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Supplementary Figures 
 

Figure S1. SV diagnostic footprint of an unbalanced translocation. In the event of an unbalanced 
translocation, the translocated segment of the donor chromosomal haplotype will exhibit a ‘irregular’ pattern, 
whereby read depth and strand-state is altered relative to the remainder of the donor chromosome (i.). This 
irregular pattern is due to the fact that the translocated chromosomal segment independently segregates during 
cell division (ii.), leading to eight different strand patterns with respect to the donor chromosome in the example 
shown here (iii.). Since the translocated segment co-segregates with the recipient chromosome during cell 
division (ii.), the segment will correlate in its strand state with the recipient chromosomal haplotype (see mock 
data for an example translocation shown in (iv.), with orange for W, and green for C; note: Fig. 3 shows actual 
examples of translocations identified in RPE cells). 
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Figure S2. The origin of diagnostic footprints for ploidy. Examples are shown for haploidy, diploidy, 
triploidy, and tetraploidy, respectively. Abbreviations: W, Watson strand; C, Crick strand; G1/2-phase, phases 
of the cell division cycle; H1 - H4, chromosomal homologs 1 to 4 (with a tetraploid cell, for example, carrying 
four individual homologs during G1-phase). As part of the Strand-seq protocol incorporation of BrdU into the 
non-template strand will yield, for each autosome, a pair of sister chromatids (one pair per replicated homolog) 
with labeled non-template strand during G2-phase. After faithful cell division, daughter cells will yield exactly 
one chromosomal copy per homolog, each of which has a 50% chance of being inherited as a W or C strand 
from the mother cell1,2. The probability of observing a certain configuration of W and C template strands 
(referred to as autosomal strand pattern) in Strand-seq data depends on the ploidy state N, leading to 
characteristic expected frequencies for each observed autosomal strand pattern (here indicated as percentages), 
which can be computed according to a binomial distribution (see Methods). This implies that each ploidy state 
shows a characteristic diagnostic footprints, which enables detection of ploidy alterations in single cells (see 
Table S4). 
 
 



 
 

3 
 

 
Figure S3. Core workflow used for calling SVs in single cells.  
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Figure S4. Bayesian graphical model for haplotype-aware SV classification. Model shown used to enable 
haplotype-aware SV discovery in single cells. This graphical model adopts the common plate notation: Circles 
represent random variables, squares show the model parameters, gray (white) objects show observed (latent) 
variables, arrows indicate dependencies, and large rectangles indicate that the enclosed variables exists multiple 
times. The model describes  single cells,  segments, and  haplotypes. Random variables: segment 
length , ground state , haplotype SV status  (to be inferred), copy numbers of W/C reads , read counts 

in W/C direction , and read counts in W/C direction tagged by haplotype . Note that the read counts 
are not observed by their haplotypes (white circles inside the H box), but they are observed with no haplotype 
information (gray circles outside the H box). The fraction of reads that overlap with a heterozygous SNP are 
observed by haplotype (tagged gray read count variables inside the H box). Model parameters: the fraction of 
background reads , negative Binomial parameter  and , and the heterozygosity rate . 
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Figure S5. MosaiCatcher - recall and precision on simulated data. (a) SV calling using the ‘strict’ 
parameterization, on simulated data (see Supplementary Experimental Procedures). (b) SV calling using the 
‘lenient’ parameterization, on simulated data. Percentage values given indicate simulated somatic variant allele 
frequencies (VAF) in a given simulation, and rows indicate simulated SV size bins. 
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Figure S6. Normalization of coverage pursued when using MosaiCatcher in conjunction with single cell 
sequencing data. (A) Read coverage, summarized in 100 kb windows across sequenced cells, is shown for a 
region of chromosome 1 (for cumulative read coverage, i.e. W + C reads) for HGSVC (Human Genome 
Structural Variation Consortium) lymphoblastoid cell lines (upper) and RPE-1 cells (lower). (B) Bins with a 
skewed mean coverage in the reference dataset are consistently over or under-represented and were thus 
blacklisted.   
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Figure S7. Evaluation by in silico cell mixing.  SV calling performance when mixing single cell libraries from 
RPE-1 and C7 in silico. Each experiment was pursued by randomly sampling 150 single cell libraries with 
replacement. Eleven different proportions of cell from RPE-1 and C7, ranging from 1-149 to 149-1 were tested 
and for each proportion, five repetitions were run. We evaluated those SVs that had been independently 
validated by WGS or mate pair sequencing and called with VAF ≥0.9 in the original scTRIP call sets. For these 
SVs, boxplots depict the number of cells in which an event was recalled (y-axis) for each true mixing proportion 
(x-axis). A perfect SV caller would yield results corresponding to the blue circles. Top row: evaluation of 
SVs >1Mb in size; bottom row: SVs of all sizes; left column: lenient parameterization; right column: strict 
parameterization. 
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Figure S8. Comparison of scTRIP with a single cell CNA detection method (AneuFinder). CNAs (deletions 
and duplications) discovered separately by scTRIP (blue) and AneuFinder (yellow) were compared against a set 
of presumed true positive, clonal CNAs (Table S5) discovered by using bulk WGS or using mate-pairs (the 
‘ground truth set’). Boxplots show the distribution of false positive (FP) and true positive (TP) CNA calls across 
single cells. In (A) we considered all CNA calls, while in B we considered CNA calls ≥400kb (Table S3). The 
total number of true positive calls we compared against is marked by green vertical lines separately for each 
tested cell line. In some cases owing to ‘over-segmentation’, AneuFinder generated a larger number of calls 
overlapping with the ground truth set, which were scored as true positives. SV calls made by scTRIP did not 
show such over-segmentation. Even though the analysis shown in this figure focused only on CNAs, scTRIP 
generated more true positive SV calls and less false positive SV calls than the single cell CNA detection tool. 
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Figure S9. Phasing of unbalanced translocation using BM510 single cell data.  Six BM510 cells are shown 
carrying the unbalanced t(X;10) translocation. Binned read depth data for chromosome 10 are depicted on the 
left column (W reads - orange, C reads - green). A dashed vertical line demarks the 10q translocation 
breakpoint. For each cell the strand represented as a single copy along the whole length (i.e. not containing the 
10q gain) is listed as 1N. This strand was used for unambiguous phasing, to overcome any haplotype mixing 
that can occur at triploid regions.  Phasing outcomes of the single copy strands are shown to the right. Vertical 
lines depict SNPs assigned to either haplotype 1 (H1, brown) or haplotype 2 (H2, blue). The shorter duplicated 
haplotype in the lower two cells (labeled with Tr) corresponds to H2, confirming the H2 haplotype of the 
translocated 10q segment. Tr, translocation.  



 
 

10 
 

 
A 

 
 
B 

 
                                                                                         
Figure S10. RPE-1 unbalanced translocation escapes detection in bulk WGS data. (A) Read depth plot of 
the affected region on chromosome 10, that in RPE-1 cells is fused to the end of chromosome X as shown by 
spectral karyotyping and detectable by three-channel processing (see e.g. Fig. 3). (B) IGV3 plot with split reads 
centered at the chromosome 10 breakpoint of this unbalanced translocation. The other breakpoint junction of 
this SV maps to highly repetitive DNA, and thus remains unresolved by bulk Illumina bulk WGS, with this 
breakpoint junction lacking uniquely aligned reads that map to chromosome X.  
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Figure S11. Allele-specific expression analysis reveals involvement of the active X in the t(X;10) 
unbalanced translocation. Allelic RNA expression analysis of chromosomes X and 10 in RPE cells pursued to 
investigate the consequences of an unbalanced translocation involving chromosomes 10 and X present in RPE-1 
and BM510. scTRIP generates haplotype-resolved SV calls, whereby the two haplotypes (homologs) existing 
for each chromosome in a diploid cell are arbitrarily named H1 and H2 (for haplotype/homolog 1 and   
haplotype/homolog 2, respectively). In this figure, 'Haplotype 1' of RPE-1, BM510 and C7 (and also 'Haplotype 
2') exhibit the same genotype (and hence correspond to the same chromosome homolog). Haplotype 2 is 
involved in der(X) t(X;10) translocation in RPE-1 and BM510. (A) Allelic read count plots of chromosome X 
based on scTRIP haplotype information and RNA-seq data of the corresponding RPE cells, which shows 
involvement of the active (rather than the inactive) X chromosome in the t(10,X) translocation. (B) Fold change 
plots of chromosome 10 comparing allelic read count of H1 and H2. RNA expression on the gained and 
translocated haplotype is, as expected, increased compared to the non-translocated haplotype in the context of 
the unbalanced t(10,X) translocation - further corroborating scTRIP’s haplotype assignments. Each bar 
represents a gene; genes are sorted by genomic position. 



 
 

12 
 

 
 

 
Figure S12. Phasing of a homologue inferred to have undergone breakage-fusion-breakage cycles (BFB). 
DelTer rearrangements seen at 10p in C7 were in each case located on the same haplotype, including cells with 
and without the 10p amplicon inferred to be formed by BFB cycles. To illustrate the haplotype analyses pursued 
we picked 5 cells randomly (shown above). For each cell we plotted reads mapping to the reference genome in 
plus directionality (C - green) above the zero line and those that map in minus directionality (W - orange) below 
the zero line. In each single cell, heterozygous SNPs represented separately in the C and W portion of reads 
were compared to the consensus haplotypes assembled from all haplotype informative cells. SNPs that matched 
haplotype 1 (H1) are colored in red and those that match haplotype 2 (H2) are colored in blue. SNPs that do not 
match any of the consensus haplotypes (‘miss’) are colored in black. Grey rectangles highlight the inferred BFB 
amplicon region (reads that map into this 10p segment have been removed from this plot, to enhance overall 
visibility). The pattern observed can be explained by the DelTer events always being present on the same 
haplotype (H2 - blue) in all C7 cells, including cells with the inferred BFB amplicon and cells without the 
inferred BFB amplicon. Haps, haplotypes. 
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Figure S13. C7 single cells with intermediate and high copy-number at 10p plotted using different scales. 
Cell 335, showing excessive copy-number at 10p in C7 compared to other C7 cells, is depicted along with two 
cells showing intermediate copy-number at that 10p chromosomal location. Marked copy-number increase in 
cell 335 (cell id: C7x02PE20335; inferred copy number of 400-500) is only detectable for the BFB-associated 
amplicon region - i.e. is specific to the amplicon. The q-arm of cell 335 retains disomy, and the terminal 
segment of 10p is monosomic in this cell (DelTer) - as seen for all other C7 single cells exhibiting the BFB-
associated amplicon. (A) Coverage of selected cells with BFB is shown in a scale that allows to focus on the 
disomic and monosomic regions. (B) The same cells are shown at constant linear scale, whereby this time the 
scale was chosen to visualize differences in 10p amplicon height. 
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Figure S14. Clustered rearrangements in single cells from C7 and BM510. Whole chromosome plots 
highlighting individual Breakage-fusion-bridge (BFB) events located in transformed RPE cells. For each event, 
InvDup rearrangements (red arrows) are immediately flanked by terminal chromosome segment deletions 
(DelTer, blue arrows) arising on a single haplotype. Note this display item shows all cells having a ‘classic’ 
BFB signature with no other SVs present on the same homolog. Homologs containing BFB events along with  
additional  SVs (e.g. deletions) are depicted in Fig. S15. Binned W reads are shown in orange (below each 
chromosome ideogram); binned C reads are show in green (above) 
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Figure S15. Single cell based mapping of haplotype-resolved complex/clustered SVs in RPE cells. 
Single cell plots of chromosomes identified as having multiple SVs clustered on a single haplotype. For each 
example the template strand plots are shown to the left, with the three-channels analyzed by scTRIP illustrated 
on the right. Depth is shown as total binned read counts. Strand ratios are shown as the fraction of W:C reads in 
each bin. Haplotype phasing data is separated into H1 and H2 with orientation of each phased SNP (shown as a 
lollipop) indicated by placement on ideogram (SNPs in W reads are shown on the left, SNPs on C reads are on 
right). Breakpoints located in each cell are indicated by dotted lines. For these clustered SVs we employed the 
infinite sites assumption4 to infer a plausible temporal ordering of formed SVs, with the predicted ordering 
shown above each plot. A “>” symbol is used when one event was estimated to proceed the next, whereas an 
“+” symbol indicates the temporal sequence was unclear. For instance, the clustered SVs located on chr1 of 
BM510x3PE20436 (top left cell) was inferred to have undergone a BFB event followed by Del and Dup 
(denoted ‘BFB > Del + Dup’), given that we observed CN steps of size 1 (see Methods). This was distinguished 
from chr11 of BM510x4PE20340 (top right cell) where the Del was seen in conjunction with a CN step size of 
2, and was hence inferred to occur prior to BFB formation (denoted ‘Del > BFB’). The SV pattern here suggests 
the Del first caused a complete loss of a segment on the H1 haplotype. H1 subsequently underwent a BFB cycle 
forming an InvDup with an interstitial loss (coinciding with the Del event). A lost H1 segment can obviously not 
be “regained” via subsequent inverted duplication4, and the subsequent InvDup hence resulted in a CN step size 
of 2 (see Methods). In one case we predicted a sister chromatid exchange event (SCE) to be included in the 
ordering, as this represented the most parsimonious explanation for the SV profile observed. Use of ‘?’ indicates 
uncertainty about the temporal ordering of events in a few cells. 
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Figure S16. Detection of regions with loss of heterozygosity. Genome-wide ideograms showing regions of 
loss in heterozygosity (LOH) across the samples of our study (RPE-1, BM510, C7, P33 and P1). LOH regions 
depicted with orange color. Norm, normal. 
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Figure S17. Leukemic single cell SV landscapes in P33 and P1. Each column corresponds to scTRIP based 
SV calls, and each row to single cells. A yellow/red color scale (upper heatmaps) depicts SV genotype 
likelihoods, and the heatmap below indicates the various SV classes contributing to these SV landscapes. 
Homozygous inversions can be unambiguously detected on WW or CC chromosomes, but are not readily 
distinguishable from the reference state in WC or CW chromosomes (Table S1). Thus, if more than 40% of the 
cells in a sample showed homozygous inversions (inv_hom) calls in certain column, other cells in the same 
column were imputed to contain the same homozygous inversion if in a WC or CW ground state (imputed SVs 
shown in light green color). Based on the same rationale, we also imputated translocations into each individual 
cell. Bar graphs above the heatmaps indicates the mean log likelihood ratio (computed across all single cells, for 
a certain SV); bar graphs below show SV size. Heatmaps were generated using Ward’s hierarchical clustering of 
genotype likelihoods to arrange single cells based on SV call patterns from P33 (A) and P1 (B). Hom, 
homozygous. Het, heterozygous.  
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Figure S18. T-ALL oncogenic dysregulation in conjunction with balanced SVs in 3’ of BCL11B. (A) The 
t(5;14) translocation in P33 brings the TLX3 at chr5q35.1 and enhancers in 3’ of BCL11B at chr14q32.2 into 
proximity. (B) Quantitative real time PCR (qPCR) validation of TLX3 dysregulation, and comparison to 
control samples with high and low TLX3 levels. (C) The plot depicts allelic read counts of the RNA-seq 
(P1) detected from heterozygous germline SNPs within gene loci residing in two previously reported 
topologically associating domains (TADs)5, both of which are affected by the inversion identified in P1. (D) 
Rearrangements of TADs in the context of the 14q32 inversion in H2. Following 14q32 inversion, the TCL1A 
and nearby enhancers are not separated by a TAD boundary any more, which may have facilitated long-range 
regulatory interactions between the loci involved6,7. Allele-specific expression measurements revealed 
significantly increased expression of the TCL1A H2 allele compared to the H1 allele (FDR = 6.68E-21). The red 
box indicates the genomic position of remote 3′-BCL11B enhancer elements thought to mediate oncogene 
overexpression8. TAD boundary information was obtained from the literature5. The dashed lines depict the 
inversion breakpoints, which we verified by mate-pair sequencing of the P1 sample9. 
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Supplementary Tables 
Table S1. Overview of SV diagnostic footprints for different strand state inheritance patterns 
The diagnostic footprints described by scTRIP consider three data layers - read depth, read orientation 
and phase. Classifying SVs using scTRIP depend on the underlying strand state of a chromosome, and 
whether the SV is homozygous or heterozygous. The below Table introduces this principle for WC, 
CW, WW and CC ground states. While SV classes occasionally can not be unambiguously called in a 
single cell alone (*, e.g. homozygous inversions), all SVs can be unambiguously resolved when 
examining subclonal SVs at the cell population level.  
1 Cannot be distinguished from a reference state in WC/CW chromosomes* (yet is resolved in CC and 
WW chromosomes, when assessing subclonal SVs in a cell population, or when using haplotags) 
2 Cannot be distinguished from a heterozygous duplication in WC/CW chromosomes* (yet is resolved 
in CC and WW chromosomes, when assessing subclonal SVs in a cell population, or using haplotags) 
3 Cannot be phased in WW or CC chromosomes* (yet is resolved for WC/CW chromosomes, when 
assessing subclonal SVs in a cell population, or when using haplotags) 
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Table S2. Overview of Strand-seq libraries included in the study 
Metrics of the single cell sequencing data for RPE-1, C7, BM510, P33 and P1 samples, with total 
number of high-quality mapped fragments per library listed. 
This table is provided as an external data file. 
 
 
Table S3. SV calls generated with our framework and using external methodologies 
Overview of the single cell SV calls generated for RPE-1, C7, BM510, P33 and P1 samples, with 
variant allele frequencies and orthogonal validation notes included 
This table is provided as an external data file. 
 
  
Table S4. Diagnostic footprints characteristic for ploidy states.  
A binomial distribution can be used to compute expected frequencies of autosomal strand patterns for 
alternative ploidy states. W, Watson. C, Crick. 
 

 
 
 
Table S5. Presumed clonal CNA events in RPE cells detected by genomic sequencing 
Data shown for RPE-1, C7 and BM510. WGS: whole genome sequencing. MP: mate-pair sequencing. 
Only regions of 2Mb and longer are reported.  
This table is provided as an external data file. 
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Table S6: Summary of detected translocations  
Summary of translocations located using scTRIP. der: derivative. t: translocation. chr: chromosome. 
D: direct orientation. I: inverted orientation. H1: haplotype 1. H2: haplotype 2. BFB: breakage-fusion 
bridge. Mb: megabase.  

 
 
 
 
Table S7. Inferred clonally present LOH events 
Summary of all LOH regions located in this study. CEN: spans centromere 
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Supplementary Experimental Procedures 

1.1 Core computational framework for SV discovery in single 
cells 
Our core computational framework (termed MosaiCatcher), described here in further detail, has been 
developed for detecting Dup, Del, Inv, InvDup, and ‘other/complex SV’ classes in single cells, based 
on scTRIP’s SV diagnostic footprints. CNN-LOH events, altered cellular ploidy, and translocations 
are detected through separate modules defined around the core framework.  
 
Input data. Input data required by the framework are a set of single-cell (Strand-seq) BAM files from 
the same donor sample. In our study, these data were aligned to build GRCh38 of the human reference 
genome (GCA_000001405.15_GRCh38_genomic.fna). To later enable haplotype phasing and 
haplotype-resolved SV assignments, our framework performs re-genotyping of SNPs provided by the 
1000 Genomes Project (1000GP; phase 3) to detect heterozygous sites from the single-cell input data. 
When using our framework a VCF file with these 1000GP SNP sites is to be provided as input. 
Alternatively, the MosaiCatcher pipeline is able to call SNPs directly from the single-cell data or to 
use externally generated SNP calls for a given sample, e.g. based on bulk WGS. Additionally, a tab-
separated file with normalization factors (see below) per bin across the genome is used as input to the 
framework. 
 
Workflow management. Our core framework is implemented as a Snakemake workflow31, to 
facilitate reproducibility and scalability. Source code is available at github 
(https://github.com/friendsofstrandseq/pipeline) and an overview of different steps is shown as Figure 
S3. The software requirements are described as a Bioconda environment29, again to facilitate 
reproducibility by allowing for easy installation of all dependencies by executing a single command. 
To ensure computational efficiency, a number of functionalities inside the core workflow have been 
implemented in C++ and are hosted in a separate repository 
(https://github.com/friendsofstrandseq/mosaicatcher); we refer to the corresponding executable as 
“mosaic” in the following. Most additional functionalities, such as the Bayesian model for SV 
classification are implemented in R and are distributed as part of the core workflow. 
 
Binned read counting in single cells. At first, reads in all individual cells are binned, for each strand 
(mosaic count command). Bins have a fixed width (default: 100kb), starting from position 0 up 
the end of the chromosome. Mapped reads were assigned to bins based on their start position and 
filtered according to the following criteria: non-primary and supplementary alignments are excluded; 
alignments with the QC failure flag are excluded; PCR duplicates are excluded; reads with mapping 
quality <= 10 are excluded. In case of paired-end data only the first read of each pair (based on the 
BAM flag 0x40) was used to avoid double-counting. Cells with too little coverage (median count per 
bin of 3 or less) were removed by default. The parameters p and r of the NB distribution were 
determined in the same manner as for SV classification (see respective section below). During 
parameter estimation, bins were excluded from the parameter estimation process if their mean 
coverage across all cells was very low (<0.1, where coverage was previously normalized to 1) or if 
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they showed a highly abnormal WC/(WC+CC+WW) fraction (WCfrac) across cells. Bins were deemed 
abnormal if exhibiting either WCfrac<0.05 or WCfrac> 0.95, reflecting bins that either never showed 
WC status, or those that exhibited always WC status, as for example often seen in regions within or 
near centromeres32. 
 
Coverage normalization in single cells.  Our framework pursues normalization of read coverage prior 
to SV calling (Fig. S5). To estimate suitable parameters for normalization, we analyzed Strand-seq 
data recently generated by the Human Genome Structural Variation Consortium (HGSVC) 
comprising 9 lymphoblastoid cell lines from the 1000 Genomes Project (1000GP) (i.e., samples 
NA19238, NA19239, NA19240, HG00731, HG00732, HG00733, HG00512, HG00513, and 
HG00514)33. We utilised 1058 cells from these HGSVC samples sequenced via Strand-seq, obtained 
from ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/ 
working/20151203_strand_seq/, and subjected these cells to the same binning scheme described 
above. Analysis of several of these 1000GP samples showed that these do not carry any germline 
copy number variants (CNVs) ≥200kb34. To identify a scaling factor for normalization we aggregated 
these HGSVC Strand-seq data, and first masked regions using any of the following ‘exclusion 
criteria’: observed mean coverage <50%, observed mean coverage >200% (Fig. S5), or observed 
standard deviation larger than the mean coverage. Then, using the remaining bins, we modeled the 
observed mean bin coverage in our test samples assuming a linear relationship to the mean HGSVC 
bin coverage, which explained 66% of the variance with a slope of ~0.6. We used this linear 
relationship to derive a scaling factor for each bin, which subsequently was applied to all cells of our 
study.  
 
Blacklist construction. We created a “blacklist” of regions exhibiting strong sequencing/mapping 
abnormalities to avoid false positive somatic variant calling. To construct our blacklist, we started 
from the ‘masked regions’ with unusual coverage in the independent HGSVC samples (see previous 
paragraph). We then progressively merged such intervals if they exhibited a distance of 500kb or less 
(which avoided generation of a highly fragmented blacklist). Lastly, we ensured that no known 
polymorphic inversion32 was accidentally masked by removing all intervals from our blacklist that 
overlapped with a germline inversion larger than 100kb in size reported by the HGSVC33. The 
resulting blacklist was used in all following analyses, which considered regions outside of the 
blacklisted intervals for single cell SV calling. 
 
Joint segmentation of single cells. We followed the strategy suggested by Huber et al. to perform 
segmentation on a multivariate input using a squared-error assumption35. Therefore, the binned read 
count data for all single cells of a sample were simultaneously used as input, with the rationale that 
SVs that recur in multiple cells can reinforce each other. Given a number of allowed change points k, 
a dynamic programming algorithm finds the discrete positions of the k change points with minimal 
sum of squared error (SSE). The change points at level k are computed using knowledge about a set of 
k-1 optimal change points through dynamic programming35. This algorithm uses a cost matrix, to 
determine the cost (summed squared error) of every possible consecutive segment. While the same 
direction of change was assumed in all samples in the original implementation of Huber et al., we 
adapted the algorithm to calculate this cost matrix for each cell and strand separately. We additionally 
adapted the cost matrix to penalize segments which are below 200kb in size, as a means of avoiding 
over-segmentation. The segmentation procedure (mosaic segment), performs the segmentation 
separately for each chromosome and outputs the resulting change points up to a maximum number of 
allowed change points. We selected appropriate segmentation parameters by assessing the benefit of 
increasing the number of change points (k) in terms of the summed squared errors (SSE) of the 
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piecewise constant function compared to the actual count data. Let SSEk be the residual error 
associated to partitioning a chromosome into k segments. We then select the smallest number k such 
that SSEk - SSEk+1 is below a user-set parameter (default: 0.1, which is used in this study) to adjust the 
number of change points k for a chromosome.  
 
Strand state and SCE detection in single cells. Detecting SV diagnostic signatures depends on 
whether the corresponding segment in a single-cell followed a WW, CC, WC, or CW pattern of 
mitotic segregation (Table S1). We refer to the underlying baseline distribution of W and C reads 
along a chromosome as the “ground state” (see Methods). While the ground state usually stays the 
same along the length of a chromosome, it can be altered by sister chromatid exchanges (SCEs), 
which underlie mitotic patterns of recombination unrelated to structural variation2. Changepoints in 
Strand-seq data that result from mitotic recombination events/SCEs represent a source of “noise” that 
MosaiCatcher is able to correct for. Fortunately, SCEs happen independently in each single cell2, and 
unlike SVs, SCEs are not transmitted clonally to daughter cells (i.e. are only detectable in the cell they 
occur in2). Hence, changepoints resulting from SCEs are very unlikely to recur at the same position in 
>1 cell of a sample1,2. MosaiCatcher uses changepoint recurrence as a key criterion for distinguishing 
SCEs from SVs. To identify SCEs, we employed the same segmentation strategy as described above, 
but to each single cell separately rather than jointly. To do so, the threshold to select the number of 
breakpoints k (see above) was set to 0.5. We assigned an observed state to each resulting segment by 
computing the fraction  and assigning state WW if , state CC if 

 and state WC/CW otherwise. The states of neighbouring segments were compared to each 
other and if the states were unchanged the intervening changepoint was discarded, while the 
remaining changepoints were subsequently further considered as putative SCEs. Note that we write 
“WC/CW” to indicated that we are not making a distinction between these two states in this step, 
distinguishing the two happens in the subsequent StrandPhaseR step (see Fig. S3). 
       An important consideration is that in some cases, changepoints detected in this way may 
correspond to SVs rather than SCEs. We thus employed the following strategy to select a high 
confidence list of SCEs: We first select those changepoints far away (>500kb) from any breakpoint 
identified during the joint segmentation (see previous paragraph); these changepoints are likely to 
represent true SCEs. With this provisional set of candidate SCEs, we considered each of the three 
ground states WW, CC, WC/CW to determine a plausible “ground state”. We employed the 
assumption that a given state at the beginning of a chromosome and a set of SCE positions (which 
change the state) uniquely determine the state for every segment on the chromosome. To assess which 
of the three ground states (WW, CC, or WC/CW) at a chromosome start to pick, we computed the 
discordant length, defined as the total length of genomic intervals for which the observed state differs 
from the predicted ground state. Although highly unlikely, in rare occasions, an SCE changepoint may 
appear to coincide with an SV breakpoint. In order to enable MosaiCatcher to recover such rare SCEs, 
all putative SCEs closer than 500kb to a breakpoint in the joint segmentation were analyzed. If adding 
one of these putative SCEs reduces the discordant length by 20Mb or more, MosaiCatcher assigns 
these SCE status. Doing so, MosaiCatcher is able to avoid that missed SCEs result in an incorrectly 
assigned ground state along larger parts of a chromosome. Note that adding at most one such 
additional SCE precludes masking most true SVs, which have two breakpoints, whereas SCEs lead 
typically only to a single “switch” (changepoint) in W and C states along a chromosome 2. Also, it 
should be noted that since SCEs never associate with copy-number alteration, the chance that SCEs 
are confused with SVs is near “zero” for many SV classes - that is for, Del, Dup, InvDup, and 
complex rearrangements - even if these SV are present only in a single cell. Thus, in reality, SCEs are 
only very rarely incorrectly assigned SV status (as also evidenced by our experimental validation 
data). 
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Chromosome-length haplotype phasing using single-cell sequencing data. To facilitate haplotype-
aware SV calling, we phased all available chromosomes using StrandPhaseR36. While building whole-
chromosome haplotypes for a sample, we assigned regions represented by both W and C strands as 
either WC or CW for each cell. That is, we used reads overlapping heterozygous SNPs to determine 
whether haplotype H1 was represented by W reads and H2 by C reads (a situation we denote as WC), 
or vice versa (denoted CW) (see Methods). In addition to this refined characterization of the ground 
state, StrandPhaseR outputs the chromosome-wide haplotypes as a VCF file, which we later utilized 
in the “haplotagging” step. This phasing step of our framework requires at least a few dozen SNPs per 
chromosome. To ensure availability of enough SNPs, we re-genotyped germline variants previously 
identified in the 1000GP27, using Freebayes26 with options “-@ <1000GP-snps.vcf> --only-
use-input-alleles <input.bam> --genotype-qualities”. We retained all 
heterozygous SNPs with QUAL>=10. Alternatively, our framework can use externally provided 
SNPs. To boost the usable coverage for SNP calling, we performed a cell sorting experiment, 
independently sorting 100 cells (termed the ‘100 cell control’) in each sample, followed by short-read 
whole genome sequencing to 1.9x mean coverage. 

 
Estimating Negative Binomial parameters. The number of high throughput sequencing reads mapped 
to genomic windows (or bins) were previously shown to be in agreement with a negative binomial 
(NB) distribution37, which can account for overdispersion. We employed the NB distribution as the 
basis for our Bayesian framework. The NB distribution has two parameters, p and r, which are 
estimated from the observed read counts as follows. Let us denote the value n as the number of single 
cells analyzed in a sample. We assume that the number of reads sampled from each single-cell at a 
fixed bin size is an NB random variable. In reality, the coverage of single cells will be varying 
resulting in different NB parameters for each cell. Key for parameter estimation is that not only the 
coverage of individual single cells, but also the total coverage of all single cells together, are derived 
from an NB distribution. This implies that all single cells should have the same p, therefore there are 
n+1 free parameters to estimate (one p parameter and n dispersion parameters).  

In an NB distribution, the ratio of the mean to the variance is equal to 1-p. Having the same p 
parameter over all single cells implies that the ratio of mean to variance is constant across all single 
cells. Consequently, the mean and variance of binned read counts among single cells share a linear 
relationship in which the line connecting these mean-variance points for single cells passes the origin 
coordinate with a slope determining the p parameter. This relationship allows estimation of the shared 
p parameter: for each single-cell, we compute the empirical mean and variance of the observed read 
counts in fixed-sized bins across the genome. If we denote the set of empirical mean-variance pairs by 
(m1, s2

1), (m2, s2
2), …, and (mn, s2

n), the p parameter is estimated as follows: 
 

                
 

After obtaining p, we estimate the dispersion parameter  of each single cell  by setting the 
distribution mean to the average read count per bin of that single cell. We employed a trimmed mean 
for estimating the dispersion parameters (with trim parameter set to 0.05), to remove the effect of 
abnormally high or zero read counts (e.g. seen in regions of low mappability). 
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SV diagnostic footprints. Each SV diagnostic footprint (Fig. 1) can be translated into the expected 
number of copies sequenced in W and C orientation contributing to the genomic segment under 
consideration. Table S1 shows this relationship for each SV class, both for chromosomes where both 
haplotypes are represented by different template strands (here referred to as ‘WC/CW chromosomes’) 
and for such where both haplotypes are represented by the same template strand (‘WW chromosomes’ 
and ‘CC chromosomes’). Every haplotype-resolved SV implies a particular segment strand pattern in 
WC, CW, WW, and CC chromosomes, respectively. For example, if the ground state of a single cell 
in a chromosomal region is WW and the SV status in a segment in that region is ‘inverted duplication 
of the paternal haplotype represented on the W strand’, the observed segment strand pattern will be 
WWC in this given single cell. By comparison, if the ground state is WC (W for the H1 haplotype), 
and the SV status is deletion of the H1 haplotype, the observed segment strand pattern is C (see Table 
S1). These expectations are formalized in our Bayesian model, which we describe in the following.  
 
Bayesian model to compute haplotype-aware SV genotype likelihoods in single cells. We utilized a 
Bayesian  model (Fig. S4) to compute haplotype-resolved SV genotype likelihoods for each segment 

in each single cell. We model , the SV type to be inferred, as a pair , where  gives the 
number of copies of that segment in forward direction and  gives the number of copies of that 
segment in reverse direction (i.e. when an inversion is present). That is, the pair (1,0) encodes the 
reference state of a haplotype (one forward copy and zero inverted copies). As illustrated in Fig. S4, 
each segment  and haplotype  in single cell  comes with a variable  
for this SV state, which we refer to as . Together with the ground state , each SV state  
deterministically leads to a corresponding “copy number” observed in Crick direction  and in 
Watson direction , as explained in the previous section on SV diagnostic signatures (also see 
Table S1). Conditional on the sum of Crick and Watson copy numbers of both haplotypes, the 
corresponding coverages  and  are assumed to follow a negative binomial (NB) distribution 
 

 
 

 
for each single cell  and segment . Here,  is the estimated common -parameter of the NB 

distribution (see Estimating Negative Binomial parameters above), and  and  are proportional to 
the estimated parameter  (also see above), the segment size  and the Watson and Crick segment 

copy numbers (  and ) and hence are computed as 
follows (for ): 
 

 
 
In this formula,  is a parameter in our model indicating the fraction of “background reads”, which 
represents noise in Strand-seq data (for example due to regions with incomplete BrdU incorporation 
or removal)1,2) These background reads are taken into account by assuming , which reflects an 
upper bound for the abundance of such background reads observed in practice. Note that the  
coefficients in the above formula serve to scale the dispersion parameter to copy number 1 (  is 
estimated above to reflect a diploid state of copy number 2). In summary, every haplotype-resolved 
SV class ( ) in a segment together with the ground state ( ), define a Watson and Crick copy number 
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( ) used to compute the NB likelihood of observed read counts. Through this mechanism, we obtain 
likelihoods for all diagnostic signatures in  Table S1. 
 
Incorporating haplotype-specific sequencing reads (‘haplotagging’). One of the key advantages of 
scTRIP is the ability to utilize haplotype information made available through strand-specific 
sequencing. In the base model described in the previous paragraph, this haplotype-awareness is 
brought forth by distinguishing WC from CW ground states (also see Chromosome-length haplotype 
phasing using single-cell sequencing data). Our framework is additionally able to make use of reads 
not directly assigned to a haplotype (i.e. those in WW and CC regions) owing to their overlap with a 
haplotype-phased SNP. This feature can further facilitate validation and falsification of putative SVs 
seen only in few or even individual cells. We utilize the whole-chromosome haplotypes generated 
using StrandPhaseR 36 to tag reads by haplotype using the ‘haplotag’ command of WhatsHap 38,39, 
resulting in one ‘haplotagged’ BAM file per single cell library. These BAM files are then used to 
compute the number of Watson/Crick reads that could be tagged by haplotype H1/H2, respectively, 
for each segment and each single cell. The resulting happlotagged read counts are incorporated in the 

Bayesian model as random variables  and  (see Fig. S4). We employed a multinomial 
distribution to model the conditional distribution of these tagged read counts given the (haplotype- 
and strand-specific) copy numbers  and . More precisely, we defined parameters of the 

multinomial distributions , , , and , for each segment  and single cell , such 
that they are proportional to the corresponding copy numbers:  
 

 
 
where  as before. Here,  is again a rate of background reads (set to ) and the 

 are normalized to sum up to one. Given the total number of reads and the (haplotype- and 
strand-specific) copy numbers  and , the tagged reads are multinomially distributed: 
 

 
 
Employing the Bayesian model for SV calling. To utilize our Bayesian model for SV calling, we 
defined prior probabilities and combined them with the model-based likelihoods for each single cell 
and segment. We started by regularizing the raw likelihoods, adding a small constant (set to ) to 
all likelihoods and renormalizing afterwards. This ensures that very small values (or hard zeros) are 
avoided and corresponds to the error assumption that every SV genotype is possible with this given 
small probability, no matter what the data suggests. Then, we used two forms of priors. First, we 
captured biological knowledge on the plausibility of observing certain event types. To do this, we 
defined the priors to be proportional to a pre-specified constant per SV type and chose these constants 
as follows: ref=200, del/inv/dup=100, invdup=90, other/complex=1. While this choice is somewhat 
arbitrary, it encourages the SV calling process to prefer the reference state (ref) over canonical SVs 
(del/inv/dup/invdup) over more exotic SV classes, for example involving an inversion on one 
haplotype and a deletion on the other haplotype (other/complex) - unless the model observed 
sufficient evidence to overwhelm these priors. Thus, we required the caller to gather more evidence 
for SV classes deemed implausible. The second type of priors we applied acts on each segment 
separately and uses the raw likelihoods computed by the model across all cells to compute a 
probability distribution over all SV types. That is, for each segment we summed up the likelihoods per 
SV type across all cells and normalized to one, which corresponds to estimating the frequency of each 
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SV genotype for that segment. The intuition behind this procedure is that we need to encourage the 
SV caller to prefer SV types present in many cells over those SV types present only on few cells - 
unless the evidence inherent to the genotype likelihoods is strong enough to overwhelm these priors. 
Before applying these priors, we set the prior of each SV genotype to zero if the estimated frequency 
of that genotype was below a threshold, which we term GTCUTOFF (set to 0.05 for the strict call set 
and set to 0 for the lenient call set). Effectively, this means that the strict parameterization only 
considers an SV genotype if the likelihoods across all cells suggest it to be present in the cell 
population at an expected frequency of at least 5%. The lenient call set, in contrast, disables this 
cutoff by setting it to zero and hence readily permits SV genotypes present in individual cells only 
(for more details see Strict and lenient parameterizations of our single cell SV discovery framework). 
Lastly, we used the resulting posterior probabilities to compute log odds ratios (of an SV genotype vs. 
the reference state), and accepted an SV call if the log odds ratio was at least 4. SV calls in segments 
with >20% blacklisted bins were discarded (see Blacklist construction). 
 
Call set post-processing: Filtering: We developed a filtering routine to be used only in conjunction 
with the strict parameterization, the main goal of which is to arrive at a high confidence SV callset for 
all SVs with VAF greater than 5%. This filtering routine removes rare inversions seen in only 1 or 2 
cells, since rare inversions may occasionally correspond to SCEs. This routine further removes SV 
calls exhibiting particular biases, most importantly, those biased to occur largely in the context of a 
certain ground state. In particular, while SVs can be detected in the context of all four ground states 
(WW, CC, WC and CW; see Table S1), we noticed during the development of MosaiCatcher that 
artifactual SV calls can occasionally arise on WW or CC chromosomes, where the ability of the caller 
to measure gains or losses in read depth is reduced. Calling deletions or duplications on WW or CC 
chromosomes is indeed conceptually related to previously developed copy-number profiling 
methodology; i.e., SVs called on WW or CC chromosomes will not benefit from the ability of scTRIP 
to call these SVs based on strand-specific read depth gain or loss (Fig. 1, Table S1). 
     The following hard filters were implemented to be used with the strict parameterization:  

(i) Removal of inversions seen in less than 3 cells.  
(ii) Removal of deletions seen in multiple cells, if these show a bias towards occurring mostly 
in WW and CC chromosomes with less than a third seen in WC or CW regions (deletions 
with log odds ratio ≥50 will not be removed by this hard filter). As reasoned further above, 
we implemented this filter since deletions that are repeatedly seen in the WW or CC ground 
state, but not or only rarely in the WC ground state, are (according to our experience) of lower 
confidence. 
(iii) Removal of duplications seen in multiple cells, if these show a bias towards occurring in 
WW and CC chromosomes, with less than a third seen in WC or CW chromosomes 
(duplications with log odds ratio ≥50 will not be removed by this hard filter). As reasoned 
further above, we implemented this filter since according to our experience duplications that 
are repeatedly seen in the WW or CC ground state, but not or only rarely in the WC ground 
state, are of lower confidence. 
(iv) Removal of SVs overlapping UCSC annotated segmental duplications in the genome 
(file: segDups_hg38_UCSCtrack.bed.gz) by more than 50% (we found such SV calls to be of 
lower confidence).  

Merging: We also developed a merging routine to be used in conjunction with the strict 
parameterization, which groups adjacent SVs with a similar VAF (where VAF ≥ 0.1) into a single SV 
call to avoid over-segmentation and produce a final high confidence somatic SV sites list. To this end, 
we considered VAFs of adjacent SVs to be similar if 𝑉𝐴𝐹!"!/𝑉𝐴𝐹!"! ≥ 0.75 (for cases where 
𝑉𝐴𝐹!"!>𝑉𝐴𝐹!"!) or 𝑉𝐴𝐹!"!/𝑉𝐴𝐹!"! ≥ 0.75 (for cases where 𝑉𝐴𝐹!"!>𝑉𝐴𝐹!"!), and grouped all 
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immediately neighboring SVs selected by this similarity criterion. In our experience, SVs merged by 
this routine will nearly always correspond to a single structural variation event in validation 
experiments.  
 
Strict and lenient parameterizations of our single cell SV discovery framework. As alluded to above, 
our framework comes with the ability to adjust for the tradeoff between sensitively calling SVs 
present at low VAF, and accurately identifying SVs consistently seen among cells. We parameterized 
this tradeoff into a ‘strict' and ‘lenient’ SV caller, whereby the 'strict' caller optimizes precision for 
SVs seen with VAF≥5%, while the ‘lenient’ caller targets all SVs including such present only in a 
single cell. These parameterizations differ in three settings: the GTCUTOFF (see Using the Bayesian 
model for SV calling), whether or not haplotagged reads counts are incorporated (see Incorporating 
haplotype-specific sequencing reads), and whether filtering is enabled (see Call set post-processing). 
The strict caller uses GTCUTOFF=0.05, while the lenient caller uses GTCUTOFF=0. For the strict 
caller, we disabled the haplotagging feature, while we enabled haplotagging for the lenient call set - 
with the reasoning that haplotagging is mostly valuable to resolve putative SVs with low VAF. Lastly, 
we used the filtering described in the previous paragraph for the strict caller, while we proceed with 
the unfiltered set for the lenient caller. We recommend use of the strict caller to enable reliable 
detection of subclonal SVs down to a VAF of 5%. The lenient caller should be used for analyzing SVs 
across the whole VAF spectrum down to the individual cell. 

1.2 Simulations to evaluate our framework for single cell SV 
discovery 
We devised two procedures to perform simulations enabling evaluation of our framework for single 
cell SV discovery. The first procedure - referred to in the main text and in Fig. S7 and not further 
detailed in this Supplementary Material section - employed in silico mixtures of cells from clonal RPE 
cell lines. The second procedure, outlined below, inserted randomly picked SVs of arbitrary type and 
size into subclonal cell fractions. While naturally simulations represent idealized conditions, they 
closely reflect several essential properties of Strand-seq data, and thus can facilitate methods 
development.  
 
In particular, we devised a subcommand of MosaiCatcher to simulate Strand-seq experiments on a 
cell population by sampling binned read counts from a negative binomial (NB) distribution. At first, 
the basic read coverage of two homologues is generated via sampling from a NB distribution. Each 
haplotype was covered either with W or with C reads during the simulation, as seen in regular Strand-
seq libraries. To do this, we set the bin size to 100kb, the NB parameter p to p=0.28301 
(corresponding to the lowest value observed for the datasets used in this study), and the expected 
number of reads per library to 300,000-500,000 reads (sampled uniformly to reach 300,000-500,000 
reads) per cell. SVs were implanted into individual chromosomal homologs based on the expected 
consequence these events have on a haplotype-resolved genome. In the case of a heterozygous 
deletion, for example, the coverage of one homologue was set to 0 with a randomly assigned fraction 
of background reads per bin, by default 0.05, to simulate noise. Inversions were introduced by 
flipping orientation of counts in the affected region. In each simulation, MosaiCatcher implants 25 
SVs of a given SV class and with given size and VAF, by randomly placing them along the genome 
(with a minimum distance of 1Mb between variants). We sampled SV sizes uniformly on a log scale 
(i.e., preferring smaller variants over larger ones), and placed SVs randomly in a bin-unaware manner 
(i.e. without requiring that the start and end align with the boundaries of bins). Variants with a clonal 
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fraction f <1 were incorporated into subsets of cells, chosen with a probability f for each cell. Finally, 
after implanting SVs into the genome, we additionally simulated on average 3.78 SCEs into each cell 
(reflecting the average number of SCEs typically seen in RPE-1 data using Strand-seq). VAF values 
shown in Fig. S5 were computed based on the number of cells in which the SV was placed during the 
simulation, divided by the total number of cells simulated. We evaluated the precision and recall of 
our framework for detecting different classes and sizes of subclonal SVs, as shown in Fig. S5.  

1.3 Comparing the scTRIP framework with another CNA 
detection tool 
We additionally compared our framework’s Del and Dup calls with Aneufinder 40 (version 1.8.0; 
https://bioconductor.org/packages/release/bioc/html/AneuFinder.html), a CNA detection tool suitable 
for operating on sparse single cell data. The exact settings used to run Aneufinder are listed below: 
 
Aneufinder(inputfolder = <bam.dir>, outputfolder = <output.dir>, 
reuse.existing.files = TRUE, binsizes = 100000, pairedEndReads = TRUE, 
chromosomes = paste0(‘chr’, c(1:22, ‘X’)), remove.duplicate.reads = TRUE, 
min.mapq = 10, use.bamsignals = TRUE, method = ‘edevisive’, strandseq = 
TRUE, blacklist = ‘mosaicather_specific_blacklisted_regions‘) 

 
We analysed our RPE single cell data. To set a ground truth CNA set for our comparison, we made 
use of CNA regions inferred using Delly29, by selecting events with ≥200kb in size that showed a 
paired-end signal and displayed a read-depth shift compared to flanking regions (this ground truth 
dataset is available as Table S5). For deletions and duplications we required a minimum read-depth 
shift of 0.8 and 1.2, respectively. Any CNA region detected either by scTRIP or Aneufinder that 
overlapped with our truth set was considered as true positive call, or was considered as a false positive 
if missed. Sporadic (single-cell specific) Aneufinder calls that did not reach ≥30% VAF were not 
counted as false positives. VAF was calculated as a fraction of gains and losses detected across cells. 
We performed two independent analyses, (1) evaluating CNA calls ≥200kb and (2) evaluating for 

CNA calls ≥400kb. In both settings, scTRIP performed better than Aneufinder (e.g. yielding 26.1% 

more true positive calls for CNAs ≥200kb, and 13.8% more true positive calls then Aneufinder, while 
at the same time producing less false positives than Aneufinder; see Fig. S8). 

2.1 Single cell dissection of complex inter-chromosomal 
rearrangements 
To infer translocation partners by scTRIP, we subjected candidate translocation segments to template 
strand co-segregation analysis. Candidate segments were identified based on recurrent breakpoints 
that flagged regions failing to co-segregate with the chromosome they originated from. Co-
segregation analysis involved investigating pairwise correlations in template strand identity between 
candidate translocation segments and potential partner segments across the genome. These principles, 
which allowed us to reconstruct complex derivative chromosomes by single cell strand sequencing, 
are detailed with several examples below. 
 
Single cell sequencing based dissection of an “unsequenceable” translocation in BM510. 
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We first aimed to assess and verify the herein introduced diagnostic footprints for translocations in 
RPE-1, in which a well-documented balanced translocation involving chromosomes X and 10 
(der(X) t(X;10)) was previously characterized microscopically using spectral karyotyping10 - albeit 
not yet resolved with DNA sequencing. We initially analyzed BM510 Strand-seq single cell data to 
identify segments with an ‘irregular’ strand-pattern representing ‘candidate translocation segments’ 
(see Fig. 3A). In an unbalanced translocation, according to our  diagnostic footprints (Fig. S1), only 
one of the translocated segments (i.e. the segment exhibiting a read depth increase) will show an 
‘irregular’ strand-pattern (that is, represent a candidate translocation segment). This segment, while 
being ‘inconsistent’ in terms of strand-state with the remaining regions of the chromosome the 
segment originated from, will exhibit a strand-pattern correlating with the strand-pattern of its 
translocation partner.  
 Analysis of BM510 using our framework identified a large segment on chromosome 10 as 
‘irregular’, and thus representing a ‘candidate translocation segment’ (Fig. 3A). We performed single 
cell-based haplotype analysis to infer the haplotype of this irregular chromosome 10 segment. We 
only considered those cells in which a single haplotype could be unambiguously separated as a single 
copy either represented by a Watson (W) or Crick (C) template strand (see Fig. S9). We subsequently 
performed chromosome-scale haplotyping of these selected single strands (Methods) to derive 
consensus haplotypes for chromosome 10. The identity of the translocated chromosome 10 haplotype 
was established by comparing single cell haplotypes inferred for the ‘candidate translocation segment’ 
to both consensus haplotypes derived from all haplotype informative single cells generated for 
BM510. We detected a single chromosome X haplotype (H2) that correlated in its strand states with 
this chromosome 10 segment - indicating that the segment co-segregated with chromosome X H2 
haplotype during mitosis (Fig. 1B, Fig. 3B). The false discovery rate (FDR)-adjusted p-value, in an 
analysis comprising 118 cells from BM510 that showed consistent full-length (or majority) strand 
states on chromosome X (i.e. not affected by SCEs), was p=2.9e-33 (Fisher’s exact test). None of the 
other FDR-adjusted p-values, obtained by assessing co-inheritance of the ’irregular’ chromosome 10 
segment with other genomic regions, reached significance (p>0.01). Thus, our framework was able to 
readily and unambiguously identify the previously microscopically detected der(X) t(X;10) in the 
RPE-1 clone BM510, and to fully haplotype resolve this event, despite being incomplete accessible to 
WGS (Fig. S10). We repeated this analysis for RPE-1 and detected the same event with significant 
adjusted p-value (p<0.01), consistent with this translocation being present in the RPE-1 parental 
line10. 
 
Karyotyping a derivative chromosome with scTRIP: placement of the unbalanced der(X) t(X;10) 
translocation to chromosome X q-arm. 
It can be reasoned that the translocated chromosome 10 segment would, likely, be fused either to the 
Xp-arm or the Xq-arm in the context of this inferred unbalanced translocation. To precisely order and 
orient the translocated chromosome 10 segment with respect to chromosome X H2, we made use of 
sister chromatid exchange events (SCEs) detectable by Strand-seq2 (see “Strand state and SCE 
detection” below). We selected all regions in BM510 with a change in strand state corresponding to 
an SCE (CC/WW to WC, or WC to CC/WW), keeping only those that mapped to either end of the 
chromosome – a condition true in 24 cases. In these cases we gathered the strand state at the end of 
chromosome X haplotype 2 (p-arm and q-arm) and the translocated chromosome 10 segment in two 
separate contingency tables. Next, we calculated the FDR-corrected p-value for both tables in the 
same way as described above, obtaining a p-value of 1.7e-05 for the q-arm (Fisher’s exact test). The 
p-arm received an FDR-adjusted p-value of 0.69. Cytogenetics (i.e. spectral karyotyping10) shows that 
the translocation is indeed attached to the end of the q-arm of chromosome X, consistent with our 
scTRIP based inference.  
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Allele-specific analysis places the tr(X;10) translocation to the active X chromosome.  
The two X chromosomes in females function differently, with one being transcriptionally active and 
the other silenced via X inactivation11. Taking advantage of the haplotype-resolution of scTRIP, we 
generated bulk RNA-seq data and characterized RPE-1, C7 and BM510 for patterns of X inactivation 
using allele-specific gene expression analyses. In order to analyze allele-specific expression, we 
aligned raw RNA-seq data from BM510 and RPE-1 to the human reference genome (GRCh38) using 
STAR aligner (2.5.3 version). Allelic read counts at heterozygous SNP sites were obtained using the 
ASEReadCounter, a method provided by the GATK package12, using the following parameters: 
 
GenomeAnalysisTK.jar –R <reference.fasta> -T ASEReadCounter -o 
<output.csv> -I <input.bam> -sites 
<chrX_phased_from_MosaiCatcher.vcf> -U ALLOW_N_CIGAR_READS --
minMappingQuality 10 --minBaseQuality 2 -drf DuplicateRead 

 
We assigned allelic read counts to either H1 (haplotype 1) or H2 (haplotype 2) based on our 
framework’s whole-chromosome phasing information. Every SNP site was annotated with gene locus 
information using the Homer annotate Peak tool13. Intergenic RNA-seq reads were excluded, while 
intronic reads were kept for haplotype-specific expression analyses (these can reveal the level of 
nascent transcript before splicing14,15). Read counts for heterozygous SNPs within the same gene locus 
were aggregated into gene-level read counts. Differential expression of the H1 and H2 allele of each 
gene was evaluated using the likelihood ratio test, followed by FDR adjustment using the Benjamini-
Hochberg procedure16, as provided by EdgeR17. Allelic counts revealed fusion of the duplicated 
chromosome 10 haplotype to the active, rather than the inactive X chromosome, in RPE-1 and BM510 
(Fig. S11). Genes residing on the duplicated 10q haplotype, furthermore, showed specific increases in 
allele-specific expression when compared the non-duplicated 10q haplotype (Fig. S11), corroborating 
our haplotype assignments.  
 
Single cell discovery of an unbalanced translocation in BM510 involving chromosomes 13 and 22. 
We also detected another unbalanced translocation, connecting chromosomes 13 and 22 in BM510. A 
duplicated chromosome 22 segment correlated significantly in strand states with a proximal segment 
of chromosome 13 (p=5.52e-41, Fisher’s exact test, FDR-adjusted), consistent with a der(13) t(13;22) 
translocation. WGS data generated for BM510 verified this scTRIP-discovered translocation (Table 
S5).  
 
Single cell dissection of a complex translocation t(15;17) mediating a TP53-NTRK3 gene fusion. 
We also more closely analyzed a reciprocal translocation involving chromosomes 15 (haplotype 2, 
H2) and 17 (haplotype 2, H2) that our scTRIP based framework revealed in BM510. The involved 
segments showed perfectly inverse correlations in terms of strand states with the recipient 
chromosomes (FDR-adjusted p=4.75e-29 [chr15/chr17tr] and p=3.93e-30 [chr15tr/chr17], 
respectively; Fisher’s exact test). This can be explained by the fusion of both chromosomal segments 
occurring with one chromosome being inverted with respect to the translocation partner (Fig. 3BC) - 
a relative ‘reorientation’ of chromosomal segments that makes intuitively sense, allowing the 
derivative chromosomes to retain telomeric sequence at the chromosome’s tips (Fig. 3C). scTRIP 
based analysis, notably, revealed this inter-chromosomal rearrangement to be complex, involving an 
additional ~12Mb balanced inversion on chr17p (placed to 7.7-19.6Mb) (Fig. 3BC). By pooling the 
BM510 single cell sequencing data, we carefully analyzed the breakpoints of the copy-balanced intra- 
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and inter-chromosomal rearrangements of 15q and 17p. This revealed that the proximal breakpoint of 
the chr17p inversion disrupted TP53 and physically placed the 5' coding region of TP53 to the distal 
translocation breakpoint (i.e. re-locating it to 19.6Mb of 17p). As a consequence of the additional 
translocation arising between chr15q and chr17p, the 5' end of TP53 was thus juxtaposed to the 3' end 
of the oncogene NTRK3 (located at the 88.3Mb chr15q breakpoint). This complex rearrangement 
resulted in a candidate gene fusion event between TP53 and NTRK3. Fusion products leading to the 
overexpression or activation of genes from the NTRK gene family have been previously observed in 
different cancers18. We confirmed the over-expression of NTRK3 in BM510 by performing RNA-seq 
(see main text, Fig. 3E). To the best of our knowledge, our study provides the first description of a 
TP53-NTRK3 oncogenic fusion, and represents the first oncogenic gene fusion discovery made via 
single cell genomic sequencing.  

2.2 Characterizing altered ploidy in RPE cells by single cell 
sequencing 
Our analyses of RPE cells, presented in Figure 2, revealed diagnostic footprints of altered 
chromosomal ploidy, namely monosomic and trisomic regions (Figure 2C, Figure 2D). Random and 
independent mitotic segregation of sister chromatids to daughter cells during anaphase (Fig. 1B, Fig. 
S2) implies that ploidy states can be predicted in strand-specific sequencing based solely on the 
relative fraction of W and C reads along a chromosome. A binomial distribution can be used to 
compute expected frequencies of template strand patterns for different ploidy states (Table S4). The 
principle of ploidy footprints is detailed as follows: For example, in the case of diploidy, 50% of all 
autosomes will show a characteristic pattern where one homolog is sequenced on the minus strand 
(W) and the other homolog is sequenced on the plus strand (C) – termed WC-pattern2. This produces a 
balanced strand orientation signal, or 1:1 strand ratio, of W and C reads for the autosome. The 
remaining autosomes are sequenced either only on the C strand (25%; CC-pattern), or only on the W 
strand (25%; WW-pattern), respectively (Fig. S2). Conversely, in the context of triploidy a CCC-
pattern (all reads of an autosome map to the C-strand) and a WWW-pattern (all reads map to the W-
strand) will be seen for 12.5% of all autosomes, respectively. The CWW-pattern and the CCW-
pattern, resulting in a 1:2 (or 2:1) strand ratio, will each be seen for 37.5% of autosomes (Table S4). 
Notably, triploid segments will never exhibit a balanced 1:1 strand ratio. Tetraploidy and haploidy 
similarly result in their own readily discernible strand inheritance patterns, producing their own 
unique diagnostic footprints in scTRIP (Table S4, Fig. S2). Of note, in contrast to currently available 
methods, these diagnostic footprints do not require additional data for ploidy assignments, such as the 
detection of additional SVs on non-disomic chromosomes or comparison of depth-of-coverage values 
with a control - both of which are challenging to obtain in single cells. These footprints may be 
leveraged to study chromosome-specific aneuploidies as well as cellular ploidy.   
 
We present the following evidence for the accuracy of these diagnostic footprints: When applied to 
RPE cells, our framework identified a chromosome arm-level CNA, particularly loss of 13q in C7, 
and additionally detected a gain of a large portion of 10q in RPE-1. As can be clearly seen in Fig. 
2CD, the 13q-arm in C7 showed a 1:0 strand ratio consistent with monosomy, whereas the gained 10q 
region in RPE-1 exhibited 2:1 and 3:0 strand ratios consistent with trisomy (Table S4). All other 
autosomes showed prevalence of 1:1 and 2:0 strand ratios consistent with the near-diploid karyotype 
of the RPE lines10,19. The previously published karyotypes10,19 of C7 and RPE-1 confirmed monosomy 
13 and gain of a large region on 10q, respectively (Table S3). 
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2.3 Construction of BM510: an RPE cell line showing genomic 
instability 
To demonstrate the power of scTRIP to detect diverse classes of somatic SV we generated the BM510 
cell line. To this end, we employed the CAST approach, which we previously established to transform 
parental RPE-1 cells20. Here, we subjected TP53-/- (knock-out generated using zinc finger 
nucleases20) hTERT-RPE1 cells20 to siRNAs against the mitotic-spindle-associated protein Astrin21 
(Ambion) for 72 hours. Transfected cells were sorted using a MoFlo Legacy cell sorter (Beckman 
Coulter Inc.) equipped with a 100µm nozzle. After single cell sorting into 96-well plates, cells were 
grown into colonies, and then subjected to soft agar culture treatment (consisting of 0.5% bottom 
layer agar and 0.35% top layer agarose) to assay for in vitro transformation. The anchorage-
independently growing cells were recovered from 96-wells, and re-cultured on 6-well plates. Single 
colonies were then isolated and grown, one of which yielded the BM510 cell line. In the context of 
our CAST screen, we subjected BM510 to low-coverage bulk WGS (<1x coverage) and verified the 
presence of somatic copy-number abnormalities. Subsequent single cell analysis of BM510 by scTRIP 
revealed a high level of genomic instability in this line, with many de novo formed and clustered SVs 
seen in individual cells (see main text; and e.g. Figs. 3, 4). 

2.4 Temporal ordering of SVs in single cells using the infinite 
sites assumption  
We used the infinite sites assumption36 to infer the temporal ordering of SVs affecting the same 
haplotype in single cells. The assumption made is that the probability of two independent internal SV 
breakpoints occurring at the exact same genomic position, and on the same haplotype, is zero. The 
theory and practical applications of this assumption are detailed in Li et al. For example, copy-number 
(CN) steps >1 (where a CN step refers to the magnitude of change in copy number at each breakpoint 
location) are, according to the infinite sites assumption, resulting from Del and Dup events that 
overlap with previously formed SVs (for examples, see Fig. S15). By comparison, newly formed SVs 
result in CN steps of 0, -1 or 1. While previously developed for bulk WGS data36, we employed 
infinite sites assumption to infer the temporal ordering of overlapping SVs falling onto the same 
chromosome-length haplotype in single cells.  
 
Application of the infinite sites assumption enabled us to predict a plausible temporal ordering of SVs 
in most cells showing more than one SV on the same haplotype (Fig. S15). In one case, we uncovered 
the formation of multiple inverted and lost fragments resulting in 12 SV breakpoints on the same 
chromosome 4 homolog/haplotype (Fig. 4G), indicative for a one-off rearrangement burst 
(chromothripsis39) in a cell that additionally exhibited SVs on chromosome 8, 9, and X. In several 
other cases, the clustered rearrangements appeared to have formed through successive rounds of SV 
formation affecting the same homolog (Fig. S15). This included cells where additional SVs were 
inferred to precede and succeed BFB cycle formation on the same homolog. These analyses indicate 
that via its ability to resolve SVs by whole-chromosome haplotype, scTRIP enables inference of 
sequentially arising and one-off complex rearrangement processes in single cells. 



 
 

35 
 

2.5 Verification of SVs and karyotypes inferred by single cell 
sequencing in PDX-derived T-ALL samples 
To verify the clonal and subclonal SV landscapes identified by scTRIP in the T-ALL samples, we 
investigated orthogonal datasets. Classical karyotyping of T-ALL samples P33 and P1 was pursued 
during diagnosis, at German study centers in the cities of Kiel and Gießen, respectively. We 
additionally performed exome-capture sequencing and reanalyzed recently generated exome 
sequencing data22 from P33 and P1. These included samples taken during initial diagnosis, remission 
(interpreted as ‘normal’), and relapse23, enabling verification of scTRIP based karyotyping. These data 
additionally enabled us to compare CNAs seen during relapse with those present at initial diagnosis as 
well as with germline copy-number variants22, which confirmed the presumed somatic status of these 
CNAs. 
 
P33 whole exome sequencing data (number of reads aligned on exonic sequence per exome capture 
experiment: 60,919,787-63,897,672) were generated as described previously22, following alignment to 
the human reference (hg19) using bwa24. Alignment files were sorted and indexed using samtools25. 
Quality control was pursued using Alfred (https://tobiasrausch.com/alfred), requiring at least 80% of 
all exonic sequence targets seen with >20x coverage. We calculated the coverage for each exonic 
target region requiring a minimum phred-scaled mapping quality of 20 using the ‘count_dna’ 
subcommand of Alfred. Binned coverage values were GC-normalized and adjusted by their respective 
coverage in the remission sample. Besides the normalized read-depth signal, we also called SNPs 
using FreeBayes26. To de-noise these raw SNP calls and their respective allele frequency, we phased 
all heterozygous SNPs present in the remission sample against the 1000 Genomes Project27 SNP 
reference panel using Eagle228. Phased, heterozygous germline SNPs were annotated with their 
variant allele frequency in the matched tumor genome to corroborate read-depth based CNA calls. We 
then utilised read-depth signal and SNP variant allele frequencies to verify, or invalidate, CNA calls 
made by our scTRIP framework. De novo calling from the whole-exome data was pursued for large 
CNAs >1Mb in size. In order to verify smaller CNAs we plotted the read depth signal for the inferred 
variant site and for flanking regions allowing verification of scTRIP based CNA calls. Bioconda29 was 
used to install the aforementioned tools. To verify DNA rearrangements in P1, we utilized mate-pair 
sequencing30 to confirm a one-off complex SV on 6q as well as a copy-number balanced inversion at 
14q32. We performed SV detection using Delly9. 
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