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Abstract: The current molecular genetic diagnostic rates for hereditary hearing loss (HL) vary
considerably according to the population background. Pakistan and other countries with high rates
of consanguineous marriages have served as a unique resource for studying rare and novel forms of
recessive HL. A combined exome sequencing, bioinformatics analysis, and gene mapping approach
for 21 consanguineous Pakistani families revealed 13 pathogenic or likely pathogenic variants in the
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genes GJB2, MYO7A, FGF3, CDC14A, SLITRK6, CDH23, and MYO15A, with an overall resolve rate of
61.9%. GJB2 and MYO7A were the most frequently involved genes in this cohort. All the identified
variants were either homozygous or compound heterozygous, with two of them not previously
described in the literature (15.4%). Overall, seven missense variants (53.8%), three nonsense variants
(23.1%), two frameshift variants (15.4%), and one splice-site variant (7.7%) were observed. Syndromic
HL was identified in five (23.8%) of the 21 families studied. This study reflects the extreme genetic
heterogeneity observed in HL and expands the spectrum of variants in deafness-associated genes.

Keywords: genetic diagnosis; consanguinity; genome-wide linkage analysis; hearing loss; Pakistan;
exome sequencing

1. Introduction

In parts of the world where consanguinity is prevalent, it is not uncommon to see a high
prevalence of genetic diseases. The consanguineous marriage rates in Pakistan are among the highest
worldwide [1]. Approximately 60% of marriages in Pakistan are consanguineous, with roughly 80%
of these marriages being between first cousins [2]. The prevalence of autosomal recessive diseases
associated with a monogenic background, such as profound hearing loss (HL), is high in countries
where consanguineous marriages are common [3].

Hereditary HL is one of the most prevalent sensory disorders that affects 1 to 2 per 1000 live births
worldwide. Genetic factors are responsible for over half of all HL [4]. Studies describing genetic variants
in Pakistani families with HL show evidence of the extreme clinical and genetic heterogeneity of this
sensory disease and support the importance of investigating and characterizing families from this region
of the world [5–7]. Over 120 genes have been identified as causing non-syndromic hearing loss (NSHL),
which comprises approximately 70% of all forms of hereditary HL (http://hereditaryhearingloss.org).
Autosomal recessive HL (ARHL) is the most commonly observed inheritance pattern. There are
presently over 600 syndromic forms of deafness [8], which appear in approximately 30% of patients
with genetic HL. Many of these deafness syndromes mimic non-syndromic deafness at onset [9].
Hearing impairment profoundly complicates speech and language development in prelingual children
and can negatively impact education and employment prospects [10].

Exome sequencing (ES) allows for the parallel sequencing of all coding regions of the human
genome and has accelerated the process of identifying causally associated variants in patients with
HL [11]. In 13 consanguineous families with diverse forms of HL, we identified 13 variants in
7 HL-associated genes using ES and gene mapping approaches in 21 Pakistani families. Two of
the 13 variants were not previously described in the literature. The present study underscores the
importance of genetically characterizing consanguineous families with HL to expand the spectrum of
clinically relevant variants in genetically diverse populations, thus improving our understanding of
the alleles involved in ARHL and enhancing genetic counseling.

2. Materials and Methods

2.1. Clinical Evaluation

This study was approved by the Ethics Committees of Augusta University (624456-4), Kohat
University of Science and Technology (16–25), and the University of Würzburg (46/15). Fully informed
written consent was obtained prior to initiating our study. Informed written consent from minors
was provided from parent(s) or legal guardians. We recruited 21 consanguineous Pakistani families
with congenital, bilateral, and severe-to-profound HL. The affected individuals in family 6 and 7 were
audiologically tested by pure-tone audiometry, conforming with the established guidelines described
by Mazzoli et al. [12]. Hearing thresholds were measured at 0.25, 0.5, 1, 2, 4, 6, and 8 kHz. HL was
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self-reported in all other families but clearly noted as severe-to-profound. Ophthalmic examinations of
families 4, 5, 6, 7, and 8 were performed.

2.2. Autozygosity Mapping and Linkage Analysis

2.2.1. Genotyping and Quality Control

The Illumina Infinium HumanCore-24 v1.0 Bead Chip array (Illumina, Inc., San Diego, CA, USA)
was used for genotyping. From the 306,670 markers on the array, we filtered out indels, MT- and
Y-chromosomal SNPs, and variations without physical positions, resulting in 259,460 biallelic SNPs for
quality control (QC) and linkage analysis. Data conversion to linkage format files and QC was managed
with ALOHOMORA software [13]. The sex of individuals was estimated by counting heterozygous
genotypes on the X-chromosome and compared to the upraised pedigree data. The relationships
between family members were verified with the program GRR [14]. PedCheck [15] was used to detect
Mendelian errors (ME) and SNPs with ME were removed from the data set. Unlikely genotypes—e.g.,
double recombinants—were identified with Merlin [16] and deleted in the individuals.

2.2.2. Linkage Analysis

Linkage analysis was performed with Merlin using an autosomal recessive mode of inheritance
and complete penetrance. We assumed 0.001 as the mutant allele frequency. We executed Merlin twice,
once with a full marker set of around 258,000 SNPs after QC. This calculation was used to obtain the
best positions for recombination events. The second analysis was conducted with a reduced marker set
(~119,000 SNPs), where a minimal distance of 10,000 bases between markers was used. This calculation,
where the linkage disequilibrium (LD) between markers is reduced, identifies linkage peaks which
were inflated by markers in LD. We removed the linkage regions where the LOD score broke down
more than 0.3 in the LD-reduced analysis. In summary, we selected regions where the LOD score
reached the maximal LOD score of a family and where the LOD score was stable in the less dense,
LD-reduced marker set. Under the given inheritance model (recessive) and the pedigree structure with
a consanguinity loop, this linkage analysis is called autozygosity mapping.

2.3. Exome Sequencing

Genomic DNA (gDNA) was extracted from peripheral blood lymphocytes using a standard
phenol/chloroform [17] and ethanol precipitation [18]. A total of 50 ng of gDNA from the proband
from each family was subjected to ES with the Nextera Rapid Capture Exome or the TruSeq Exome
Enrichment kits (Illumina, Inc., San Diego, CA, USA) according to the manufacturer’s protocol.
An additional family member (IV.1) of family 5 was exome sequenced due to the presence of two
distinct phenotypes in the family—namely, HL and a suspected bone disorder. A 2 × 76 bp paired-end
read sequencing was performed using a v2 high-output reagent kit with the NextSeq500 sequencer
(Illumina, Inc., San Diego, CA, USA). Raw bcl sequencing files were converted with the bcl2fastq
software (Illumina, Inc., San Diego, CA, USA) and the data were aligned to the human reference
genome GRCh37 [19] (hg19).

2.4. Variant Analysis and Prioritization

Single-nucleotide variants (SNVs) and small indels (<15 bp) were analyzed with the GensearchNGS
software (PhenoSystems SA, Wallonia, Belgium). Analysis was supported using an established
in-house bioinformatics pipeline based on the GATK toolkit including Burrows-Wheeler (BWA)-based
read alignment, base quality score recalibration, indel realignment, duplicate removal, and SNP
and indel discovery, with subsequent score recalibration according to the GATK Best Practice
recommendations [19–21]. Variant filtering and prioritization were performed using a conservative
minor allele frequency <0.01 based on population databases and an alternate allele frequency present
at >20% referring to reads. Additional variants not removed by minor allele frequency filtering were
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subjected to an in-house allele count filter (n = 300) that removed variants appearing >2%, as these
are too common in our exome dataset to enter manual analysis. Variant prioritization included the
tools PolyPhen-2 (PP) [22], SIFT [23], MutationTaster (MT) [24], fathmm [25], LRT [26], and GERP [27].
The Deafness Variation Database [28] was also integrated into our pipeline to permit the quick
assessment of variants in known deafness genes. Frequency-based filtering was performed according
to a population-specific manner that includes The Greater Middle East Variome Project [29] and
gnomAD [30] to account for varying allele frequencies across ethnicities. CNV analysis was performed
for 19 out of 21 families using the eXome Hidden MarkovModel (XHMM, version 1.0) approach [31].

2.5. Variant Validation and Segregation Testing

The candidate variants remaining after filtering were amplified by PCR using primers designed
from the Primer3 software [32]. The primer sequences are shown in Table S1. PCR products were
bidirectionally sequenced with an ABI 3130xl 16-capillary sequencer (Life Technologies, Carlsbad, CA,
USA). Sequence reactions were completed with 5× sequencing buffer and big dye terminator (Applied
Biosystems, Waltham, MA, USA). DNA sequence analysis was performed using the Gensearch software
(Phenosystems SA, Wallonia, Belgium).

3. Results

3.1. Summary of Affected Genes and Genetic Context

Using ES and bioinformatics analysis, 13 different variants in seven HL-associated genes were
identified, including two that have not been previously described in the literature (15.4%). In aggregate,
these variants are likely causally associated in 13 out of 21 (61.9%) consanguineous Pakistani families.
Pathogenic and likely pathogenic variants were identified in the genes GJB2, MYO7A, FGF3, CDC14A,
SLITRK6, CDH23, and MYO15A (Table 1). GJB2 and MYO7A were implicated in the genetic diagnosis
of almost half of all cases (46.2%). Among the different variant types observed, seven were missense
(53.8%), three were nonsense (23.1%), two were frameshift (15.4%), and one was a splice-site variant
(7.7%). All the variants were either homozygous or compound heterozygous, showed an autosomal
recessive inheritance pattern, and were validated by segregation testing (Figure 1, Figure S1).
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Table 1. Likely causal variants identified in Pakistani families with hearing loss (HL).

ID Gene DFN locus Transcript Nucleotide Protein Zygosity MT PP SIFT GERP LRT DVD

Family 1 FGF3 – NM_005247.2 c.166C>T p.(Leu56Phe) 1/1 DC PrD D C U U
Family 2 FGF3 – NM_005247.2 c.166C>T p.(Leu56Phe) 1/1 DC PrD D C U U
Family 3 GJB2 DFNB1 NM_004004.5 c.231G>A p.(Trp77*) 1/1 DC – – C D P [33]
Family 4 MYO7A DFNB2 NM_000260.3 c.470G>A p.(Ser157Asn) 1/1 DC PrD D C D P [34]
Family 5 MYO7A DFNB2 NM_000260.3 c.3502C>T p.(Arg1168Trp) 1/1 DC PrD D C D LP [35]
Family 6 CDC14A DFNB32 NM_033312.2 c.1041dup [36] p.(Ser348Glnfs*2) [36] 1/1 – – – – – –
Family 7 SLITRK6 – NM_032229.2 c.120_121insT p.(Asp41*) 1/1 – – – – – –
Family 8 MYO7A DFNB2 NM_000260.3 c.1258A>T p.(Lys420*) 0/1 DC – – C D P [37]

c.1849T>C p.(Ser617Pro) 0/1 DC PrD D C D U [38]
c.4505A>G p.(Asp1502Gly) 0/1 DC PrD D C D U [6]

Family 9 CDH23 DFNB12 NM_022124.5 c.2968G>A p.(Asp990Asn) 1/1 DC PrD D C D P [39]
Family 10 GJB2 DFNB1 NM_004004.5 c.35delG p.(Gly12Valfs*2) 1/1 – – – – – P [40]
Family 11 GJB2 DFNB1 NM_004004.5 c.35delG p.(Gly12Valfs*2) 1/1 – – – – – P [40]
Family 12 MYO15A DFNB3 NM_016239.3 c.9518-2A>G 1/1 DC – – C – U [5]
Family 13 CDH23 DFNB12 NM_022124.5 c.4688T>C p.(Leu1563Pro) 1/1 DC PrD D C D P [41]

1/1 homozygous; 0/1 heterozygous. Previously undescribed variants are marked in bold. Abbreviations: LRT, Likelihood Ratio Test; MT, MutationTaster; PP, PolyPhen-2; SIFT,
Sorting Intolerant from Tolerant; GERP, Genomic Evolutionary Rate Profiling; DVD, Deafness Variation Database; C, conserved; D, deleterious; DC, disease causing; P, pathogenic; LP,
likely pathogenic; PrD, probably damaging; U, unknown significance.
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Figure 1. Pedigree and segregation analysis of known and previously undescribed variants in 13 
Pakistani families with HL. All the families have a consanguineous background, marked with double 
lines. Affected individuals are shown in black symbols, and unaffected parents and siblings are shown 
in unfilled symbols. Individuals with a bone disorder, but without HL, are shown in striped symbols. 
Probands who were exome sequenced are marked with an arrow. Deceased individuals are marked 
with a diagonal line. The mutated and wild type alleles are illustrated with “−” (mutated) and “+” 
(wild type) symbols, respectively. 

  

Figure 1. Pedigree and segregation analysis of known and previously undescribed variants in
13 Pakistani families with HL. All the families have a consanguineous background, marked with double
lines. Affected individuals are shown in black symbols, and unaffected parents and siblings are shown
in unfilled symbols. Individuals with a bone disorder, but without HL, are shown in striped symbols.
Probands who were exome sequenced are marked with an arrow. Deceased individuals are marked
with a diagonal line. The mutated and wild type alleles are illustrated with “−” (mutated) and “+”
(wild type) symbols, respectively.
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3.2. Clinical Features and Genetic Spectrum of Patients with Syndromic HL

FGF3, MYO7A and SLITRK6

All the affected individuals were clinically diagnosed with congenital, bilateral HL and have a
consanguineous background. Five of 21 families (23.8%) revealed a syndromic form of HL. Two of
the 21 families were clinically diagnosed with Usher syndrome, one of the most common forms of
syndromic HL [8].

The affected individuals who were available for testing in families 1 and 2 reported severe HL
and cupped ears (Figure 2A, Table 2) (IV.1, IV.2, IV.3, family 1; III.5, III.6, III.10, IV.2, IV.5, family 2).
A homozygous missense c.166C>T, p.(Leu56Phe) variant was identified in FGF3 (NM_005247.2;
Figure S2) in families 1 and 2 that co-segregated with HL in both families (Figure 1). The variant is
predicted to be disease causing (MT, PP, SIFT), involves the substitution of a conserved amino acid
(aa), and was not previously published in the literature. The variant is classified as likely pathogenic
according to the ClinGen HL working group expert specification [41]. Homozygous variants in FGF3
have been associated with deafness, accompanied by inner ear agenesis, microtia, and microdontia [42].
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Figure 2. Clinical aspects of patients with previously unreported variants. (A) Affected individuals in
family 1 (IV.1, IV.2, IV.3) and family 2 (only III.5, III.10, IV.2, IV.5 were available for photographs) show
cupped ears and report severe HL. (B) Pure-tone audiogram for affected family members IV.1 (blue)
and IV.2 (red) in family 7. Left-ear measurements are represented as “x” and right-ear measurements
are shown with “o”.

The proband (IV.1) in family 4 and his affected siblings (IV.2, IV.3, IV.5) were diagnosed with Usher
syndrome and revealed a homozygous pathogenic missense c.470G>A, p.(Ser157Asn) variant [34] in
MYO7A. Ophthalmological examination of the proband IV.3 revealed high myopia, cataract, and retinitis
pigmentosa in both eyes. Visual acuity was reduced to 5/60 (Snellen equivalent, 20/250), with corrective
lenses of −12.00/0/0◦ in both eyes. Ophthalmological examination of the proband IV.5 revealed high
myopia, cataract, and retinitis pigmentosa in both eyes. Visual acuity was reduced to light perception
in the right eye, and 1/60 (Snellen equivalent, worse than 20/1000) in the left eye. Thus, the patient
was legally blind. Cataract was more pronounced in the right eye. Ultrasonographic findings of the
right eye were within normal limits. The aa substitution weakens the 5′ donor splice-site predicted by
several in silico prediction tools. A previously published minigene assay that was conducted using
nasal epithelial cells proved the skipping of exon 5 in the mutant transcript, which likely results in a
truncated protein [43] (Figure 1). Two individuals in family 5 (III.4, IV.1) suffer from a bone disorder
but have normal hearing in contrast to the affected family members (IV.2, IV.3), who show a distinct
Usher syndrome phenotype (Table 2). The ophthalmological examination of proband IV.2 revealed
hyperopia in both eyes (+9/0/0◦ in the right eye, and +11/0/0◦ in the left eye) and lenticular opacity
(cataract) in both eyes. Retinitis pigmentosa was confirmed with indirect ophthalmoscopy with a 20
Diopter power lens. We identified a homozygous pathogenic missense c.3502C>T, p.(Arg1168Trp)
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variant [35] in the gene MYO7A in affected individuals (IV.2, IV.3) that segregated in family 5. An ES
analysis of III.3 and IV.1 did not uncover any variants in genes associated with bone disorders or
neuropathies. Both variants that have been identified in family 4 and family 5 are known to cause
Usher syndrome type 1 [34,35].

The affected individuals in family 7 (IV.1, IV.2) reported severe-to-profound HL (Table 2, Figure 2B).
Ophthalmological examination in IV.1 revealed compound myopic astigmatism and grossly cupped
discs diagnosed as glaucoma in both eyes. The macula appeared normal in both eyes. Visual acuity
was reduced to 0.5 logMAR in both eyes (Snellen equivalent: 20/63), with corrective lenses of
−5.50/−2.50/90◦ in the right eye and −6.50/−1.00/60◦ in the left eye. Intraocular pressure was 17 mmHg
in both eyes. Additionally, Duane retraction syndrome (a congenital neuromuscular dysfunction of the
eye movement caused by a failure of the sixth cranial nerve) was diagnosed in the left eye. Other data
(e.g., axial length, status of lens, macula/retina, visual field, treatment of glaucoma) were not available.
Ophthalmological examination in IV.2 revealed compound myopic astigmatism and myopic alterations
with macular degeneration in both eyes. Visual acuity was reduced to count fingers with corrective
lenses of −5.00/−2.50/90◦ in the right eye and −4.00/−3.00/90◦ in the left eye. Intraocular pressure
was 15 mmHg in both eyes. Thus, the patient was legally blind. Other data (e.g., axial length, status
of lens, macula/retina, visual field, treatment of glaucoma) were not available. Family 7 revealed
a segregating novel homozygous nonsense variant c.120_121insT, p.(Asp41*) in the gene SLITRK6
(NM_032229.2; Figure S2) that was present in both affected family members (IV.1, IV.2) (Figure 1) and
was absent in population databases. The variant is classified as likely pathogenic according to the
ClinGen HL working group expert specification [41]. Homozygous variants in this gene are known to
cause sensorineural deafness and high myopia in humans [44].

Both previously unreported variants have been submitted to the Leiden Open Variation Database
(LOVD) v3.0 under the accession IDs 00307903 (FGF3 c.166C>T, p.(Leu56Phe)) and 00307904 (SLITRK6
c.120_121insT, p.(Asp41*)).

3.3. Identification of Causative Variants in Patients with NSHL

3.3.1. GJB2

Variants in the gene GJB2 (NM_004004.5; DFNB1A, DFNA3A) were identified in three families (3,
10, 11). The proband (IV.1) and his affected sibling (IV.2) in family 3 revealed a common homozygous
pathogenic nonsense variant c.231G>A, p.(Trp77*) [33] that was consistent with the familial segregation
analysis (Figure 1). The probands in families 10 (IV.3) and 11 (IV.3) revealed a prevalent homozygous
pathogenic frameshift variant c.35delG, p.(Gly12Valfs*2) [40] thatsegregated in both families (Figure 1).
In this study, variants in GJB2 accounted for 23.1% of the 13 resolved families and comprised 14.3%
(3 out of 21) of the total diagnostic yield.

3.3.2. MYO7A

Family 8 revealed three different heterozygous MYO7A variants: c.1258A>T, p.(Lys420*) [37],
c.1849T>C, p.(Ser617Pro) [38], and c.4505A>G, p.(Asp1502Gly) [6]. All three heterozygous variants
were identified exclusively in the affected individuals (IV.1, IV.2). The unaffected mother (III.4) revealed
only two of the variants (c.1258A>T, p.(Lys420*); c.4505A>G, p.(Asp1502Gly)) and the unaffected
paternal grandfather (II.1) was confirmed with the third variant c.1849T>C, p.(Ser617Pro), confirming a
compound heterozygosity of p.(Lys420*) and p.(Ser617Pro) (Figure 1). Vision was normal in all the
affected individuals, and Usher syndrome was not confirmed. Ophthalmological examination in
proband IV.1 revealed no significant ocular problems in either eye. Visual acuity was 6/6 (Snellen
equivalent, 20/20) in both eyes. Photographs of the central retina showed the optic disc, macula,
and vessels within normal limits in both eyes.

In aggregate, MYO7A (NM_000260.3; DFNA11, DFNB2, USH1B) was affected in three families,
accounting for 23.1% of the overall diagnostic yield.
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Table 2. Clinical information for Pakistani families.

ID Phenotype Affected Family Members Unaffected Family Members

Family 1 HL, cupped ears IV.1, IV.2, IV.3 III.4
Family 2 HL, cupped ears III.5, III.6, III.10 1, IV.2, IV.5 1 IV.3
Family 3 HL IV.1 (25 y/o), IV.2 (10 y/o) III.3
Family 4 Usher syndrome IV.1 (35 y/o), IV.2 (33 y/o), IV.3 (32 y/o), IV.5 (33 y/o) 1 III.3, IV.4
Family 5 Usher syndrome 2, bone disorder 2 IV.2 (30 y/o), IV.3 (18 y/o); Usher syndrome III.4, IV.1; bone disorder

Family 6 severe-to-profound HL,
compound myopic astigmatism IV.1 (30 y/o), IV.2 (28 y/o) III.3, IV.3

Family 7
severe-to-profound HL,

compound myopic astigmatism,
glaucoma

IV.1 (26 y/o), IV.2 (23 y/o) III.3, III.4

Family 8 HL IV.1 (13 y/o), IV.2 (12 y/o) II.1, III.4
Family 9 HL IV.1 (33 y/o), IV.2 (32 y/o), IV.3 (20 y/o), IV.4 (18 y/o) III.4, III.5

Family 10 HL IV.2 (14 y/o), IV.3 (13 y/o), IV.4 (12 y/o) III.5, III.6, IV.1
Family 11 HL IV.2 (16 y/o), IV.3 (14 y/o), IV.4 (12 y/o) III.2, IV.1
Family 12 HL IV.1 (15 y/o), IV.2 (15 y/o), IV.4 (10 y/o) III.1, III.2, IV.3
Family 13 HL II.1 (11 y/o) I.2

Abbreviations: HL, hearing loss; y/o, years old available ages for affected individuals; 1 no DNA available for testing,
only clinical photographs (Figure 2A) or ophthalmological examination; 2 two distinct phenotypes within the family.

3.3.3. CDC14A, CDH23 and MYO15A

Family 6 reported severe-to-profound HL and suffers from compound myopic astigmatism (IV.1,
IV.2). A frameshift variant (c.1041dup, p.(Ser348Glnfs*2)) was identified in the deafness gene CDC14A
(NM_033312.2, DFNB32) in affected family members of family 6 (IV.1, IV.2) and co-segregated with HL
in this family (Figure 1). Both affected individuals are unmarried and have no children. This variant
was described as disease causing supported by functional RT-qPCR validation [36].

We identified two families with variants in the gene CDH23. The proband of family 9 (IV.1)
revealed a homozygous pathogenic CDH23 (NM_022124.5, DFNB12) missense variant c.2968G>A,
p.(Asp990Asn) [39] that was validated via Sanger sequencing and was also present in three affected
siblings (IV.2, IV.3, IV.4) (Figure 1). The affected proband in family 13 showed a segregating homozygous
pathogenic missense variant c.4688T>C, p.(Leu1563Pro) [45] in the gene CDH23 (Figure 1).

Furthermore, we identified a homozygous splice-site variant c.9518-2A>G in MYO15A
(NM_016239.3, DFNB3) in the proband (IV.1) and affected siblings (IV.2, IV.4) in family 12 (Figure 1).
This variant likely mediates the loss of the canonical splice acceptor site predicted by several in silico
prediction tools and was previously reported in another Pakistani family with NSHL [5].

3.4. Autosomal Recessive HL Loci

Genome-wide genotyping and autozygosity mapping that were performed for 13 Pakistani
families revealed loci for autosomal recessive HL (hg19) (Table 3).

The homozygous c.166C>T, p.(Leu56Phe) variant in FGF3 was identified and supported by linkage
intervals spanning 33.5 Mb and 6.1 Mb for families 1 and 2 (Table 3), respectively. The 19.4 Mb interval
in family 4 (Table 3) included the homozygous c.470G>A, p.(Ser157Asn) variant in MYO7A. Family 5
revealed a 3.7 Mb interval that contained the c.3502C>T, p.(Arg1168Trp) variant in MYO7A. The longest
interval (13.6 Mb) of the mapping data in family 6 (Table 3) was concordant with the homozygous
c.1041dup, p.(Ser348Glnfs*2) variant in CDC14A detected by exome analysis. Family 7 revealed a 15.9
Mb interval (Table 3) on chromosome 13, encompassing SLITRK6 and its homozygous c.120_121insT,
p.(Asp41*) variant. The longest interval in family 9 (13.9 Mb, Table 3) included the homozygous
CDH23 c.2968G>A, p.(Asp990Asn) variant. Both intervals in families 10 (3.3 Mb, Table 3) and 11
(4.4 Mb, Table 3) included GJB2. Family 12 revealed a 7.7 Mb interval (Table 3) that was consistent
with the exome data and includes MYO15A. The longest interval in family 13 (29.0 Mb) contained the
homozygous CDH23 c.4688T>C, p.(Leu1563Pro) variant (Table 3).

The most significant linkage intervals in families 3 and 8 did not include the affected genes
GJB2 and MYO7A. However, the longest interval in family 3 is located slightly outside of the GJB2
gene coordinates.
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Table 3. Loci for autosomal recessive HL in 13 Pakistani families.

Family ID Chromosomal Band Region of Autozygosity Identified by
Linkage Analysis (hg19)

Length
(Mb) LOD Causal Gene

in Locus Gene Coordinates (hg19)

Family 1 11p12-q13.4 39,536,493–73,025,971 33.5 2.529 FGF3 chr11:69,624,736–69,634,192
Family 2 11q13.1-q13.3 63,870,810–69,964,525 6.1 3.73 FGF3 chr11:69,624,736–69,634,192

Family 3 * 13q12.11-q14.11 22,661,666–41,063,028 18.4 1.927
Family 4 11q13.3-q14.3 69,063,393–88,489,081 19.4 2.529 MYO7A chr11:76,839,310–76,926,284
Family 5 11q13.5-q14.1 76,792,431–80,457,784 3.7 1.927 MYO7A chr11:76,839,310–76,926,284
Family 6 1p22.2-p21.2 88,430,037–102,069,696 13.6 1.927 CDC14A chr1:100,810,598–100,985,833
Family 7 13q22.1-q31.3 74,995,660–90,925,494 15.9 1.2 SLITRK6 chr13:86,366,925–86,373,554
Family 8 No interval close to MYO7A
Family 9 10q21.2-q22.3 64,059,261–78,005,230 13.9 3.006 CDH23 chr10:73,156,691–73,575,702

Family 10 13q11-q12.11 19,121,950–22,395,049 3.3 2.529 GJB2 chr13:20,761,609–20,767,037
Family 11 13q11-q12.12 19,121,950–23,534,670 4.4 2.529 GJB2 chr13:20,761,609–20,767,037
Family 12 17p12-p11.2 13,801,016–21,539,613 7.7 2.529 MYO15A chr17:18,012,020–18,083,116
Family 13 10q21.2-q23.31 61,998,060–91,002,927 29.0 1.2 CDH23 chr10:73,156,691–73,575,702

Abbreviations: LOD, logarithm of the odds. * Family 3 revealed a homozygous interval outside but near the GJB2
gene locus.

4. Discussion

Geographically or culturally isolated populations that have high rates of consanguinity, such as the
Pakistani families included in this study, have proven valuable for novel HL gene identification studies
and for contributing to a greater understanding of the alleles implicated in HL [46–48]. Although our
patient cohort was relatively small, the overall resolve rate in this study of 61.9% is nonetheless
comparable to other studies with consanguineous families that have showed a resolve rate of 67% [49].
As expected, most of the families revealed variants that were homozygous (92.3%) and compound
heterozygous (7.7%) and were primarily found in ARHL-associated genes.

We identified causative variants in seven HL-associated genes. Many of these variants were
missense (53.8%, Figure 3B), which is consistent with the mutational characteristics of deafness
genes [50]. Unlike previous studies investigating the genetic spectrum of hearing-impaired Pakistani
patients that have described SLC26A4 as a frequent cause of HL in this population, causal variants in
this gene were not present in our cohort. This is likely explained due to the restricted geographical
region from which our families were recruited and the existence of prevalent founder variants in this
gene, especially in the Pakistani population, that were absent in our relatively small cohort [51].
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Genes that are most frequently implicated in autosomal recessive NSHL (ARNSHL) in
consanguineous families from Pakistan are GJB2 (MIM *121011), SLC26A4 (MIM *605646), MYO15A
(MIM *602666), OTOF (MIM *603681), CDH23 (MIM *605516), TMC1 (MIM *606706), MYO7A
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(MIM *276903), and HGF (MIM *142409) [6,52,53]. Variants in the genes MYO7A and GJB2 accounted for
a combined 46.2% of all diagnoses in the present study which is consistent with previously published
rates from Pakistani cohort studies (Figure 3A) [5–7]. We also identified the c.231G>A, p.(Trp77*)
variant in one family that has been reported as one of the most common GJB2 alleles in Pakistani HL
patients [54].

Interestingly, disease-causing variants in Pakistani patients with NSHL often involved genes that
were also associated with syndromic HL, such as MYO7A [55] or CDH23 [39]. For example, patients with
a diagnosis of Usher syndrome type 1B (MIM *276900) show profound congenital hearing impairment,
retinitis pigmentosa, vestibular dysfunction, and biallelic causal variants in MYO7A [56]. In this study,
pathogenic variants of MYO7A were identified in three families (4, 5, 8). Affected individuals in
family 4 and family 5 were confirmed with Usher syndrome, which is characterized by severe auditory
and ophthalmic symptoms. Both of the homozygous variants that have been identified in family 4
(c.470G>A, p.(Ser157Asn)) and 5 (c.3502C>T, p.(Arg1168Trp)) are known to cause Usher syndrome
type 1 [34,35].

Family 8 revealed three different heterozygous variants in MYO7A, with all three of them
exclusively present in both affected siblings (IV.1, IV.2), in whom Usher syndrome was excluded.
Interestingly, two of the three identified variants (c.1258A>T, c.4505A>G) were previously described in
a Pakistani family reporting ARNSHL [6]. Richard et al. [6] also described a third heterozygous variant
(c.3502C>T) that differs from the third variant in the present study (c.1849T>C). In family 8, the two
c.1258A>T and c.4505A>G variants were inherited from the maternal allele (III.4), and the c.1849T>C
variant was an inferred paternally inherited allele, thus confirming compound heterozygosity in
both affected patients (IV.1, IV.2) of c.1258A>T, p.(Lys420*) and c.1849T>C, p.(Ser617Pro) (Figure 1).
The absent homozygous interval in a region that contains MYO7A supports a suspected compound
heterozygosity for the variants in this family. It remains to be determined if the double mutated
maternal allele is either a broadly segregating allele in the Pakistani population or if the two families
are possibly distantly related.

The homozygous c.2968G>A, p.(Asp990Asn) missense variant in CDH23 segregating in family
9 was identified as a recurrent variant in South Indian families with HL [57] and is known to
cause ARNSHL [39]. The second pathogenic homozygous missense variant in CDH23 (c.4688T>C,
p.(Leu1563Pro)), which is known to cause non-syndromic deafness, has been identified in family 13 [45].

We identified two unrelated families (1, 2) with the same c.166C>T, p.(Leu56Phe) variant in
the gene FGF3. Recessive variants in FGF3 have been described in patients diagnosed with LAMM
syndrome, which is characterized by congenital deafness with labyrinthine aplasia (LA), microtia
(M) and microdontia (M) (MIM *610706) [42]. The phenotypic characteristics in patients can vary
from fully penetrant LAMM syndrome to milder forms with less severe syndromic features [58].
Probands from families 1 and 2 show HL and cupped ears (Figure 2A), which overlap with milder
phenotypic characteristics such as minor dental and external ear phenotypes that were previously
described in the literature. We cannot exclude an inner ear malformation in the affected individuals
due to absent temporal bone CTs.

Three nonsense variants were found in the genes GJB2, SLITRK6, and MYO7A (Figure 3). While the
c.231G>A, p.(Trp77*) variant in GJB2 and the c.1258A>T, p.(Lys420*) variant in MYO7A were previously
described as pathogenic, the nonsense variant c.120_121insT, p.(Asp41*) in SLITRK6, segregating
in family 7, was novel. The effect of the induced stop-codon at amino acid position 41 out of
841 amino acids encoding SLITRK6 would truncate 95% of the protein and likely be targeted by
nonsense-mediated mRNA decay (NMD) [59]. To date, only five variants are known to cause the
associated autosomal recessive deafness and myopia syndrome [44,60,61] that is consistent with the
phenotype in family 7. Myopia in deafness and myopia syndrome has been reported to range between
−6 and −11 diopters [44,62]. Findings in both siblings (IV.1, IV.2) in family 7 and affected individuals
(IV.3, IV.5) in family 4, who had undergone ophthalmological examination were consistent with high
myopia. Additionally, IV.3 and IV.5 in family 4, and IV.2 in family 5 showed findings typical for retinitis
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pigmentosa. Interestingly, all the previously identified variants are also either nonsense or frameshift
variants, suggesting loss-of-function as an underlying mechanism. Consistently, Slitrk6 knock-out mice
showed distinct reduction in cochlear innervation and a defective auditory brainstem response [44].

Family 12 revealed a homozygous splice-site variant c.9518-2A>G in intron 57 of MYO15A [5]. This
variant likely mediates the complete loss of the 3’ acceptor site according to several in silico prediction
tools, and possibly results in the skipping of exon 58. Variants that occur in important consensus
sequences at the exon-intron boundaries, thus disrupting the actual splicing process, are known to be
the cause of a variety of human diseases [63].

5. Conclusions

The present study of 21 Pakistani families identified two novel alleles causing HL and emphasizes
the importance of investigating different populations and their heterogeneous genetic background.
The fact that 38.1% of the 21 examined families are still considered unresolved highlights a possible area
in which the further application of advanced sequencing and analysis methods could uncover currently
unrecognized genetic changes due to technical limitations. Candidate genes have been identified
in four families that are presently undergoing functional analysis. In families without candidate
genes identified, genome sequencing would support uniform copy number variation analysis and
the analysis of deep intronic or regulatory variants that are difficult to ascertain by ES. Some of the
limitations of the study include potentially insufficient coverage of homopolymeric or GC-rich regions
and the existence of mapping difficulties for regions containing pseudogenes or larger deletions,
insertions, or structural rearrangements, as listed in previous ES studies, and may diagnose some of
the unresolved families [64]. Nevertheless, an ES approach is still the method of choice for elucidating
genetic variants in a large portion of heritable human disorders, including HL.
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