
 1

Supplementary Material to

LoopDetect: Comprehensive feedback loop detection in ordinary differential equation
models

Katharina Baum1,2, Jana Wolf1,3

1 Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine in
the Helmholtz Association, 13125 Berlin, Germany
2 Present address: Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam,
14482 Potsdam, Germany
3 Department of Mathematics and Computer Science, Free University Berlin, 14195 Berlin,
Germany

Runtime comparison of the R, MATLAB, Python versions of LoopDetect

We compared the runtimes of the LoopDetect versions in the three programming languages
MATLAB, R, and Python. To this purpose, we sampled signed Jacobian matrices of different sizes
(simulating systems with 30, 100, 300, 1000, or 3000 variables) with fixed numbers of non-zero
interactions that enabled a broad range of numbers of feedback loops in the sampled systems.
We measured the elapsed time for computing the list of feedback loops with each LoopDetect
version as minimal value over three function calls for each input matrix. Thereby, we restricted
the maximal number of detected and reported loops to 2.5x105.
As is known for the employed algorithms from graph theory (Johnson’s algorithm and Tarjan’s
algorithm), runtime increased with increasing number of variables (i.e. with system size) and
with increasing number of feedback loops in the system for each of the three LoopDetect
versions, LoopDetect_for_Matlab, LoopDetectR, and LoopDetect (Fig. S1A).
The Python version detected feedback loops slightly faster than the MATLAB version (Fig. S1B,
C). While the R version of LoopDetect was faster than the other two for intermediate and larger
systems with many feedback loops, both the MATLAB and the Python version outperformed the
R version for small systems (30 variables) as well as for large systems (>300 variables) with few
(up to ca. 100) feedback loops.

More detailed specifications:
We randomly sampled 103, 103, 103, 500, or 250 matrices for system sizes of 30, 100, 300, 103,
or 3x103 variables, respectively, with a fixed number of edges (non-zero entries of the matrix:
100, 200, 450, 1.3x103, or 3.5x103, respectively; values drawn from (-1,1)). Of those, we choose
a subset to keep runtimes short: 200 matrices of size 30x30 (plus 50 with >2.5x105 loops), 400
matrices of size 100x100 (plus 50 with >2.5x105 loops), 913 matrices of size 300x300 (plus 50
with >2.5x105 loops), 419 matrices of size 103x103 (plus 50 with >2.5x105 loops), 239 matrices of
size 3000x3000 (plus 11 with >2.5x105 loops).
Computations were run on MacOS Mojave 10.14 on a 3.3 GHz Intel Core i7, 16 Gb 1867 MHz
DDR3. We used MATLAB 2019b and the tic and toc commands for time measurements; R version
3.6.1 (2019-07-05), igraph_1.2.4.1, and the elapsed time from system.time; and Python 3.8 with
networkx 2.4, numpy 1.18.5, pandas 1.0.4. and default_timer in the timeit module from
timeit_plus 0.0.3 for measuring runtime.

 2

Note that we only measured the time to derive the loop list from the Jacobian matrix, not the
time required to compute or to read in the Jacobian, nor to write the resulting loop list to a file.

Figure S1

A: Runtimes for each LoopDetect version (left: MATLAB, center: Python, right: R) over the
detected numbers of feedback loops. Each dot represents the runtime for one sampled Jacobian
matrix. Colors denote the number of variables of the sampled system.
B: Runtimes of the LoopDetect versions (red: MATLAB, green: Python, blue: R) for different
system sizes (increasing from left to right) depending on the number of detected feedback loops
in the system.
C: Pairwise comparison of the runtimes of the LoopDetect versions (left: MATLAB vs. R, center:
MATLAB vs. Python, right: R vs. Python) over all sampled matrices. Colors denote the system
size.

