000	137.000		217.000	118.000			ti	otal n:	1033		

otis355 (rab-3::NLS::TagRFP)

N2

	RNAi L4440-gid-1; L4440-mex-3; LoriT-gld exp1 wt teratoma teratoma %			440-mex-3; LoriT-gld-1 conjugated with mex-3 L exp2 ma teratoma % wt teratoma teratoma %				exp3 wt teratoma teratoma% t			Average STDEV teratoma teratoma		T.Test with two-tailed distribution using Excel function	
RNAi														
control (Rluc)	74,000	0,000	0,000	89,000	0,000	0,000	100,000	0,000	0,000	0,000	0,000	0,000		
gld-1	98,000	2,000	2,000	94,000	6,000	6,000	99,000	1,000	1,000	3,000	2,646	1,528		
mex-3	93,000	0,000	0,000	90,000	0,000	0,000	100,000	0,000	0,000	0,000	0,000	0,000		
gld-1 mix mex-3	87,000	8,000	8,421	93,000	2,000	2,105	79,000	1,000	1,250	3,925	3,917	2,261		
gld-1 CON mex-3	61,000	39,000	39,000	67,000	32,000	32,323	67,000	33,000	33,000	34,774	3,675	2,122	0,001 vs mix	
number of animals	413.000	49.000		433.000	40.000		445.000	35.000				total n:	1415	

2014	RNAi L4440-i e survival	rpn-10; L4440 exp1 dead	⊢rpn-12; LoriT-rp survival %	on-10 conjuga survival	ted with rpn-1. exp2 dead	2 dead %	survival	exp3 dead	dead %	Average survival	STDEV survival	SEM survival	T.Test with two-tailed dis	stribution using Excel function
KNAI control (Rluc)	98.00	- 0.00	100 000	91 000	0.00	0 100.000	83.00	0 1.00	08.810	00 603	0.687	0 307		
rpn-10	87.00	2.00	0 97.753	87.000	0,00	0 100,000	100.00	0 0.000) 100.000) 99.251	1.297	0,357		
rpn-12	93,00	0,00	100,000	87,000	2,00	0 97,753	91,00	0 0,000	100,000	99,251	1,297	0,749		
rpn-12 mix rpn-10	54,00	26,00	67,500	80,000	18,00	0 81,633	79,00	0 19,000	80,612	2 76,582	7,881	4,550	0,007 vs control	
rpn-12 CON rpn-10	56,00	37,00	0 60,215	47,000	48,00	0 49,474	49,00	0 40,000	55,056	5 54,915	5,372	3,102	0,000 vs control	0,01 vs mix
number of animals	388,00	0 65,00	00	392,000	68,00	0	402,00	0 60,000)			total n:	1375,000	
	BAT28	: otis305[hsp	-16.2p::che-1::3x	HA], ntls1[gc)	y-5p::gfp]									
		exp1			exp2			exp3		Average	STDEV	SEM		
	no GFP	germline Gi	FP GFP %	no GFP	germline GFF	GFP %	no GFP	germline GF	GFP %	GFP	GFP	GFP		
KNAI control (Rluc)	4	5	2 4.26	47		0 0	4	5 (0.000	1 418	2 457	1 4 1 8		
lin-53		, B 2	2 44	19	2	3 54.762		9 2	48.214	48,992	5,423	3.131		
number of animals	7	3 2	24	66	2	3	74	4 27	,	,	-,	total n:	287	
	BAT68	4: Juls8 [unc-2	5::GFP]; barEx14	7 [hsp- 16.2/	4::unc-30]									
		exp1			exp2			exp3		Average	STDEV	SEM		
	no GFP	germline GI	FP GFP %	no GFP	germline GFF	GFP %	no GFP	germline GFF	GFP %	GFP	GFP	GFP		
RNAi						c 13					5 000	2 420		
lin-53	4.	1 a 1	9 18	44	1	6 12 3 26	4	D 3	5 6,122	2 12,041	2,939	3,429		
number of animals	8	5 2	20	81	1	9 20	8	7 1		, 11	-	total n:	299	
Lori	iT-lin-53 conju	gated with:												
Chromatin 2.0	library from I	Hajduskova et	al., 2019											
https://do	oi.org/10.1534/g	enetics.118.301	674	we	211 #1		w	ell #2		Average				
cione #	plate # MH1	position	target	10 GFP	germine GFF	7% GFP+ 1 73 333	no GFP	germline GF	7% GFP+ 10.843	GFP+ 17.088				
133	MH2	C12	rbbp-5	42	2	9 40.845	51		34.091	37,468				
166	MH2	F8	dpl-1	88	-	9 9,278	4	8 3	12,727	7 11,003				
181	MH2	G12	hda-1	41		9 18,000	6	0 1:	15,493	3 16,746				
265	MH3	F8	plk-2	72	2	3 24,211	6	6 4	5,714	14,962				
267	MH3	G12	nhl-1	48		5 9,434	6	0 4	6,250	0 7,842				
277	MH3	G11	hpl-2	34		2 5,556	4	1 1	2,381	1 3,968				
397	MHS	A9	lex-1	39	1	3 25,000 6 18,201	4.	/ 1	10,960	21,983				
582	MH5	H10	set-30	36		3 7.692	5	5 1	1.786	5 4.739				
483	MH5	H11	set-30	54		3 5,263	74	4 5	6,329	5,796				
603	MH7	B9	csp-1	39		4 9,302	3	1 :	3,125	6,214				
605	MH7	B11	csp-1	40		5 11,111	2	7 2	6,897	9,004				
621	MH7	D3	cbp-1	64		7 9,859	5	3	3,636	6,748				
674	MH8 MUR	H8	prmt-3	29		7 19,444	4	4 <u>5</u>	0 10,204	14,824				
716	MH8	C10	ZK337.2	38		3 7,317	2. 4	5 1	10,000) 8,659				
				50		- ,,,,,,,,,,								

BAT684: juls8 [unc-25::GFP]; barEx147 [hsp- 16.2/4::unc-30]

N2

	RNAi L4440	lin-53; L4440-rbl	p-5; LoriT-lir	n-53 conjugat	ed with rbbp-5									
	exp1			exp2			exp3			Average	STDEV	SEM	T.Test with two-tailed dis	tribution using Excel function
	no GFP	germline GFP	GFP %	no GFP	germline GFP	GFP %	no GFP	germline GFP	GFP %	GFP	GFP	GFP		
RNAi														
control (Rluc)	5	7 6	9,524	33	3	8,333	61	L 7	10,294	9,384	0,988	0,570)	
lin-53	3	1 9	22,500	40	11	21,569	57	7 12	17,391	20,487	2,721	1,571	0,612 vs mix	
rbbp-5	6	0 11	15,493	44	20	31,250	50) 11	18,033	21,592	8,460	4,884	0,864 vs mix	
lin-53 mix rbbp-5	3	3 9	21,429	65	15	18,750	47	7 17	26,563	22,247	3,970	2,292		
lin-53 CON rbbp-5	5	2 39	42,857	29	20	40,816	59	9 41	41,000	41,558	1,129	0,652	0,001 vs rbbp-5	0,0004 vs lin-53
lin-53 stitch rbbp-5	4	1 30	42,254	40	39	49,367	45	5 30	40,000	43,874	4,889	2,823	0,202 vs CON	
number of animals	23	3 74		211	69		274	1 88			to	otal n:	949,0000	

References

- 1. Meyer, R., Boch, G. and Shapiro, J. (1979) Transposition of DNA inserted into deletions of the Tn5 kanamycin resistance element. Mol. Gen. Genet., 13, 7–13.
- 2. Fraser, A.G., Kamath, R.S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M. and Ahringer, J. (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 408, 325–330.
- 3. Kamath,R.S., Fraser,A.G., Dong,Y., Poulin,G., Durbin,R., Gotta,M., Kanapin,A., Le Bot,N., Moreno,S., Sohrmann, M., et al. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421, 231-237.
- 4. Tursun, B., Cochella, L., Carrera, I. and Hobert, O. (2009) A toolkit and robust pipeline for the generation of fosmid-based reporter genes in C. elegans. PLoS One, 4, e4625.
- 5. Takahashi, M., Iwasaki, H., Inoue, H. and Takahashi, K. (2002) Reverse genetic analysis of the Caenorhabditis elegans 26S proteasome subunits by RNA interference. Biol. Chem., 10.1515/BC.2002.140.
- 6. Seelk, S., Adrian-Kalchhauser, I., Hargitai, B., Hajduskova, M., Gutnik, S., Tursun, B. and Ciosk, R. (2016) Increasing notch signaling antagonizes PRC2-mediated silencing to promote reprograming of germ cells into neurons. Elife, 5.
- 7. Schmittgen, T.D. and Livak, K.J. (2008) Analyzing real-time PCR data by the comparative CT method. Nat. Protoc., 3, 1101-1108.
- 8. Hajduskova, M., Baytek, G., Kolundzic, E., Gosdschan, A., Kazmierczak, M., Ofenbauer, A., Del Rosal, M.L.B., Herzog, S., UI Fatima, N., Mertins, P., et al. (2019) MRG-1/MRG15 is a barrier for germ cell to neuron reprogramming in Caenorhabditis elegans. *Genetics*, **211**, 121–139.