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Abstract

Here we sought metabolic alterations specifically associated with MYCN amplification

as nodes to indirectly target the MYCN oncogene. Liquid chromatography-mass

spectrometry-based proteomics identified seven proteins consistently correlated with

MYCN in proteomes from 49 neuroblastoma biopsies and 13 cell lines. Among these

was phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in de novo

serine synthesis. MYCN associated with two regions in the PHGDH promoter,

supporting transcriptional PHGDH regulation by MYCN. Pulsed stable isotope-

resolved metabolomics utilizing 13C-glucose labeling demonstrated higher de novo

serine synthesis in MYCN-amplified cells compared to cells with diploid MYCN. An
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independence of MYCN-amplified cells from exogenous serine and glycine was dem-

onstrated by serine and glycine starvation, which attenuated nucleotide pools and

proliferation only in cells with diploid MYCN but did not diminish these endpoints in

MYCN-amplified cells. Proliferation was attenuated in MYCN-amplified cells by

CRISPR/Cas9-mediated PHGDH knockout or treatment with PHGDH small molecule

inhibitors without affecting cell viability. PHGDH inhibitors administered as single-

agent therapy to NOG mice harboring patient-derived MYCN-amplified neuroblastoma

xenografts slowed tumor growth. However, combining a PHGDH inhibitor with the

standard-of-care chemotherapy drug, cisplatin, revealed antagonism of chemotherapy

efficacy in vivo. Emergence of chemotherapy resistance was confirmed in the genetic

PHGDH knockout model in vitro. Altogether, PHGDH knockout or inhibition by small

molecules consistently slows proliferation, but stops short of killing the cells, which

then establish resistance to classical chemotherapy. Although PHGDH inhibition with

small molecules has produced encouraging results in other preclinical cancer models,

this approach has limited attractiveness for patients with neuroblastoma.

K E YWORD S

cancer cell metabolism, cell death, de novo serine synthesis pathway, one-carbon metabolism,

therapy resistance

1 | INTRODUCTION

Neuroblastoma is the most common extracranial solid malignancy of

childhood,1 and characterized by heterogeneous tumor biology producing

dramatic clinical variability ranging from spontaneous regression or local-

ized, stable disease to rapid metastasizing progression with fatal out-

come.2 Treatment protocols vary with this broad prognostic range, and

spans observation or surgery alone to multimodal therapy in patients at

high risk.3 Multimodal therapy consists of induction therapy delivering at

least seven different chemotherapeutic drugs, primary tumor resection,

high-dose myeloablative chemotherapy followed by autologous or

haploidentical stem cell rescue and local radiation of the primary tumor

bed and, potentially, any remaining metabolically active, morphologically

identifiable distant metastases.3,4 Independent of conditioning regimen

and source of stem cell graft, all patients receive consolidation therapy

composed of at least 5 cycles of the ch14.18 chimeric antibody directed

against the GD2 disialoganglioside expressed on the neuroblastoma cell

surface.5 The number of long-term survivors of high-risk disease has

remained unsatisfactorily poor despite the ~18 months necessary for this

therapy to reach its maximum tolerable toxicity. Survival is as low as 40%

after first-line therapy and <10% after relapse,6 necessitating identifica-

tion of truly novel druggable molecular mechanisms.

That molecular features determine neuroblastoma aggressiveness and

risk for relapse is well documented,6 addingMYCN amplifications7 and acti-

vating TERT rearrangements8 to the clinical risk factors (>18 months of age

at diagnosis and INRG stage M9). MYCN amplification plays a key role in

neuroblastoma pathogenesis, and was first described in 1983.10 TheMYCN

gene is localized to chromosome 2p24.3, and encodes a 64 kDa nucleopro-

tein that both activates and represses large sets of target genes.11-13

Approximately 20% of all neuroblastomas are driven by high-level MYCN

amplifications. While MYCN-amplified tumors respond well initially to ther-

apy, they demonstrate more aggressive features at diagnosis and more pro-

gress during induction treatment, translating into lower patient survival

after progression or relapse.14 While directly targeting MYCN remains a

challenge due to its nuclear localization, lack of ligand binding site and

diverse physiological functions for normal tissue maintenance,15 indirect

approaches targeting binding partners or downstream effectors yield

encouraging results. We here set out to identify metabolic alterations spe-

cifically associated withMYCN amplification as novel targets.

Whats's new?

Molecular alterations in neuroblastoma influence disease

aggressiveness and relapse risk. In particular, molecular

amplification of the oncogene MYCN is a major determinant

of patient outcome. Here, shotgun proteomics was com-

bined with metabolomics to investigate alterations in MYCN

as potential therapeutic targets in neuroblastoma. A strong

correlation was detected between MYCN amplification and

proteins involved in serine synthesis, including the rate-

limiting enzyme PHGDH, and one-carbon metabolism.

Targeting PHGDH by genetic knockout and small molecule

inhibitors stalled proliferation but did not kill neuroblastoma

cells. Chemotherapeutic resistance was evident in mice with

patient-derived neuroblastoma xenografts following treat-

ment with PHGDH inhibitors and cisplatin.
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2 | MATERIALS AND METHODS

2.1 | Characteristics of patients and tumor samples

Tumor samples from 49 neuroblastoma patients, constituting a repre-

sentative neuroblastoma cohort (Supporting Information Table S1),

were collected internationally between 1989 and 2015 and had tumor

cell counts ranging from 50% to 90%. Formalin-fixed, paraffin-

embedded samples from 80 primary neuroblastomas (48 localized or

INSS stage 4S and 32 stage 4 with 7 harboring MYCN amplifications)

available from patients in the NB2014 trial (informed consent avail-

able) were selected for PHGDH immunohistochemistry.

2.2 | Animal experiments

The patient-derived MYCN-amplified neuroblastoma xenograft 14647

generated within the IMI2 ITCC-P4 consortium (informed patient con-

sent available from consortium) was serially transplanted in mice at

least three times prior to subcutaneous implantation in the flanks of

8-week-old female NOG mice (n = 4 per study group) for these exper-

iments. Mice were randomly assigned to six groups after tumor vol-

umes reached 100 mm3. Three study groups received single-agent

treatment with either cisplatin (1 mg/kg iv once weekly) or the

PHGDH inhibitors, NCT-503 (40 mg/kg/d ip) or PKUMDL-WQ-2101

(20 mg/kg/d ip). Two study groups received the combinations of one

PHGDH inhibitor together with cisplatin (drugs administered in the

same schedules as in the single-agent study arms) and one group

received the combined vehicle control (0.1 mL 0.9% NaCl iv once

weekly and 0.2 mL 10% DMSO and 0.1 mL 0.1% Tween-20 ip once

daily). Mice in single- or double-treatment arms also received vehicle

for the drug(s) that they were not receiving for a uniform background.

Tumor size was measured every 3 days using a caliper. Tumor volume

was calculated using the formula (breadth × length × height)/2. Mice

were treated for maximally 25 days and euthanized by cervical dislo-

cation when tumor size exceeded 1500 mm3.

2.3 | Cell culture

The BE(2)-C (also called SK-N-BE(2)-C (RRID: CVCL_0529) was

obtained from ECACC (Salisbury, UK) and the IMR-32 (RRID: CV

CL_0346), Kelly (RRID: CVCL_2092), GI-ME-N (RRID: CVCL_1232)

and SH-SY5Y (RRID: CVCL_0019) cell lines from the DSMZ

(Braunschweig, Germany). CLB-GA (RRID: CVCL_9529), IMR5/75

(RRID: CVCL_M473), subclone of IMR-32 (RRID: CVCL_0346) and

LAN-6 (RRID: CVCL_1363) cell lines were kindly provided by

M. Fischer (University Hospital Cologne), the NB-1 (RRID:

CVCL_1440) cell line by I. Oehme (DKFZ, Heidelberg), the SK-N-AS

(RRID: CVCL_1700), SK-N-DZ (RRID: CVCL_1701) and SK-N-SH

(RRID: CVCL_0531) cell lines by J. Schulte (Charité, Berlin) and the

CHP-134 (RRID: CVCL_1124), NGP (RRID: CVCL_2141, NLF (RRID:

CVCL_E217), LAN-1 (RRID:CVCL_1827) and SH-EP (RRID:

CVCL_0524; epithelial-like subclone of SK-N-SH) cell lines by

L. Savelyeva (DKFZ, Heidelberg). Cell lines were maintained at 37�C

and 5% CO2 in DMEM (Thermo Fisher Scientific) medium lacking glu-

cose, glutamine, sodium pyruvate and phenol red and supplemented

with 10% fetal calf serum (Merck), 2.5 g/L glucose (Merck) and 2 mM

glutamine (Thermo Fisher Scientific). A modified DMEM version lac-

king only serine and glycine and containing the same supplements

was used in starvation experiments. The synthetic MYCN-inducible

SH-EP Tet-21/N off model was maintained as described.16 The

MYCN-inducible SH-SY5Y Tet-21/N on model provided by

F. Westermann (DKFZ, Heidelberg) was cultured with 0.2 μg/mL G418

(Merck), 7.5 μg/mL blasticidin (Merck) and treated with 1 μg/mL tetra-

cycline (Merck) to induce synthetic MYCN expression. IMR-32 cells sta-

bly transfected with a tetracycline-inducible MYCN shRNA expression

system (IMR32-6TR-MYCNsh) were kindly provided by F. Westermann

(DKFZ, Heidelberg) and cultured in DMEM with 10% FCS and 1%

NEAA supplemented with 250 μg/mL Zeocin (Invitrogen) and 5 μg/mL

blasticidin. Cells were treated with 1 μg/mL tetracycline (AppliChem,

Darmstadt, Germany) to induce shMYCN expression. Cell lines were

authenticated using high-throughput SNP-based assays17 within the

last 3 years and regularly monitored for mycoplasma using PlasmoTest

(InvivoGen) according to the manufacturer's instructions. All experi-

ments were performed with mycoplasma-free cells. The following cell

lines (n = 13) were used for LC-MS-based shotgun proteomics: BE(2)-C,

IMR-32, Kelly, GI-ME-N, SH-SY5Y, LAN-6, SK-N-DZ, SK-N-SH, NGP,

LAN-1, SH-EP, SH-EP Tet-21/N and SH-SY5Y Tet-21/N. Protocols to

generate CRISPR/Cas9-mediated PHGDH knockout clones, qRT-PCR,

ChIP qPCR, western blotting, tumor immunohistochemistry, assays for

proliferation, colony formation and flow cytometry are supplied in the

Supporting Information Materials and Methods.

2.4 | Tumor and cell line proteome discovery

Proteins were extracted from tumor samples in urea buffer (8 M

urea, 100 mM Tris-HCl, pH 8.25) containing zirconium beads (Roth)

with mechanical disruption (twice) at 6500 oscillation min−1 for

20 seconds using a Precellys 24 homogenizer (Bertin Technologies).

Cell debris and beads were removed by centrifugation at 20 000g

for 3 minutes, then protein concentrations determined by

bicinchoninic acid assay (BCA) assay. Proteins were extracted from

pelleted cells from cell lines in urea buffer without mechanical dis-

ruption before isolating and assessing protein content as for tumor

samples. In total, 50 μg tumor-derived protein and 100 μg cell line-

derived protein were prepared (Supporting Information Materials

and Methods) for liquid chromatography-mass spectrometry (LC-

MS)-based proteomics as previously described.18 Desalted and puri-

fied peptide mixtures were analyzed in duplicate on a NanoLC400

(Eksigent) coupled to Q Exactive HF tandem mass spectrometer

(Thermo Fisher Scientific) in a shotgun proteomics approach

(detailed in the Supporting Information Materials and Methods).

Data acquisition was performed in a data-dependent mode with one

survey MS scan (resolution of 120 000 at 200 m/z) followed by a
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maximum of 10 MS/MS scans (resolution of 30 000 at 200 m/z) with

an intensity threshold of 5000 for the most intense ions. Fragmented

ions were automatically excluded from further selection for

45 seconds to improve acquisition of low-abundant ions. Raw data

were analyzed using the MaxQuant proteomics pipeline (version

1.5.3.30) with the human Uniprot database (38 538 protein entries,

May 2013 download) and a common contaminants database (245 protein

entries).19 Cysteine carbamidomethylation was set as a fixed modification

in analysis settings, while methionine oxidation and N-terminal acetylation

were set as variable modifications. Two missed cleavage sites were

allowed, and peptide tolerance was set to 7 ppm. A 1% false-discovery

rate was applied to filter search engine peptide assignments. Other

parameters used default settings. Quality control was performed as

described.20 Further data analyses were performed with Perseus version

1.6.0.2.21,22 Reverse and contaminant entries were removed, and label-

free quantification (LFQ) values were logarithmized. Proteins with valid

LFQ values in at least 35% of tumor or cell line samples were included in

further analyses. If valid LFQ values were available in <2 technical repli-

cates for a tumor biopsy or <2 biological replicates for a cell line, values

were set to not available. LFQ values for each protein were independently

averaged among tumor biopsies and cell lines for Spearman correlation

coefficient calculation. Data were visualized using R studio version

1.1.463 and R version 3.5.1.23

2.5 | Metabolomics

Medium was changed 24 and 4 hours before harvesting cells for

metabolome capture using pulsed stable isotope-resolved metabolomics in

tandem with absolute quantitative gas chromatography (GC)-MS. Labeling

with stable isotopes was accomplished by medium change 10 minutes

before harvest to medium containing either 2.5 g/L 13C-glucose or 2.5 g/L
12C-glucose, the latter representing the natural mass isotopic distribution.

Harvested cells were washed with HEPES buffer (140 mM NaCl, 5 mM

HEPES, pH 7.4) containing labeled or nonlabeled glucose and quenched

by adding 50% ice-cold methanol containing 2 μg/mL cinnamic acid

(Merck) as an internal control. Polar metabolites were extracted as previ-

ously described24 (Supporting Information Materials and Methods) from

cell samples, then split for nucleotide pool quantification and absolute

metabolite quantification on a Pegasus IV-ToF-MS-System (LECO) com-

plemented with an autosampler (MultiPurpose Sampler 2 XL, Gerstel).

Samples were injected in 1:5 split mode in a 1 μL injection volume (tem-

perature-controlled CAS4 injector with a baffled glass liner). The initial

temperature of 80�C (30 seconds), was ramped 120�C (12�C/min) then to

300�C (7�C/min) where it was held for 120 seconds. Gas chromatographic

separation was performed on an Agilent 78903 (Agilent Technologies)

equipped with a VF-5 MS column (30 m length, 250 μm inner diameter,

0.25 μm film thickness) and helium as a carrier gas (flow

rate = 1.2 mL/min) with an initial temperature of 70�C (120 seconds)

ramped to 120�C (5�C/min) then to 350�C (7�C/min) where it was held

for 120 seconds. Spectra were measured at 20 spectra/sec in the mass

range of m/z = 60-600 mass units (detector voltage = 1650 V). GC-MS

chromatograms were processed using ChromaTOF version 4.51.6.0

(LECO). Retention times were normalized using alkane retention times and

Kovats retention index.25 Mass spectra and mass isotopomer distributions

were extracted from ChromaTOF using MetMax version 1.0.1.12 (MPIMP

Golm)24 or MAUI-VIA version 1.0.5.26 Acquired data were normalized to

the internal control cinnamic acid and calculated in pmol/million cells

(Supporting Information Data).

2.6 | Nucleotide pool quantification

Intracellular nucleotide pools were quantified in cell lines from

extracted polar metabolites using direct-infusion MS. Sample prepara-

tion was previously described27 and is detailed in the Supporting Infor-

mation Materials and Methods. Desalted prepared samples were

analyzed on a TSQ Quantiva triple quadrupole mass spectrometer

(Thermo Scientific) coupled to a Triversa Nanomate (Advion) ion source

(spray voltage = 1.5 kV, head gas pressure = 0.5 psi). Argon was used as

collision gas (pressure = 1.5 mTorr). Full width as half maximum resolu-

tions for Q1 and Q3 were set as 0.7. Data acquisition ran 3 minutes per

sample (cycle time = 3.3 seconds) with total acquisition from 55 selected

reaction monitoring scans for each nucleotide. The sum of the two best

transitions for each nucleotide were acquired in negative mode. Data

were processed using Xcalibur version 4.0.27.13 (Thermo Fisher Scien-

tific) and an OpenMS package, and were visualized with R studio ver-

sion 1.1.463 and R version 3.5.1.23 Calibration standards controlled for

a valid quantification range above the signal-to-noise threshold.

2.7 | Statistical analysis

Global proteome profiles were correlated with corresponding MYCN

expression levels in a Spearman ranks test using the Hmisc package

version 4.3-0. MYCN expression levels based on tumor biopsy FISH

(provided by the German Neuroblastoma Biobank), western blotting

for synthetic inducible MYCN systems and digital droplet PCR for cell

lines28 were transformed to scores ranging between −5 (diploid

MYCN status) and 5 (highest MYCN expression measured in all tumor

samples or cell lines). Scores were aligned after manual data assess-

ment (Supporting Information Data). T-tests tested the null hypothesis

of zero correlation, the Benjamini-Hochberg method corrected for

multiple testing,29 and normalized label-free protein quantities with

corrected P-values <.05 were regarded as significantly correlated with

the MYCN score. The first gene name associated to a protein was

used for overlap computations, and duplicated gene names were dis-

tinguished by their majority protein IDs. The overlap prediction was

robust when all gene names associated with a protein were included.

Statistical analysis was performed using GraphPad Prism version

7 and R studio version 1.1.463 with R versions 3.5.123 and 3.6.1.30 If

not otherwise stated, a two-tailed Student's t-test with Welch's cor-

rection was applied to test significance of differences between testing

groups.
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3 | RESULTS

3.1 | Oncogenic MYCN levels promote PHGDH
expression in neuroblastoma cells

To decipher metabolic mechanisms controlled by MYCN that have

remained enigmatic, protein expression was quantified in a representa-

tive cohort of 49 primary neuroblastoma biopsies (Supporting Informa-

tion Table S1) and panel of 13 neuroblastoma cell lines using LC-MS-

based shotgun proteomics. The expression of 248 proteins (2319 quanti-

fied in total) in tumors and 38 proteins (1965 quantified in total) in cell

lines significantly correlated with MYCN expression (Figure 1A). Among

these, phosphoglycerate dehydrogenase (PHGDH) and 6 other proteins

correlated with MYCN expression scores in both models (Figure 1A,

Table 1). Spearman correlation analysis independently identified PHGDH

as most strongly correlating with the MYCN score (Spearman rank corre-

lation coefficient rS = 0.71 for tumor biopsies and rS = 0.84 for cell lines;

Table 1). High-level MYCN expression in neuroblastomas and cell lines

also strongly correlated with other proteins involved in de novo serine

synthesis and one-carbon metabolism (Figure 1B). To assess whether dif-

ferential PHGDH expression in the context of varying MYCN status is

mirrored at the cellular level, PHGDH expression was

immunohistochemically assessed in 80 selected samples from tumors

with the most divergent characteristics. PHGDH was strongly expressed

in the cytoplasm of nearly all cells in MYCN-amplified tumors (median

score = 12, first quartile 4.5, third quartile 12), whereas little or no

PHGDH expression was detected in any tumor lacking MYCN amplifica-

tion (median score = 0, first quartile 0, third quartile 4; P < .0001;

Figure 1C). Reanalysis of existing transcriptomic data from a panel of

643 primary neuroblastomas demonstrated a strong differential PHGDH

expression among MYCN single vs MYCN-amplified tumors already at

the level of mRNA expression (Supporting Information Figure S1A).

Western blotting verified PHGDH expression in the panel of cell lines

derived from neuroblastomas harboring or lacking MYCN amplifications.

PHGDH in cell lines reflected the higher PHGDH expression in MYCN-

amplified cells also observed in primary tumors (Figure 1D). PHGDH tran-

scripts were up to 40-fold more abundant in qRT-PCR analysis of

MYCN-amplified, as compared to diploid MYCN cell lines (Figure 1E).

Inducing MYCN in the synthetic MYCN-inducible SH-EP Tet-21/N

model enhanced PHGDH expression on protein level (Supporting Infor-

mation Figure S1B). MYCN depletion after MYCN knockdown in stably

transfected IMR-32 cells with a tetracycline-inducible MYCN shRNA

expression system decreased PHGDH protein expression (Supporting

Information Figure S1C). Two MYCN recruitment sites in the PHGDH

promoter were reported in existing ChIP-Seq data from SK-N-BE(2)-C

cells31 (Figure 1F), and ChIP qPCR using this cell line showed an ~2-fold

enrichment of PHGDH promoter DNA associated with MYCN over IgG

at both sites, supporting a role for MYCN in the transcriptional activation

of PHGDH in neuroblastoma cells (Figure 1F). Our data strongly corre-

lates oncogenic MYCN expression driven by gene amplification in neuro-

blastoma with high-level expression of PHGDH and other proteins

involved in serine synthesis and one-carbon metabolism.

F IGURE 1 PHGDH belongs to a protein set correlating most strongly with MYCN expression. A, Venn diagram shows the number of proteins
whose absolute abundance in tumor samples and cell lines (and the intersection of both) significantly correlate with MYCN score. B, Color
intensity and size in circles represents Spearman correlation factors (after hierarchical clustering in dataset described in A) to identify proteins also
correlated with MYCN score that are involved in serine synthesis and one-carbon metabolism. C, PHGDH immunohistochemical staining (brown)
is exemplarily shown from one high-risk MYCN-amplified neuroblastoma and one low-risk neuroblastoma (diploid MYCN). Sizing bars correspond
to 100 μm (left) and 20 μm (right). MYCN and PHGDH expression in cell lines was confirmed on protein (D) and mRNA (E) levels using western

blotting and qRT-PCR, respectively. Fold-changes above arithmetic means for MYCN and PHGDH are shown for qRT-PCR, and samples were
normalized using the ΔΔCt method and the HPRT and SDHA housekeeping gene(s). GAPDH was used as a loading control in western blotting. F,
Positions of the two previously identified MYCN-binding regions in the PHGDH promoter (schematic model based on the GRCh37/hg19 UCSC
genome browser) are indicated by vertical lines showing enrichment locations of ChIP-Seq data peaks, 3783 and 378431 on chromosome 1 (chr
1). Blue horizontal lines indicate PHGDH transcript variants. MYCN recruitment to PHGDH promoter sequences corresponding to peaks 3783 and
3784 was confirmed by ChIP qPCR in which BE(2)-C cell lysates were immunoprecipitated with antibodies against MYCN or IgG (negative
control). Bars (right graphic) show mean fold-changes over IgG ± SD (n = 4). *P < .05

TABLE 1 Overview of proteins correlating with MYCN expression scores in both neuroblastoma biopsies and cell lines

Tumor biopsies (n = 49) Cell lines (n = 13)

Protein Spearman rank correlation coefficient P-valuea Spearman rank correlation coefficient P-valuea

PHGDH 0.7126 .0014 0.8367 .0245

SERPINB6 −0.5845 .0015 −0.8803 .0298

PEA15 −0.5391 .0046 −0.8682 .0163

LUC7L 0.5126 .0122 0.8098 .0352

HNRNPAB 0.4538 .0191 0.7637 .0476

TAGLN2 −0.4187 .0343 −0.7727 .0467

CAP1 −0.406 .0429 −0.8319 .0245

aP-value corrected for multiple testing according to the Benjamini-Hochberg method.29
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3.2 | MYCN amplification makes neuroblastoma
cells independent from exogenous serine and glycine
import

Serine biosynthesis, using the glycolytic intermediate 3-phosphoglyc-

erate, is a side branch of glucose metabolism. Serine is a precursor for

glycine and cysteine amino acid biosynthesis as well as contributing

single carbons to one-carbon metabolism for nucleotide synthesis,

among other roles.32,33 Since PHGDH catalyzes the rate-limiting step

in serine synthesis (Figure 2A), we performed metabolic flux analyses

in neuroblastoma cells to investigate the functional consequences of

MYCN-induced enhancement of PHGDH expression. Carbon usage

was traced through serine synthesis in BE(2)-C (MYCN-amplified) and

SH-EP (MYCN diploid) cells using pulsed labeling with 13C-glucose

(vs 12C-glucose control) followed by quantitative metabolomics. Both

cell lines comparably incorporated glucose-derived carbons into

3-phosphoglycerate, while total 3-phosphoglycerate levels were

1.5-fold higher in BE(2)-C cells. Label incorporation into serine and

glycine was 5- to 10-fold higher in BE(2)-C cells while total serine and

glycine levels remained similar in both cell lines (Figure 2B). Similar

label incorporation into 3-phosphoglycerate, serine and glycine were

obtained in a second MYCN nonamplified cell line, SH-SY5Y, thus con-

firming the previous finding in SH-EP cells (Supporting Information

Figure S2). We tested whether cellular PHGDH levels altered their

capacity to compensate for exogenous serine and glycine deprivation.

Proliferation and viability of MYCN-amplified BE(2)-C and Kelly cell

lines were not statistically different if cultured in serine- and glycine-

depleted or full medium (Figure 2C,D). SH-EP and SK-N-AS (both dip-

loid) cell proliferation was diminished by 2- to 3-fold by serine and

glycine depletion (Figure 2C), which was accompanied by a ~3-fold

increase in the nonviable SK-N-AS cell fraction (Figure 2D). Western

blotting, shotgun proteomics and metabolomics were used to compar-

atively examine the impact of serine and glycine deprivation in

BE(2)-C and SH-EP cells on enzymes, intermediates and products in

serine synthesis and on intracellular pyrimidine nucleotide pools.

While PHGDH, phosphoserine aminotransferase 1 (PSAT1) and pho-

sphoserine phosphatase (PSPH) expression levels in BE(2)-C cells

remained unchanged by serine and glycine starvation, all three

proteins were upregulated in SH-EP cells (Figure 2E,F). Label incorpo-

ration into 3-phosphoglycerate was comparable in both cell lines

under normal or serine- and glycine-starved conditions, whereas sig-

nificantly higher glucose-derived 13C was incorporated into serine and

glycine in starved BE(2)-C compared to SH-EP cells (Figure 2G). These

data demonstrate that the high PHGDH levels in BE(2)-C cells better

compensate for exogenous serine and glycine depletion than low

PHGDH levels in SH-EP cells. The low PHGDH levels in SH-EP cells

were capable of increasing serine synthesis, but only to levels about

half of those in BE(2)-C cells, but no increase in labeled glycine was

detected (Figure 2G). This lack of efficient conversion of serine to gly-

cine demonstrates that one-carbon metabolism is limited in SH-EP

cells. As rapidly proliferating cancer cells require single carbons for

nucleotide synthesis, we investigated whether this limited carbon flow

into one-carbon metabolism reduced pyrimidine nucleotide pools in

BE(2)-C and SH-EP cells. Deoxythymidine diphosphate (dTDP) and

deoxythymidine triphosphate (dTTP) levels were lower in SH-EP cells

under serine- and glycine-starved conditions, while pyrimidine nucleo-

tide pools were unaltered in BE(2)-C cells (Figure 2H). We conclude

that the ability of MYCN-amplified neuroblastoma cells to ramp up

PHGDH levels make them independent of an exogenous serine and

glycine supply.

3.3 | Targeting PHGDH alone in neuroblastoma
models has minor long-term efficacy and antagonizes
standard chemotherapy success

To investigate whether high PHGDH levels in BE(2)-C cells support the

uncoupled proliferation that is a cancer hallmark, proliferation and via-

bility were monitored in single-cell PHGDH knockout clones generated

using CRISPR/Cas9 and validated at the protein and metabolome levels

(Figure 3A,B). Depleting PHGDH expression reduced proliferation in all

clones by ~80% compared to control cells, while the nonviable cell frac-

tion was only marginally increased in three clones and unaltered in the

remaining two clones (Figure 3C). These data demonstrate that the

majority of BE(2)-C cells can adapt to the loss of the rate-limiting

enzyme in serine synthesis and remain viable. Having shown that

F IGURE 2 MYCN amplification releases neuroblastoma cell dependency on exogenous serine and glycine for proliferation. A, Schematic
representation of serine synthesis and one-carbon metabolism. B, Cells were cultured for 48 hours and pulsed with medium containing fully
labeled 13C- or 12C-glucose for 10 minutes before harvest for quantitative metabolomics. Bars represent percentages of 13C-label incorporation
into the indicated molecules (left) and their absolute quantities per 1 million cells (right). Number of live (C) and nonviable (D) cells grown in full
(black) or serine- and glycine-depleted (tan) medium. Bars represent the mean (±SD) fraction size of nonviable cells at 96 hours (n = 3). E, Western
blot analysis of PHGDH expression in BE(2)-C and SH-EP cells grown for 48 hours in full (left bands) or serine- and glycine-depleted (right bands)
medium. β-Actin served as loading control. F, Quantified PHGDH, PSAT1 and PSPH levels in BE(2)-C and SH-EP cells grown 48 hours in full
(black) or serine- and glycine-depleted (tan) medium. Bars represent mean ± SD (n = 3). G, Percentage of 13C label incorporation into indicated

molecules in BE(2)-C and SH-EP cells grown 48 hours in full (black) or serine- and glycine-depleted (tan) medium. Bars represent mean ± SD
(n = 3). H, Pyrimidine nucleotide levels in BE(2)-C and SH-EP cells grown for 48 hours in full (black) or serine- and glycine-depleted (tan) medium.
Bars show mean fold-changes (± SD, n ≥ 4) compared to nonstarved cells. *P < .05; **P ≤ .01; ***P ≤ .001. C1, one-carbon unit; DHF,
dihydrofolate; DHFR, dihydrofolate reductase; Glc, glucose; Gly, glycine; 5,10-mTHF, 5,10-methylenetetrahydrofolate; 3-PGA,
3-phosphoglycerate; PSAT1, phosphoserine aminotransferase 1; PSPH, phosphoserine phosphatase; Ser, serine; SHMT, serine hydroxylmethyl
transferase; THF, tetrahydrofolate; TYMS, thymidylate synthase; dUMP, deoxyuridine monophosphate; dTMP, deoxythymidine monophosphate;
dTDP, deoxythymidine diphosphate; dTTP, deoxythymidine triphosphate. LFQ, label-free quantification
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MYCN regulates serine synthesis and one-carbon metabolism in neuro-

blastoma cells and that CRISPR/Cas9-induced depletion of PHGDH

suppresses proliferation, we turned to the commercially available

PHGDH inhibitors, PKUMDL-WQ-210134 and NCT-50335 (chemical

structures shown in Supporting Information Figure S3), to test the ther-

apeutic potential of targeting PHGDH as an indirect method to target

oncogenic MYCN in neuroblastoma models. Semiautomated trypan

blue staining was used to monitor both viability and proliferation in

MYCN-amplified cell lines. The two structurally divergent small mole-

cule PHGDH inhibitors equally reduced proliferation by approximately

30% (Figure 3D) without sustainably inducing cell death (Figure 3E).

Cell cycle analysis demonstrated a consistent G0/G1 cell cycle arrest by

PKUMDL-WQ-2101 and NCT-503 treatment in BE(2)-C and Kelly cells,

respectively (Supporting Information Figure S4). Colony formation

capacity was also suppressed by PKUMDL-WQ-2101 and NCT-503

treatment by 2- to 3-fold (Figure 3F). Altogether, pharmaceutically

targeting PHGDH exerted moderate tumor-suppressive effects in

MYCN-amplified cell lines in vitro.

We turned to our panel of eight patient-derived neuroblastoma

xenografts (PDXs) to assess inhibitor efficacy in mouse models.

Western blotting confirmed a strong correlation between high-level

MYCN and PHGDH expression in the PDXs (Figure 4A). PDX 14647

was selected for further experiments because it is characterized by

strong PHGDH expression combined with high tumor take rates in

serial transplantation. PKUMDL-WQ-2101 and NCT-503 treatment

regimens were well tolerated without causing weight loss or obvious

signs of toxicity. No alterations in physical status or behavior of the

mice were observed. After short-term treatment for 10 days with

either PHGDH inhibitor, PDX 14647 tumor volumes were 1.3- to

2-fold smaller compared to vehicle-treated mice (mean tumor vol-

umes: 282 mm3, PKUMDL-WQ-2101; 429 mm3, NCT-503; 563 mm3,

vehicle; Figure 4B, Supporting Information Figure S5). After longer-

term treatment for 25 days, mean tumor volume progressed only to

1371 mm3 in PKUMDL-WQ-2101-treated mice compared to

1661 mm3 mean tumor volume in vehicle-treated mice (Figure 4B).

PDX growth remained altogether unaffected in mice treated with

NCT-503 for 25 days, with a final mean tumor volume of 1639 mm3

after NCT-503 monotherapy compared to the 1661 mm3 mean tumor

volume in vehicle-treated mice (Figure 4B). Based on RECIST

criteria,36 the longer-term monotherapy with PKUMDL-WQ-2101

F IGURE 3 PHGDH knockout and small molecule drug inhibition slows neuroblastoma cell proliferation and inhibits colony formation. A,
Western blot analysis of PHGDH expression in CRISPR/Cas9-mediated PHGDH knockout clones and respective BE(2)-C control cells. β-Actin
served as loading control. B, Bars show glucose-derived 13C incorporation into serine in PHGDH knockout clones and control cells grown for
48 hours in full medium (mean ± SD, n = 3). C, Numbers of live and nonviable PHGDH knockout and control cells were assessed up to 96 hours
after seeding. Plotted data points and bars represent mean ± SD (n = 3, nonviable cell fraction determined at 96 hours). Numbers of live (D) and
fraction of nonviable (E) BE(2)-C and Kelly cells treated singly with 10 μM PKUMDL-WQ-2101, 10 μM NCT-503 or solvent control for 96 hours
are shown. Plotted data points and bars represent mean ± SD (n = 3). F, BE(2)-C and Kelly cells were seeded at low density, then treated with
10 μM PKUMDL-WQ-2101 (or DMSO control) or 10 μM NCT-503 (or inactive drug control). Cell colonies were stained with crystal violet after
9 days of treatment (photographs) with box-and-whisker plots (below photographs) presenting median fold-changes in colony quantification
relative to vehicle control (from Image J software, n ≥ 3). *P < .05, **P ≤ .01, ***P ≤ .001

ARLT ET AL. 1227



induced a partial response in PDX 14647 while disease progressed

under NCT-503 treatment.

Since targeted drugs would only be applied in concert with stan-

dard chemotherapy both in first-line and relapse therapy for MYCN-

amplified neuroblastoma, which is categorized as high-risk disease,

the PHGDH inhibitors were administered in 2-drug combination with

cisplatin. Cisplatin is a standard-of-care chemotherapy drug in a wide

spectrum of cancer types and major component of induction regimens

for children with high-risk neuroblastoma worldwide.37 Drugs based

on platinum are highly cytotoxic agents with the ability to damage

DNA and inhibit DNA synthesis, consequently blocking mitosis and

inducing apoptosis.38 Cisplatin monotherapy for 25 days strongly

inhibited PDX 14647 tumor growth in mice (mean tumor volumes:

349 mm3, cisplatin; 1661 mm3, vehicle; Figure 4B). Strikingly, either

2-drug combination with a PHGDH inhibitor was significantly less

effective than cisplatin alone (Figure 4B), reducing mean tumor

F IGURE 4 PHGDH inhibitor treatment antagonizes chemotherapy efficacy in patient-derived xenografts in mice. A, Protein lysates were
generated from eight patient-derived neuroblastoma xenografts established and propagated subcutaneously in mice. MYCN and PHGDH
expression were investigated using western blotting. β-Actin served as loading control. B, Mean subcutaneous patient-derived xenograft (PDX)
14647 tumor volumes (±SD) are plotted over time from NOG mice (n = 4/study group) treated as indicated with combined vehicle control,
20 mg/kg/d PKUMDL-WQ-2101 ip daily (left graphics) or 40 mg/kg/d NCT-503 ip daily (right graphics), 1 mg/kg cisplatin iv weekly or a
combination thereof. Treatment d 1 corresponds to d 20 of the PDX mouse experiment. C, Bars show the mean (±SD, n = 3) number of live
BE(2)-C PHGDH wildtype cells and PHGDH knockout clones #11 and #38 after treatment with 2 μg/mL oxaliplatin or 0.05 μg/mL doxorubicin
for 96 hours normalized to the number of live cells of the respective solvent-treated controls. *P < .05, **P ≤ .01, ***P ≤ .001
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volumes only to 525 mm3 (PKUMDL-WQ-2101/cisplatin) and

605 mm3 (NCT-503/cisplatin). To control for potential off-target

effects and/or weak PHGDH inhibition by the two small molecules

used, we turned to the genetic models and treated CRISPR/Cas9

PHGDH knockout clones and their respective controls with clinically

relevant doses of oxaliplatin in vitro. A significantly higher number of

live cells under oxaliplatin therapy was observed in PHGDH knockout

cells compared to controls (Figure 4C), prompting us to test the effi-

cacy of a second chemotherapeutic drug, doxorubicin, also a

standard-of-care drug for high-risk neuroblastoma therapy but having

an independent molecular mode of action. Doxorubicin treatment also

allowed a significantly higher fraction of the PHGDH knockout clones

to remain alive compared to controls (Figure 4C). Our data strongly

demonstrate that while genetically engineering PHGDH knockout and

pharmaceutically targeting PHGDH slows proliferation, both methods

fail to kill neuroblastoma cells. In vivo, these tumors are then able to

establish resistance to classical chemotherapy and evade treatment.

4 | DISCUSSION

We identified a protein set including PHGDH involved in serine syn-

thesis and one-carbon metabolism in an unbiased shotgun proteomics

approach illuminating the proteome-wide effector level correlating

with oncogenic MYCN levels in primary neuroblastomas and neuro-

blastoma cell lines. Subsequent serine- and glycine-starvation experi-

ments demonstrated that MYCN amplification decoupled the cells'

dependence on an exogenous serine and glycine supply. Targeting the

rate-limiting enzyme in de novo serine synthesis by genetic knockout

and small molecule-based inhibition stalled proliferation in the short-

term, but contributed to resistance development that impaired effi-

cacy of the standard treatment regimen.

Capturing the landscape of intratumor heterogeneity in neuroblas-

tomas has major implications not only for our understanding of cancer

pathogenesis and progression, but also for drug development and

effective translation of novel targeted therapies into the clinic as

stand-alone or combination therapies. Multiregion sequencing from

the same high-risk neuroblastoma39,40 revealed high-level spatial het-

erogeneity with individual samples having different dominant clones.

Since intratumor genetic heterogeneity and clonal evolution have

become established as the rule rather than the exception in high-risk

disease, the need to use preclinical models better recapitulating these

traits has become more apparent. Xenografting patient samples may

present an interesting approach to reflect intratumor heterogeneity as

patient-derived neuroblastoma xenografts were recently reported to

maintain genetic, epigenetic, transcriptional and phenotypic stability

and reflect aspects of spatial intratumor heterogeneity.41,42 The major-

ity of models currently used in neuroblastoma research are monoclonal

cell lines established decades ago and propagated as monolayer cul-

tures and xenografts in mice. We have established eight neuroblas-

toma patient-derived xenografts that are passaged in mice

(unpublished own data), which can be used to validate potential drug

targets. Using this panel of PDXs, we show that expression of the

pacemaker enzyme in de novo serine synthesis, phosphoglycerate

dehydrogenase, strongly correlates with MYCN oncogene expression,

thereby confirming the data obtained in cell lines by Xia et al.43 Strik-

ingly, PHGDH inhibition by two well-characterized structurally diver-

gent small molecule inhibitors34,35 had only partial efficacy in

monotherapy to stop neuroblastoma PDX tumor growth according to

RECIST criteria36 when tested in mice. Our data suggest that the anti-

tumor effect by either drug is stronger within the first 14 days of treat-

ment. Our results correspond with the efficacy that Xia et al achieved

in BE(2)-C-xenografts in mice after 10 days of NCT-503 treatment,43

which led them to conclude that PHGDH is a bona fide target in neu-

roblastoma cells, which when targeted, reduced tumor volumes and

improved survival in their mouse cohort.43 In our opinion, these diverg-

ing conclusions emphasize the need to ideally test therapeutic efficacy

in in vivo disease models for longer time windows to capture the

potential for reductions in efficacy that could be caused by or lead to

resistance development to one or more drug in the clinical therapeutic

picture and better mirror the patient situation. Our data is in line with

findings by Chen et al, who performed a PHGDH knockdown in estro-

gen receptor-negative breast cancer xenograft models, and did not

observe an effect on tumor maintenance and cell growth in vivo

although cell proliferation and endogenous serine synthesis were

impaired in breast cancer cell lines in vitro.44 A study by DeNicola

et al45 reports reduced tumor growth by PHGDH knockdown in xeno-

grafted non-small cell lung cancer cells in mice, suggesting that the

phenotypic consequences of PHGDH inhibition or knockdown vary

among cancer entities as shown for a plethora of other drug targets.

All studies investigating PKUMDL-WQ-2101 and NCT-503 anti-

tumor efficacy were performed to date with xenografted tumor cell

lines in mice. Average serine concentrations in standard DMEM and

RPMI 1640 media for cell culture are ~300-400 μM according to man-

ufacturer specifications. Physiological serine concentrations in human

blood vary between 77 and 178 μM in children 3 months to 6 years

of age46 and average 173.2 μM ± 51.3 in adults.47 In mice, circulating

physiological serine concentrations average 161.8 μM ± 14.0.48 Con-

sequently, cell lines are supplied with up to 4-fold higher serine con-

centrations in vitro than both in the patient and mice used in a

preclinical in vivo model. Transplantation of cell lines from cell culture

into mice transfers them from an artificially serine-rich to a physiologi-

cal serine-poor environment. We observed upregulation of de novo

serine synthesis and an induction of metabolic reprogramming upon

serine and glycine depletion in vitro. Eventually, this metabolic repro-

gramming should also take place when cell lines are transplanted into

mice, resulting in a higher vulnerability to metabolic intervention such

as PHGDH inhibition for at least a short window of time, and possibly

partially responsible for the observed success of the inhibitor in

short-term testing in mice. Thus, suppressing PHGDH activity or

downregulating PHGDH transcription may have different effects in

xenografted cell lines compared to patient-derived xenografts, which

are maintained by serial transfer in mice and never exposed or

adapted to high-serine medium concentrations.

Tumor cells exist within a microenvironment shared with cancer-

associated fibroblasts, immune and endothelial cells and biologically
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active matrix molecules, from which the tumor cells receive influences

that can promote tumor cell proliferation. Cellular metabolism is not

only shaped by genetic factors such as MYCN amplification, but also

by environmental factors such as local nutrient environment and dis-

tinct extracellular signaling events.49 Xiao et al recently analyzed met-

abolic gene expression profiles in ~9000 single cells derived from

melanomas and squamous cell carcinomas of the head and neck.50

They found that metabolic features of single cancer cells are poorly

captured by measurements performed on bulk tumors. Metabolic

pathway activity in tumor cells appeared to be more plastic than that

of normal cells in the tumor microenvironment, which have distinct

metabolic features differing from tumor cells.50 At this stage, one can

only speculate that metabolic flux and absolute metabolite quantities

regulated in part through the tumor microenvironment are better

reflected in PDXs than xenografted cell lines or cultured cells. The res-

olution of emerging single-cell technology could illuminate fine cir-

cuitry provided by individual cells.

Worrisome from a translational viewpoint, is our observation

obtained both in PDXs in mice and in vitro analyses in PHGDH knock-

out clones that pharmacological inhibition or genetic PHGDH knock-

out renders neuroblastoma cells resistant to standard-of-care

chemotherapeutic drugs with undoubted importance for high-risk

neuroblastoma therapy. As this conclusion is based on well-controlled

settings from two different model systems, two different PHGDH

inhibitors and two different chemotherapeutic drugs, we are called to

proceed cautiously. We know that slowly proliferating cells are consid-

erably less susceptible to chemotherapeutic intervention than rapidly

proliferating cells from decades of cancer drug testing and clinical

observation. In this regard, our in vitro data on cell viability were a first

indication that single-agent PHGDH inhibitor therapy might slow pro-

liferation but not kill the neuroblastoma cell. Nevertheless, only com-

bining the PHGDH inhibitors with chemotherapy drugs in vivo and

testing chemotherapy efficacy in the genetic knockout model allowed

us to decipher this clinically important novel aspect. Data from pancre-

atic ductal adenocarcinoma cells, patient-derived xenografts and

genetically engineered mice with Kras G12V and Cdkn2a-null muta-

tions frequently observed in pancreatic ductal carcinoma show that

sequential treatment with cyclin-dependent kinase inhibitors directly

following taxanes proved capable of preventing cellular proliferation.51

Sequentially administered PHGDH inhibitors and chemotherapeutic

drugs should be tested in patient-derived neuroblastoma xenografts in

mice in further studies to support the best possible design before

combination is ruled out entirely for patients with MYCN-amplified

neuroblastoma. Here we present data significantly correlating high-

level MYCN to the expression of proteins important for de novo ser-

ine synthesis and one-carbon metabolism in neuroblastoma cells.

MYCN-amplified cells shunt more carbons through de novo serine syn-

thesis than cells harboring only the normal diploid MYCN complement,

and both can restore their intracellular serine pools under serine and

glycine deprivation although mechanisms in the MYCN-amplified cell

are more effective. PHGDH knockout in MYCN-amplified cell lines has

phenotypic consequences toward a more benign tumor biology, and

these data fully justify the hypothesis that PHGDH serves as a

metabolic drug target. However, stand-alone therapy is not supported

by the experimental evidence from longer-term testing in patient-

derived neuroblastoma models in mice. Most importantly, reducing

PHGDH activity renders neuroblastoma cells resistant to cytotoxic

therapy. Based on the data presented in our study and unless substan-

tial further testing in PDX mouse models proves that sequential

administration eliminates antagonism of chemotherapy efficacy, we

do not recommend to incorporate PHGDH small molecule inhibitors

into treatment regimens for MYCN-amplified neuroblastoma.
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