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Abstract: Structural variation (SV), where rearrangements delete, duplicate, invert or 
translocate DNA segments, is a major source of somatic cell variation. It can arise in rapid 
bursts, mediate genetic heterogenity, and dysregulate cancer-related pathways. The challenge to 
systematically discover SVs in single cells remains unsolved, with copy-neutral and complex 
variants typically escaping detection. We developed single cell tri-channel-processing (scTRIP), 
a computational framework that jointly integrates read depth, template strand and haplotype 
phase to comprehensively discover SVs in single cells. We surveyed SV landscapes of 565 single 
cell genomes, including transformed epithelial cells and patient-derived leukemic samples, and 
discovered abundant SV classes including inversions, translocations and large-scale genomic 
rearrangements mediating oncogenic dysregulation. We dissected the ‘molecular karyotype’ of 
the leukemic samples and examined their clonal structure. Different from prior methods, 
scTRIP also enabled direct detection and discrimination of SV mutational processes in 
individual cells, including breakage-fusion-bridge cycles. scTRIP will facilitate studies of clonal 
evolution, genetic mosaicism and somatic SV formation, and could improve disease 
classification for precision medicine. 
 
Cancer is largely a disease of the genome, which is caused by the clonal expansion of cells driven by 
mutation and selection. SVs represent the leading class of somatic driver mutation in different cancer 
types1,2. They comprise copy-number alterations (CNAs) and copy-balanced SVs mediating gene 
amplification, disruption, fusion, or enhancer hijacking3–5. SVs can arise in short evolutionary bursts 
through a variety of mechanisms, can precipitate further rearrangements during periods of extensive 
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genomic instability, lead to vast genetic heterogeneity contributing to disease development and 
metastasis, and affect therapy responses6–9. A comprehensive understanding of the extent and nature 
of SVs in single cells is imperative to elucidate clonal evolution and mutational dynamics, and to 
unravel aberrant clonal expansions in normal and cancerous tissues10,11. 
  
Important challenges have so far limited SV studies in genetically heterogeneous contexts. Methods 
for discovering different SV classes depend on the detection of discordantly aligned paired-end or 
split reads12. These methods require ≥20-fold genome coverage for clonal, and vastly higher coverage 
for subclonal SV discovery13. The exception is read-depth analysis, which can be pursued at lower 
coverage10, but which is restricted to detecting only CNAs. Translocations, inversions and complex 
rearrangements therefore largely escape detection in subclones, despite their known relevance in 
cancer and the relationship between complex rearrangement formation and disease prognosis2,5,14. 
While single cell analyses could help overcome these limitations15, scalable methods for single cell 
SV detection are likewise only suited for CNAs16–18. The systematic discovery of additional SV 
classes has been limited by the requirement to obtain uniformly high coverage in each cell using 
whole genome amplification (WGA)17, which can lead to read chimeras confounding SV calling. And 
while read chimera can be filtered when sequencing single cells to deep coverage19,20, SV surveys 
across tens to hundreds of cells using such deep sequencing approach would lead to prohibitive costs.  
 
Here we describe a computational approach termed scTRIP (single cell tri-channel processing) for 
systematic SV discovery in single cells. scTRIP leverages Strand-seq, a preamplification-free single 
cell technique based on labeling non-template strands during DNA replication21, which generates 
strand-specific read data and is suitable for SNP haplotype phasing22. While Strand-seq has been used 
to identify polymorphic (germline) inversions based on changes in read orientation21,23, efforts to 
exploit strand-specific reads for characterizing additional somatic SV classes and to deconvolve 
subclonal SV heterogeneity have been lacking. scTRIP now unlocks the full potential of Strand-seq, 
rendering a wide variety of SV classes accessible to systematic single cell studies. It does so using a 
joint calling framework that integrates three data layers - depth-of-coverage, read orientation, and 
haplotype phase - from strand-specific data. This enabled us to build complete SV landscapes in 
single cells, measure SV mutational processes and characterize somatic heterogeneity in leukemic 
samples. Distinct from prior approaches that characterize somatic SVs, scTRIP detects variants 
without requiring SV breakpoint-traversing paired or split reads, which enables robust discovery of 
somatic SVs at unprecedented scale using low-pass single cell sequencing. 
  
Results 
scTRIP enables systematic discovery of a wide variety of SV classes in single cells 
The underlying rationale of scTRIP is that each class of SV can be identified via a specific ‘diagnostic 
footprint’. These diagnostic footprints capture the co-segregation patterns of rearranged DNA 
segments made visible by sequencing single strands of each chromosome in a cell, as follows: During 
S-phase, the DNA double strand unwinds, and the two resulting single strands (Watson [‘W’] and 
Crick [‘C’]) act as templates for DNA replication. In Strand-seq, newly replicated strands incorporate 
Bromodeoxyuridine (BrdU)21, which acts as a traceable label for these non-template strands (see Fig. 
1A depicting the Strand-seq protocol)24. During mitosis, each of the two daughter cells receive one 
copy of each chromosomal homolog through independent and random chromatid segregation21. The 
labeled nascent strand is then removed, and the segregation pattern of each chromosomal segment is 
analyzed following strand-specific sequencing (Fig. 1B). scTRIP combines this strand-specific 
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segregation information with read depth and haplotype phase information to capture newly-defined 
diagnostic footprints that characterize each SV class (Fig. 1C-F).  
 
The diagnostic footprint of deletions (Del) is defined by read depth losses affecting a single 
haplotype, coupled with unaltered read orientation (Fig. 1B,D and Table S1). Duplications (Dup) are 
characterized by haplotype-specific gains with unaltered orientation (Fig. 1D, right panel). In the 
case of balanced inversions (Inv), read orientation is altered with the re-oriented reads mapping to a 
single haplotype at constant read depth (Fig. 1B,E). Re-oriented reads co-locating with a read depth 
gain on the re-oriented haplotype signify an inverted duplication (InvDup; Fig. 1E, right panel). In 
the case of inter-chromosomal SVs, physically connected segments will co-segregate during mitosis, 
allowing the discovery of translocations. This is because segments originating from different 
chromosomes will now be adjacent to each other and thus will receive the same non-template strand-
label during replication (Fig. 1B). Segments showing correlating strand states in different cells 
without a change in read depth characterize balanced translocations (Fig. 1F), whereas unbalanced 
translocations exhibit a similar footprint in conjunction with a read depth gain of the affected 
haplotype (Fig. S1). Finally, altered cellular ploidy states also exhibit their own diagnostic footprints 
(Fig. S2). 
 
To exploit these diagnostic footprints we developed a joint calling framework enabling the systematic 
discovery of SVs on a cell-by-cell basis. Described in detail in the Supplementary Information file, 
the framework first aligns, normalizes and places strand-specific read data into genomic bins, and 
assigns template strand states and chromosome-scale haplotypes for all cells (Fig. S3). It then 
identifies putative SVs by segmentation (Methods), and using a Bayesian model estimates genotype 
likelihoods for each segment and each single cell (Fig. 1G). The model integrates read depth, strand 
and haplotype phase signals to predict the most probable SV class described by our diagnostic 
footprints (Fig. S4). By performing SV discovery in a haplotype-aware manner, our joint calling 
framework also combines signals across cells (Methods) to sensitively detect subclonal SVs in a 
heterogeneous cell population. Finally, by analyzing adjacent SVs arising on the same haplotype it 
can unravel complex rearrangements, an abundant class of somatic structural variation in cancer25,26. 
As a first benchmark, we performed simulation experiments and observed excellent recall and 
precision after randomly placing SVs into cell populations in silico, even down to a single cell (Fig. 
S5). 
 
SV landscapes of RPE cells uncovered by scTRIP 
To investigate single cell SV landscapes using scTRIP we next generated strand-specific DNA 
sequencing libraries from telomerase-immortalized retinal pigment epithelial (RPE) cells. We used 
hTERT RPE cells (RPE-1), commonly used to study patterns of genomic instability20,27–29, and 
additionally C7 RPE cells, which show anchorage-independent growth used as an indicator for 
cellular transformation30. Both RPE-1 and C7 cells originate from the same anonymous female donor. 
We sequenced 80 and 154 single cells for RPE-1 and C7, respectively, to a median depth of 387,000 
mapped non-duplicate fragments (Table S2 and Methods). This  amounts to only 0.01X genomic 
coverage per cell. 
 
We first searched for Dels, Dups, Invs and InvDups. Following read normalization (Fig. S6), we 
identified 54 SVs in RPE-1, and 53 in C7 cells (Table S3). 22 SVs were present only in RPE-1, and 
21 were present only in C7, and thus likely correspond to sample-specific SVs (i.e. SVs that formed 
somatically or in the cultured cells rather than corresponding to germline variants; hereafter simply 
referred to as ‘somatic SVs’). Two representative SVs are shown in Fig. 2A, including a 1.4 
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Megabase (Mb) somatic Dup seen in RPE-1, and a 800 kb somatic Del detected in C7. While all but 
one of the Dels and Dups events were unique to RPE-1 and C7, Inv and InvDup events, including an 
Inv on 17p shown in Fig. 2B, were largely shared between both. These variants mapped to sites of 
known inversion polymorphisms23 (Table S3). We also identified chromosome arm-level CNAs, 
including deletion of 13q in C7, and duplication of a large 10q region in RPE-1. The 13q-arm showed 
a 1:0 strand ratio diagnostic for monosomy (Fig. S2 and Fig. 2C), whereas the gained 10q region 
exhibited 2:1 and 3:0 strand ratios diagnostic for trisomic regions (Fig. 2D and Table S4).  
 
We benchmarked scTRIP by different means. First, we attempted to verify SVs present with 
≥30% variant allele frequency (VAF) using bulk genome sequencing, which confirmed 12/12 
(100%) of somatic SVs (≥30% VAF) in C7, and 15/16 (94%) in RPE-1 (Table S5). Second, we 
examined sensitivity, and successfully identified 85% of all SVs ≥200kb in size out of those 
detected when employing the DELLY SV caller31 on the bulk genomic sequence data (Table S3). 
Third, we used an in silico cell mixing approach, focusing on validated SVs that are near clonally 
present (VAF>90%) in C7 or RPE-1 and absent in the other, to assess the ability of scTRIP to identify 
subclonal SVs. This analysis showed that scTRIP is able to detect SVs at very low levels of VAF 
(<1% VAF), down to individual cells (Fig. S7). Fourth, we compared our approach with a prior 
computational method for CNA-profiling in single cells18. scTRIP outperformed this method even 
when limiting analyses to CNAs (Fig. S8).  
 
Dissecting complex cancer-related translocations in single cells 
To assess the ability of scTRIP to detect a wider diversity of SV classes, we subjected RPE-1 cells to 
the CAST protocol28: we silenced the mitotic spindle machinery (Supplementary Information) to 
construct an anchorage-independent line (BM510) likely to exhibit genome instability. We sequenced 
145 single BM510 cells detecting overall 67 SVs when searching for Dels, Dups, Invs and InvDups 
events (Table S3). Additionally, several DNA segments did not segregate with the respective 
chromosomes they originated from, indicating inter-chromosomal SV formation (Fig. 3A). We 
performed translocation detection with scTRIP searching for diagnostic co-segregation footprints 
(Fig. 3B), and identified four translocations in BM510 (Fig. 3B,C). We additionally subjected RPE-1 
and C7 to translocation detection, identifying one translocation each (Fig. 3D and Table S6).  
 
One translocation was shared between RPE-1 and BM510 and involved the aforementioned gained 
10q segment that underwent unbalanced translocation with a chromosome X haplotype (Fig. 3B and 
Fig. S9). We leveraged the footprints of sister chromatid exchange events21 to orient and order the 
segment (Supplementary Information), which placed the 10q gain to the telomeric tip of Xq, 
consistent with the published RPE-1 spectral karyotype27 (Fig. 3C). In BM510, scTRIP also 
uncovered balanced reciprocal translocations involving 15q and 17p (Fig. 3B,C). Notably, a de novo 
somatic inversion was additionally detected on the same 17p haplotype, which shared one of its 
breakpoints with the reciprocal translocation (Fig. 3C and Supplementary Information). Since these 
SVs shared one of their breakpoints, it is likely that both arose jointly, potentially involving a 
complex rearrangement process. Analysis of the locus revealed that the inversion encompassed the 
TP53 gene, and upon translocating fused the 5′ exons of TP53 to coding regions of the NTRK3 
oncogene32 (Fig. 3E). This suggests that scTRIP can reveal fusion genes using single cell sequence 
data.  
 
Bulk whole genome sequencing (WGS) and RNA-Seq (Methods) analyses revealed excellent 
accuracy and specificity of our framework. We validated all translocations (100%), with 4/5 
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recapitulated by WGS and the remaining der(X) t(X;10) event by the existing karyotype data27. No 
additional translocation was detected in the deep sequencing data, indicating excellent sensitivity of 
scTRIP. WGS failed to verify the der(X) t(X;10) unbalanced translocation because the chrX 
breakpoint resides in highly repetitive telomeric DNA (resulting in ambiguous alignments hampering 
read pair analysis), whereas scTRIP uses mitotic co-segregation patterns not affected by repetitive 
breakpoints (Fig. S10). We also observed increased expression of the duplicated haplotype in the 
context of the der(X) t(X;10) event, corroborating our haplotype placements (Fig. S11). Finally, we 
verified the presence of the complex rearrangement at 17p, and uncovered expressed NTRK gene 
fusion transcripts exclusive to BM510 (Fig. 3D,E). Thus, scTRIP enables the haplotype-resolved 
discovery of translocations by single cell sequencing with high accuracy and sensitivity, which 
included detection of a translocation missed by bulk WGS. 
 
Single cell dissection of a complex DNA rearrangement process 
Cancer genomes frequently harbor clustered SVs arising via complex rearrangements, which facilitate 
accelerated cancer evolution33. One process leading to such SVs are breakage-fusion-bridge cycles  
(BFBs)34–39. BFBs are initiated by the loss of a terminal chromosome segment, which causes newly 
replicated sister chromatids to fuse. The resulting dicentric chromosome will lead to a chromosomal 
bridge, the resolution of which via DNA breakage can initiate a new BFB14. Thus BFBs successively 
duplicate DNA segments in inverted orientation (i.e. generate InvDups), typically with an adjacent 
deletion of the terminal chromosome segment of the same haplotype (i.e. terminal deletion, here 
referred to as ‘DelTer’). BFBs rising to high VAF can be inferred from bulk WGS by analyzing ‘fold-
back inversions’ (read-pairs aligning close to one another in inverted orientation)34. Owing to high 
coverage requirements, fold-back inversions cannot be systematically tracked in single cells. But we 
reasoned that scTRIP could provide the opportunity to directly study BFB formation in single cells. 
  
To investigate BFBs we first turned to C7, in which fold-back inversions were previously described28. 
scTRIP located clustered InvDups on the 10p-arm in 152 out of 154 sequenced cells (Fig. 4). Closer 
analysis of 10p showed an amplicon with ‘stepwise’ InvDup events with an adjacent DelTer on the 
same haplotype, consistent with BFBs (Fig. 4A-C and Fig. S12). The remaining two cells lacking 
InvDups, notably, showed a larger DelTer affecting the same 10p segment (Fig. 4C). By aggregating 
sequencing reads across cells, we identified 8 discernable segments along chromosome 10, which 
included the 10p amplicon (comprising six copy-number segments) and its adjacent regions (the 10p 
terminal region, and the centromere-proximal region) (Fig. 4B). To further characterize the genetic 
heterogeneity seen at 10p, we inferred the cell-specific copy-number of all 8 segments (Fig. 4D). This 
revealed at least three distinct groups of cells with respect to 10p copy-number: (i) A large group 
presenting ‘intermediate’ copy-number with 100-130 copies detected for the highest copy-number 
segment (referred to as the ‘major clone’). (ii) Two cells that lost the corresponding 10p region 
through a DelTer, (iii) A single cell exhibiting vastly higher copy-number (~440 copies), which may 
have undergone additional BFB cycles (Fig. 4C and Fig. S13).  
 
Additional SVs identified in C7 provided further insights into the rearrangements occurring in the 
major clone: Namely, we detected an unbalanced translocation stitching a duplicated 15q segment to 
the 10p amplicon (Fig. 4C and Table S6). The duplicated segment encompassed the 15q telomere 
(Fig. 4C), which may have stabilized the amplicon to terminate the BFB process. In further support of 
C7 containing at least three groups of cells with respect to 10p structure, the unbalanced translocation 
was absent from the two cells harbouring the extended DelTer, whereas the translocated region 
became further amplified in the cell with excessive 10p copy-number (Fig. 4C). A model of the 
temporal sequence of rearrangements leading to the major clone is shown in Fig. 4E. These data 
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underscore the ability of scTRIP to characterize BFB cycles for which direct measurement by single 
cell sequencing was not possible previously. 
 
 
 
Abundant BFB formation in anchorage-independent RPE cells  
The frequency of BFB-mediated SV formation in somatic cells is unknown. Since scTRIP can 
systematically detect InvDup and DelTer footprints, we searched all sequenced RPE cells (379 in 
total) (Methods) and identified 15 additional cells exhibiting a BFB formation signature. Out of these, 
11 displayed the ‘classical’ BFB footprint - an InvDup flanked by DelTer on the same homolog with 
no other SV present on the homolog (Fig. 4F and Fig. S14). The remaining four instances showed 
additional rearrangements on the same homolog as the BFB-associated SV. We tested whether 
InvDup-DelTer footprints coincided by chance by searching for structures where an InvDup on one 
haplotype was flanked by a DelTer on the other haplotype. Amongst the 379 cells, InvDup-DelTer 
footprints always occurred on the same haplotype, consistent with the well-known BFB model38. 11 
out of the 15 InvDup-DelTer events occurred in BM510 affecting 8% (11/145) of the sequenced cells 
and 4 occurred in C7 affecting 3% (4/154) of the cells. No InvDup-DelTer footprints occurred in 
RPE-1 cells (0%; 0/80) and thus BFBs occurred exclusively in the transformed, anchorage-
independently growing cells. Copy-number estimates of the InvDup regions ranged from 3 to 9, 
indicating that up to three BFB cycles occurred in these cells (Fig. 4F). 
 
Interestingly, all of these 15 InvDup-DelTer footprints were singleton events detected in isolated cells 
(i.e. none were shared across more than one cell) and hence are likely to represent chromosomes with 
sporadically formed and potentially ongoing BFB cycles (Fig. S14). We reasoned that SVs identified 
in individual cells can serve as a proxy for currently active mutational processes. Using scTRIP, we 
systematically searched for other abundant SV mutational patterns in the RPE cell line in which we 
had induced genomic instability (BM510). We located 60 chromosomes with evidence of mitotic 
errors causing large (megabase-scale) deletion or duplication. Of these, 35/60 (58%) affected an entire 
homolog arm, 17/60 (28%) involved the tip of a homolog (terminal loss or gain) but not the whole 
arm, and 7/60 (12%) corresponded to whole homolog aneuploidy (monosomy or trisomy). The 
unifying characteristic of these abundant SV classes is that they can all result from mitotic segregation 
errors and reflect ongoing chromosome instability40. 
 
Further underscoring this, nine cells showed multiple clustered SVs affecting the same haplotype. 
This included those four cells showing the InvDup-DelTer footprint and at least one additional  SV. 
By employing the infinite sites assumption37, we inferred the relative ordering of SVs occurring on the 
same haplotype in these cases, identifying instances where the formation of additional SV preceded 
BFB formation, as well as such were the formation of additional SV succeeded BFB formation (Fig. 
S15 and SupplementaryMaterial). This analysis also revealed a single cell exhibiting multiple 
reoriented and lost fragments, all on the same haplotype, resulting in 12 SV breakpoints affecting a 
single homolog. This rearrangement potentially resulted from a one-off rearrangement burst 
(chromothripsis)41,42 (Fig. 4G). Therefore, scTRIP enables systematic detection of de novo SV 
formation and discrimination of SV mutational processes, including BFBs and other complex 
rearrangements, in single cells. 
 
Constructing the karyotype of a PDX-derived T-ALL sample from 41 single cells 
To evaluate the potential diagnostic value of scTRIP, we next analyzed patient-derived leukemic cells. 
Both balanced and complex SVs are abundant in leukemia, but largely escape detection in single cell 
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studies geared towards CNAs26,41,43. We characterized PDX-derived44 samples from two T-cell acute 
lymphoblastic leukaemia (T-ALL) patients, to investigate the utility of scTRIP to characterize 
leukemic samples. We first focused on P33, a PDX-derived T-ALL relapse from a juvenile patient 
with Klinefelter Syndrome. We sequenced 41 single cells (Table S2) and used these data to 
reconstruct the haplotype-resolved karyotype of the major clone at 200kb resolution (Fig. 5A). While 
most chromosomes were disomic, we identified the typical XXY karyotype (Klinefelter Syndrome) 
and observed trisomies of chromosomes 7, 8, and 9. We further detected 3 regions of CNN-LOH 
characterized by haplotype-losses in the presence of constant read depth and orientation (Fig. S16 and 
Table S7). Furthermore, we observed 6 focal CNAs, 5 of which affected genes previously reported to 
be genetically altered in and/or ‘driving’ T-ALL43,45–47, including deletions of PHF6, RPL2 and CTCF 
sized 300kb and larger, as well as homozygous deletions of CDKN2A and CDKN2B (Fig. 5A, Fig. 
S17 and Table S3). We also identified a t(5;14)(q35;q32) balanced translocation (Fig 5A and Table 
S6) - a recurrent rearrangement in T-ALL known to target TLX3 for oncogenic dysregulation48. While 
few individual cells exhibited karyotypic diversity (Fig. S17), the majority of cells supported the 
karyotype of the major clone (Fig. 5B).  
 
We attempted verification of this karyotype with classical (cytogenetic) karyotyping obtained from 
primary T-ALL during diagnosis - the current clinical standard to genetically characterize T-ALL. 
Although this verified the duplications of chromosomes X, 7, 8 and 9, classical karyotyping failed to 
detect all the focal CNAs, and failed to capture the t(5;14)(q35;q32) translocation previously designed 
as ‘cryptic’ (i.e. ‘not detectable by karyotyping’)49. To verify the additional SVs detected by scTRIP, 
we next employed CNA profiling by bulk capture sequencing P33 at diagnosis, remission and 
relapse50 (Supplementary Information), as well as expression measurements. These experiments 
confirmed all (6/6, 100%) focal CNAs (Table S3), and verified TLX3 dysregulation (Fig. S18) 
supporting the occurrence of a t(5;14)(q35;q32) balanced translocation. The haplotype-resolved 
karyotype inferred via scTRIP comprised SVs down to 200kb in size, located a ‘cryptic’ translocation 
missed by clinical karyotyping, and was built using sequence data from 41 cells, amounting to only 
~0.9× cumulative genomic coverage.  
 
scTRIP uncovers previously unrecognized DNA rearrangements in a PDX-derived T-ALL 
We next turned to a second T-ALL relapse sample obtained from a juvenile female patient (P1). We 
sequenced 79 single cells of P1 (Table S2) and discovered two subclones, each represented by at least 
25 cells (Fig. 5C and Table S3). We first focused on the clonal SVs, which included a novel 2.6Mb 
balanced inversion at 14q32 (Fig. 6A). Interestingly, one of the inversion breakpoints fell into the 
exact same 14q region affected by the P33 t(5;14)(q35;q32) translocation (Fig. 6B). Prior studies have 
shown that, depending on their precise breakpoint locations, t(5;14) translocations can target TLX3 
and NKX2-5 oncogenes at 5q35 by repositioning enhancer elements at 14q35 into the vicinity of these 
oncogenes43,51.  
 
The observation that both T-ALL patients showed balanced SVs affecting the same region motivated 
further analyses. This revealed that the novel 14q32 inversion we located in P1 juxtaposed the 
enhancer element-containing region 3′ of BCL11B48,51 into the immediate vicinity of the T-cell 
leukemia/lymphoma 1A (TCL1A) oncogene (Fig. 6A and Fig. S18). Prior studies reported different 
enhancer-juxtaposing rearrangements in T-cell leukemia/lymphoma, as well as in T-ALL, resulting in 
TCL1A over-expression52,53, and we thus pursued RNA-seq to investigate differential expression in 
P1. This indeed confirmed TCL1A as the most highly overexpressed gene in P1 (>160-fold 
overexpression compared to five arbitrarily chosen T-ALLs; P=1.8E22 Wald test54, Benjamini-
Hochberg correction; Fig. 6C, left panel). We reasoned that if TCL1A dysregulation had resulted as a 
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consequence of the inversion, then TCL1A overexpression would be restricted to the rearranged 
haplotype. Leveraging scTRIP’s haplotype-resolved SV assignments, we performed allele-specific 
expression analyses, which showed that TCL1A overexpression indeed arose only from the haplotype 
carrying the inversion (Fig. 6C, right panel). These data implicate a novel inversion in driving 
oncogene expression. Further studies are needed to assess recurrence of this inversion in other T-ALL 
or T-cell malignancies, and to investigate the diversity of oncogene-dysregulating SVs involving the 
BCL11B enhancer. Due to its ability to perform scalable discovery of balanced SVs by shallow 
sequencing, scTRIP would be well-placed to investigate these questions in the context of larger 
patient cohorts. 
 
We next analyzed subclonal SVs in P1, and discovered a series of highly clustered subclonal 
rearrangements affecting a single 6q haplotype (VAF=0.32). These rearrangements comprised two 
Invs, an InvDup, a Dup, and three Dels, resulting in overall 13 detectable breakpoints spanning nearly 
90 Mb of 6q (Fig. 6D,E). All cells exhibiting SVs at 6q showed evidence for the full set of 13 
breakpoints. Furthermore, the copy-number profile oscillated between only three copy-number 
states41, and we observed islands of retention and loss in heterozygosity41 (Fig. 6F) - a rearrangement 
pattern that is reminiscent of chromothripsis41,42. To corroborate these data, we performed long 
(4.9kb) insert size mate-pair sequencing in bulk to deep (165x) physical coverage. While read depth 
alterations were barely discernible for this subclonal complex rearrangement, deep mate-pair 
sequencing confirmed all 13 subclonal SV breakpoints - thus verifying a subclonal rearrangement 
burst consistent with chromothripsis (Fig. 6G). These data underscore the ability of scTRIP to reveal 
subclonal complex SVs likely to be missed by standard bulk WGS42.  
 
Discussion 
scTRIP enables the systematic detection of a wide variety of SVs in single cells using a joint calling 
framework that integrates read depth, strand, and haplotype phase. It can call subclonal SVs down to 
VAF<1% and identify SV formation processes acting in single cells, addressing unmet needs of SV 
detection methods10,13,26,55,56.  Previous single cell studies investigating distinct SV classes have done 
so by sequencing only relatively few selected cells deeply after WGA10,17,57. And while prior SV 
detection efforts using Strand-seq were limited to germline inversions23, the computational advance 
presented here enables systematic discovery of CNAs, balanced and unbalanced translocations, 
inversions, inverted duplications and the outcomes of complex SV formation processes including 
BFBs and chromothripsis - all in single cells. Notably, scTRIP is further able to resolve repeat-
embedded SVs (exemplified by an unbalanced translocation exhibiting a breakpoint in telomeric 
DNA), a class of SV that remains largely inaccessible to standard WGS in bulk. Moreover, SVs 
detected by scTRIP are haplotype-resolved, which helps to reduce false positive calls and allows 
integrating allele-specific gene expression data57,58.  
  
We showcase the ability of scTRIP to measure SV formation processes by identifying BFB cycles in 
up to 8% of cells from transformed RPE cells, indicating that SV formation via BFB cycles is 
markedly abundant in these cells. Although  initially described ~80 years ago38, scTRIP now allows 
the direct and unbiased measurements of BFBs in individual somatic cells. BFB cycles were the most 
abundant SV formation process identified after chromosomal arm-level and terminal loss/gain events, 
all of which can result from chromosome bridges40,59. BFB cycles occur in a wide variety of cancers14, 
can precipitate other mutation processes such as chromothripsis37, and correlate with disease 
prognosis60. BFB cycles have also been reported outside of somatic cells, that is, in cleavage-stage 
embryos following in vitro fertilization, as revealed by hybridization-based single cell analysis58. It is 
estimated that 20% of all somatic deletions, and >50% of the entirety of somatic SVs in cancer 
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genomes25,26, arise as complex DNA rearrangements. By enabling direct and robust measurement of 
these rearrangement processes in single cells, scTRIP will facilitate future investigations on the role of 
complex SVs in clonal evolution. 
 
Our study also exemplified a potential value for disease classification by surveying balanced and 
unbalanced SVs, complex SVs, and karyotypic heterogeneity in patient-derived leukemic cells. We 
constructed the molecular karyotype of a T-ALL sample at 200kb resolution using 41 single cells, 
amounting to only 0.9x genomic coverage. This revealed submicroscopic CNAs and oncogenic DNA 
rearrangements invisible to cytogenetic methods currently used in the clinic. Classical cytogenetics is 
typically pursued for only a limited number of metaphase spreads per patient and normally fails to 
capture low levels of karyotypic heterogeneity accessible to scTRIP. In one of the T-ALL patients we 
discovered a subclonal chromothripsis event, highlighting potential utility for disease prognosis, since 
chromothripsis has been associated with dismal outcome in leukemia61. Studies of aberrant clonal 
expansions in healthy individuals10 and lineage tracing in cancer patients62 may also be facilitated by 
scTRIP in the future. Another potential application area is in rare disease genetics, where scTRIP may 
help resolve “unclear cases” by widening the spectrum of accessible SVs leading to somatic 
mosaicism56. Furthermore, our framework can be used to assess genome integrity in conjunction with 
cell therapy, gene therapy, and therapeutic CRISPR-Cas9 editing, which can result in unanticipated 
(potentially pathogenic) SVs63,64. The ability of scTRIP to generate high-resolution karyotypes could 
be employed to detect the presence of such unwanted SVs to address safety concerns pertaining to 
these future therapies.  
 
scTRIP utilizes strand-specific data generated by Strand-seq, which requires labeling chromosomes 
during replication. Therefore, non-dividing, apoptotic, or fixed cells cannot be sequenced. However, 
many key cell types are naturally prone to divide or can be cultured, which for example includes fresh 
or frozen stem and progenitor cells, cancer cells, cells in regenerating or embryonic tissues, iPS cells 
and cells from diverse model systems including organoids. Moreover, in the future the computational 
framework underlying scTRIP could be used with strand-specific methods generating reads in the 
absence of cell division65. 
 
Our approach enables systematic studies of somatic SV landscapes with much less sequence coverage 
than WGA-based single cell methods. We demonstrated robust SV discovery using ~2000-fold less 
reads than required for prior read-pair or split-read based methods12. Single cell sequencing to deep 
coverage, using WGA, can enable mapping somatic SVs <200kb in size, and thus will remain useful 
for detecting small CNAs or retrotransposons. Compared to scTRIP, however, WGA-based single cell 
analyses are subject to the limitations of paired-end analyses, including susceptibility to allelic 
dropouts, difficulties in detecting repeat-embedded SVs, limited scalability and high costs17. The 
combined reagent costs for Strand-seq are ~15$ per cell, and the protocol is readily scalable (see 
Methods) meaning scTRIP enables systematic studies of SV landscapes in hundreds of single cells. 
Low-depth methods for CNA profiling in single cells, for which scalable methods exist, detect CNAs 
of 1 to 5 Mb in size16,18. These methods show promise for investigating subclonal structure, 
particularly in cancers with abundant CNAs, but miss key SV classes and fail to identify or 
discriminate between different SV formation processes.  
 
In conclusion, the joint calling framework of scTRIP enables systematic SV landscape studies in 
single cells to decipher derivative chromosomes, karyotypic diversity, and to directly investigate SV 
formation processes. This provides important value over existing methods, and opens up new 
possibilities in single cell sequencing and genetic heterogeneity studies. 
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phenome Archive (EGA), and the European Nucleotide Archive (ENA) [accessions: PRJEB30027, 
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research upon acceptance of the paper). To ensure our code is available during peer review process, 
we have uploaded all code that is not yet available at github as a Related Manuscript ZIP file. 
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Cell Lines and Culture. hTERT RPE-1 cells were purchased from ATCC (CRL-4000) and checked 
for mycoplasma contamination. BM510 cells were generated using the CAST protocol and derived 
from the RPE-1 parental line (as previously-described in Mardin et al. 2015, and further detailed in 
the Supplementary Information). C7 cells were acquired from Riches et al 2001. Cell lines were 
maintained in DMEM-F12 medium supplemented with 10% fetal bovine serum and antibiotics (Life 
Technologies). 

 
Ethics Statement. The protocols used in this study received approval from the relevant institutional 
review boards and ethics committees. The T-ALL patient samples were approved by the University of 
Kiel ethics board, and obtained from clinical trials ALL-BFM 2000 (P33; age: 14 years at diagnosis) 
or AIEOP-BFM ALL 2009 (P1; age: 12 years at diagnosis). Written informed consent had been 
obtained from these patients, and experiments conformed to the principles set out in the WMA 
Declaration of Helsinki and the Department of Health and Human Services Belmont Report. The in 
vivo animal experiments were approved by the veterinary office of the Canton of Zurich, in 
compliance with ethical regulations for animal research. 
 
Single cell DNA sequencing of RPE and T-ALL cells. RPE cells and PDX-derived T-ALL cells 
were cultured using previously established protocols28,66. We incorporated BrdU (40µM; Sigma, 
B5002) into growing cells for 18-48 hours, single nuclei were then sorted into 96-well plates using the 
BD FACSMelody cell sorter, and strand-specific DNA sequencing libraries were generated using the 
previously described Strand-seq protocol21,67. The BrdU concentration used was recently shown to 
have no measurable effect on sister chromatid exchanges24, a sensitive measure of DNA integrity and 
genomic instability24. To generate libraries at scale, the Strand-seq protocol was implemented on  a 
Biomek FXP liquid handling robotic system, which requires two days to produce 96 barcoded single 
cell libraries. Libraries were sequenced on a NextSeq5000 (MID-mode, 75bp paired-end protocol), 
demultiplexed and aligned to GRCh38 reference assembly (BWA 0.7.15). High quality libraries 
(obtained from cells undergoing one complete round of DNA replication with BrdU incorporation) 
were selected as described in21,67. Briefly, libraries showing very low, uneven coverage, or an excess 
of ‘background reads’ yielding noisy single cell data were filtered prior to analysis. In a typical 
experiment, ~80% of cells yield high quality libraries reflecting BrdU incorporation in exactly a 
single cell cycle. Cells with incomplete BrdU incorporation or cells undergoing more than one DNA 
synthesis phase under BrdU exposure are identified during cell sorting and thus get only rarely 
sequenced during Strand-seq experiments21,67, typically contributing to less than 10% of sequenced 
cells. Such ‘unusable libraries’ hence do not palpably contribute to experimental costs. 

Chromosome-length haplotype phasing of heterozygous SNPs. Our SV discovery framework 
‘MosaiCatcher’ phases template strands using StrandPhaseR22. The underlying rationale is that for 
‘WC chromosomes’ (chromosomes where one parental homolog is inherited as W template strand and 
the other homolog is inherited as C template strand), heterozygous SNPs can be immediately phased 
into chromosome-length haplotypes (a feature unique to strand-specific DNA sequencing). To 
maximize the number of informative SNPs for full haplotype construction we aggregated reads from 
all single cell sequencing libraries and an internal 100 cell control and performed SNP discovery by 
re-genotyping the 1000 Genomes Project (1000GP) SNP sites68 using Freebayes69. All heterozygous 
SNPs with QUAL>=10 where used for haplotype reconstruction and single cell haplotagging 
(described below). 
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Discovery of deletions, duplications, inversions and inverted duplications in single cells. We 
developed the core workflow of ‘MosaiCatcher’ to enable single cell discovery of Dup, Del, Inv, and 
InvDup SVs. Input data to the workflow are a set of single-cell BAM files from a donor sample, 
aligned to a reference genome. The core workflow performs binned read counting, normalization of 
coverage, segmentation, strand state and sister chromatid exchange (SCE) detection, and haplotype-
aware SV classification. A brief description of each step is provided below, and for additional details 
see Supplementary Information. 
      Binned read counting. Reads for each individual cell, chromosome and strand were binned into 
100kb windows. PCR duplicates, improper pairs and reads with a low mapping quality (<10) were 
removed to count only unique, high-quality fragments. 
    Normalization of coverage. Normalization was performed to adjust for systematic read depth 
fluctuations. To derive suitable scaling factors, we performed an analysis of Strand-seq data from 
1,058 single cells generated across nine 1000GP lymphoblastoid cell lines made available through the 
HGSVC project (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/ 
working/20151203_strand_seq/), and pursued normalization with a linear model used to infer a 
scaling factor for each genomic bin. 
    Joint segmentation of single cells in a population. Segmentation was performed by jointly 
processing strand-resolved binned read depth data across all single cells of a sample, used as 
multivariate input signal with a squared-error assumption70. Given a number of allowed change points 
k, a dynamic programming algorithm was employed to identify the discrete positions of k change 
points with a minimal sum of squared error. Analyzing all cells jointly in this way rendered even 
relatively small SVs (~200kb) detectable once these are present with sufficient evidence in the single 
cell dataset (e.g. seen in enough cells). The number of breakpoints was chosen separately for each 
chromosome as the minimal k, such that using k+1 breakpoints would only yield a marginal 
improvement, operationalized as the difference of squared error terms being below a pre-selected 
threshold (Supplementary Information). 
       Strand-state and SCE detection in individual cells. The interpretation of strand-specific binned 
read counts relies on the knowledge of the underlying state of template strands for a given 
chromosome (WW, CC, or WC). These “ground states” stay constant over the length of each 
chromosome in each single cell, unless they are altered through SCEs21,71. To detect SCEs, we 
performed the same segmentation procedure described above in each cell separately (as opposed to 
jointly across all cells, as for the segmentation). We then inferred putative SCEs by identifying 
changes in strand state in individual cells that are otherwise incompatible with breakpoints uncovered 
by the joint segmentation (Supplementary Information). Leveraging these putative SCEs, we then 
assigned a ground state to each segment (Supplementary Information). To facilitate haplotype-
resolved SV calling, we employed StrandPhaseR72 to distinguish segments with ground state WC, 
where Haplotype 1 is represented by Watson (W) reads and Haplotype 2 by Crick (C) reads, from 
ground state CW, where it is vice versa. 
   Haplotype-aware SV classification. We developed a Bayesian framework to compute posterior 
probabilities for each SV diagnostic footprint, and derive haplotype-resolved SV genotype 
likelihoods. To this end, we modeled strand-specific read counts using a negative binomial (NB) 
distribution, which captures the overdispersion typical for massively-parallel sequencing data 54. The 
NB distribution has two parameters, p and r; the parameter p controls the relationship of mean and 
variance and was estimated jointly across all cells, while r is proportional to the mean and hence 
varies from cell to cell to reflect the different total read counts per single-cell library. After estimating 
p and r, we computed haplotype-aware SV genotype likelihoods for each segment in each single cell: 
For a given ground state (see above), each SV diagnostic footprint translates into the expected number 
of copies sequenced in W and C orientation contributing to the genomic segment (Table S1), which 
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gives rise to a likelihood with respect to the NB model. The fact that our model distinguishes WC 
from CW ground states (see Strand-state and SCE detection above) renders our model implicitly 
whole-chromosome haplotype-aware - a key feature not met by any prior approach for somatic variant 
calling in single cells. In addition to this, we also incorporated the count of W or C reads assignable to 
a single haplotype via overlapping SNPs in the likelihood calculation, and refer to this procedure as 
“haplotagging” (since it involves reads “tagged” by a particular haplotype). We modeled the 
respective counts of tagged reads using a multinomial distribution (Supplementary Information). 
The output is a matrix of predicted SVs with probability scores for each single cell. 
       SV calling in a cell population. Our workflow estimates VAF levels for each SV and uses them to 
define prior probabilities for each SV (Empirical Bayes). In this way, the framework benefits from 
observing SVs in more than one cell, which leads to an increased prior and hence to more confident 
SV discoveries. Our framework adjusts for the tradeoff between sensitively calling subclonal SVs, 
and accurately identifying SVs seen consistently among cells. We parameterized this tradeoff into 
a ‘strict' and ‘lenient’ SV caller, whereby the 'strict' caller optimizes precision for SVs seen 
with VAF ≥5%, and the ‘lenient’ caller targets all SVs including those present in a single cell 
only. Unless stated otherwise, SV calls presented in this study were generated using the ‘strict’ 
parameterization, to achieve a callset that minimises false positive SVs (Supplementary 
Information). We explored the limits of these parameterizations using simulations, by randomly 
implanting Dels, Dups and Invs into single cells in silico. We analyzed 200 single cells per 
simulation, applying coverage levels typical for Strand-seq 21 (400,000 read fragments per cell). 
We observed excellent recall and precisions for SVs ≥1Mb in size when present with >40% 
VAF (Fig. S5). And while we detected a decrease in recall and precision for events present with lower 
VAF, we were able to recover smaller SVs and those with lower VAF down to individual cells (Fig. 
S5). 
 
Single cell dissection of translocations. We discovered translocations in single cells by searching for 
segments exhibiting strand-states that are inconsistent with the chromosomes these segments originate 
from, while being consistent (correlated, or anti-correlated) in strand-state with another segment of the 
genome (i.e., their translocation partner) (Supplementary Information). To infer translocations, we 
determined the strand states of each chromosome in a homolog-resolved manner. In cases where 
strand states appeared to change across a haplotype (because this haplotype exhibited SVs or SCEs), 
we used the majority strand state (i.e. ‘ground state’, see above) to pursue translocation inference. We 
examined template strand co-segregation by generating contingency tables tallying the number of 
cells with equivalent strand states versus those not having equivalent strand states (see Fig. 3B). We 
employed Fisher’s exact test to infer the probability of the count distribution in the contingency table, 
followed by p-value adjustment73. 
 
Characterization of breakage-fusion bridge (BFB) cycles in single cells. To infer and characterize 
BFB cycles in single cells, we first employed our framework with lenient parameterization to infer 
InvDups flanked by a DelTer event on the same homolog/haplotype. We tested whether InvDup-
DelTer footprints resulting from BFB cycles may arise in single cells by chance, by searching for 
structures where an InvDup on one haplotype would be flanked by a DelTer on the other haplotype 
(for instance, an InvDup (H1)-DelTer (H2) event, where H1 and H2 denote different haplotypes). No 
such structures were detected, and InvDup-DelTer footprints thus always occurred on the same 
haplotype, consistent with BFB cycle formation. To ensure high sensitivity of our single cell based 
quantifications shown in Fig. S14, we additionally performed manual inspection of the single cell data 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 21, 2019. ; https://doi.org/10.1101/849604doi: bioRxiv preprint 

https://doi.org/10.1101/849604
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 

for evidence of at least one of the following rearrangement classes: (i) an InvDup, (ii) a DelTer 
resulting in copy-number=1 on an otherwise disomic chromosome. These cells were inspected for 
InvDup-DelTer patterns indicative for BFBs, based on the diagnostic footprints defined in Fig. 1. 
 
Single cell based CNN-LOH discovery. For CNN-LOH detection, our framework first assembles 
consensus haplotypes for each sample, by analyzing all single cell Strand-seq libraries available for a 
sample using StrandPhaseR22. Each single cell is then compared to these consensus haplotypes in a 
disomic context, to identify discrepancies matching the CNN-LOH footprint. To detect clonally 
present CNN-LOH events, we used the 1000GP68 reference SNP panel to re-genotype aggregated 
single cell libraries in each sample. These re-genotyped (observed) SNPs were then compared to the 
1000GP reference sets to identify genomic regions showing marked depletion in heterozygous SNPs 
indicative for CNN-LOH. To this end, we downsampled the 1000GP reference variants to the SNP 
numbers observed in the single cell data, and subsequently merged both data sets (observed and 
reference variants), sorting all SNPs by genomic position. We performed a sliding window search 
through these sorted SNPs, moving one SNP at a time, and compared the number of observed and 
reference SNPs in each window by computing the ratio R=observed SNPs/reference SNPs. In 
heterozygous disomic regions, R values of ~1 will be expected, whereas deviations are indicative of 
CNN-LOH. Window sizes (determined by the number of SNPs in a window) were defined as the 
median SNP count per 500kb window. We employed circular binary segmentation (CBS)74 to detect 
changes in R, and assigned each segment a state based on the mean value of R. Segments ≥2Mb in 
size exhibiting mean values R≤0.15 were reported as CNN-LOH. 
 
 
Bulk genomic DNA sequencing. Genomic DNA was extracted using the DNA Blood Mini Kit 
(Qiagen, Hilden, Germany). 300 ng of high molecular weight genomic DNA was fragmented to 100 –
700bp (300bp average size) with a Covaris S2 instrument  (LGC Genomics) and cleaned up with 
Agencourt AMPure XP (Beckman Coulter, Brea, USA). DNA library preparation was performed 
using the NEBNext Ultra II DNA Library Prep Kit (New England Biolabs, Ipswich, USA). We 
employed 15ng of adapter ligated DNA and performed amplification with 10 cycles of PCR. DNA 
was size selected on a 0.75% agarose gel, by picking the length range between 400 and 500 bp. 
Library quantification and quality control was performed using a Qubit 2.0 Fluorometer (Thermo 
Fisher Scientific, Waltham, USA) and a 2100 Bioanalyzer platform (Agilent Technologies, Santa 
Clara, USA). WGS was pursued using an Illumina HiSeq4000 (Illumina, San Diego, USA) platform, 
using 150 bp paired-end reads. Mate-pair sequencing with large insert size (~5kb) was pursued as 
described previously75. SV detection in bulk DNA sequence data was pursued using Delly231. RPE-1 
WGS data was sequenced to 32× coverage. 
 
Bulk RNA-seq. Total RNA was extracted from RPE cells using the RNeasy MinElute Cleanup kit 
(Qiagen, Hilden, Germany). RNA quality control was performed using the 2100 Bioanalyzer platform 
(Agilent Technologies, Santa Clara, USA). Library preparation was pursued with a Beckman Biomek 
FX automated liquid handling system (Beckman Coulter, Brea, USA), with 200 ng starting material 
using TruSeq Stranded mRNA HT chemistry (Illumina, San Diego, USA). Samples were prepared 
with custom 6 base pair barcodes to enable pooling. Library quantification and quality control were 
performed using a Fragment Analyzer (Advanced Analytics Technologies, Ames, USA). RNA-Seq 
was pursued on an Illumina HiSeq 2500 platform (Illumina, San Diego, USA), using 50 base pair 
single reads. For RNA sequencing in T-ALL, total RNA was extracted using TRIzol (Invitrogen Life 
Technologies). The RNA was than treated with TURBO DNase (Thermo Fisher Scientific, Darmstadt, 
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Germany) and purified using RNA Clean&Concentrator-5 (Zymo Research, Freiburg, Germany). We 
required a minimal RIN (RNA Integrity Number) of 7 as measured using a Bioanalyzer (Agilent, 
Santa Clara, CA) with the Agilent RNA 6000 Nano Kit. Cytoplasmic ribosomal RNA was depleted by 
Ribo-Zero rRNA Removal Kit (Illumina, San Diego, CA) and the libraries were prepared from 1 µg 
of RNA using TruSeq RNA Library Prep (Illumina, San Diego, CA). These samples were sequenced 
on a Illumina HiSeq 2000 lane as 75 bp single ends. Fusion junctions were detected using the STAR 
aligner76. 
 
Quantitative real time PCR (qPCR). RNA from PDX-derived T-ALL samples was extracted using 
a RNeasy Mini kit according to manufacturer’s instructions (cat 74106, Qiagen, Hombrechtikon, 
Switzerland), and cDNA was generated using High Capacity cDNA Reverse Transcription Kit 
(Applied BioSystems, Foster City, USA). qPCR was performed using a TaqMan Gene Expression 
Master Mix (Applied BioSystems) in triplicate using an ABI7900HT Analyzer with SDS2.2 software. 
Threshold cycle values were determined using the 2-ΔΔCT method, normalized to human-GAPDH 
(Hs02786624_g1, Applied BioSystems).  
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Figures 
 

 
Fig. 1. Haplotype-aware discovery of SVs in single cells. (a) Overview of the Strand-seq sequencing protocol. 
Strand-seq involves incorporating BrdU into dividing cells, followed by removal of the BrdU containing strands 
through nicking, and short read sequencing of the remaining strand21. Strand-seq libraries preserve strand-
orientation and chromosomal homolog (haplotype) identity. Dashed line: strand (BrdU) label. W, Watson strand 
(orange); C, Crick (green); H, haplotype. (b) Scheme depicting how template strand co-segregation patterns 
during mitosis reveal SVs in single cells. Del, deletion; Inv, inversion; Tr, translocation. Segments of derivative 
chromosomes share the same template strand during DNA replication. H1/H2, haplotype 1 and 2 of a 
chromosome; h1/h2, haplotype 1 and 2 of another chromosome. (c) The scTRIP computational approach 
exploits three data layers: read depth, strand ratio, and chromosome-length haplotype phase. Red lollipops: reads 
assigned to H1 based on overlapping SNPs; blue lollipops: reads assigned to H2. Haplotype phase is assessed in 
a strand-aware fashion, with phased W reads shown as lollipops on left of ideogram and phased C reads shown 
to right. In contrast to prior SV detection approaches, scTRIP does not depend on discordant or split reads, the 
scalable detection of which has been considered infeasible in single cells. Panels d-f depict diagnostic footprints 
for chromosomes where both haplotypes are labeled on different strands (‘WC/CW chromosomes’). Our 
framework also detects and scores equivalent footprints on CC and WW chromosomes (see Table S1). (d) Del, 
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detected as losses in read depth affecting a single haplotype, combined with unaltered read orientation. Dup, 
detected as a haplotype-specific gain in depth with unaltered read orientation. (e) Balanced Inv, identified as 
haplotype-phased read orientation ‘flips’ with unaltered depth. InvDup, characterized by inverted reads detected 
for one haplotype coinciding with a read depth gain of the same haplotype. (f) Balanced translocation, detected 
as correlated template strand switches affecting the same paired genomic regions in cells harboring the SV. (g) 
Bayesian framework for SV discovery. The probability distributions depicted represent an InvDup on H1 
(segments on both strands are seen for haplotype 1 (H1), whereas H2 is represented on the W strand only).  
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Fig. 2. scTRIP reveals deletions, duplications, inversions and chromosome aneuploidies in epithelial cells.  
(a) Binned read counts separated by DNA strand and haplotype reveal the presence of SVs in single cells (W, 
Watson strand (orange); C, Crick (green)). Left panel: haplotype-resolved duplication (Dup) on 3p, which is 
present in RPE-1 but absent in C7. Right panel: haplotype-resolved deletion (Del) on 3q present in C7 and 
absent in RPE-1. The box ‘Depth’ depicts read counts; ‘Strands’ depicts the W:C fraction; ‘Phase’ shows the 
location of haplotype-phased SNPs, with lollipop orientation reflecting the strand state of the read containing the 
SNP (W on the left, C on the right, of the ideogram). (b) Chromosome 17p haplotype-resolved inversion (Inv) 
shared across both C7 and RPE-1. (c) Diagnostic footprint of a monosomic chromosome. Template strand state 
patterns depicted are from C7, which has a karyotypically defined30 monosomy 13. The left panel shows 
chromosome 13 strand-patterns from two single cells, with a visible 1:0 pattern characteristic for monosomy 
(1N). The right panel summarizes the fraction of observed W and C reads across 154 sequenced cells. (d) 
Diagnostic footprint of a trisomic region. Template strand state patterns depicted are from RPE-1 cells 
exhibiting a karyotypically defined 10q trisomic region27. The left panel shows chromosome 10 strand-patterns 
from four single cells. The right panel summarizes the fraction of observed W and C reads for the trisomic (3N) 
10q region across 80 sequenced cells, revealing 2:1 and 3:0 strand ratios characteristic for trisomy (Table S4).  
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Fig. 3. Translocation discovery in single cells.  (a) In BM510, segments from chromosomes 10, 13, 15, 17 and 
22 failed to co-segregate with the respective chromosomes they originated from, suggesting putative 
involvement in translocations (use of ‘tr’, as in “H2-tr’ or ‘chr10tr’, denotes the candidate translocation status of 
these segments). (b) Pyramid in the center: Unbiased analysis of translocations in BM510. Pairwise heatmap 
depicting segmental template-strand correlation values for each haplotype, highlighting the segment co-
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segregation diagnostic footprint (Fig. 1F) of translocations (correlation values are here expressed as Benjamini-
Hochberg adjusted P-values). Orange boxes with black outline depict significant correlations (P<0.01; Fisher’s 
exact test) in four cases - corresponding to four derivative chromosomes we discovered in BM510. Schemes to 
the left and right: Colored boxes exemplify haplotype-resolved template strand state of segments for the non-
reciprocal der(X) t(X;10) translocation and the t(15;17) reciprocal translocations. (In each case only a few cells 
are depicted for visualisation purposes.) Box colours: W (orange); C (green). Grey arrows highlight pairwise 
correlations between segments, where the paired segments always exhibit the same strand state (e.g. chrX and 
chr10tr), or always exhibit inverse strand states (e.g. chr15tr and chr17; reflecting inverted orientations of these 
translocation partners). Inversion within the translocated portion of 17p is denoted with a circular arrow. (c) 
Center: cartoon representation of four inferred derivative chromosomes. Dashed lines correspond to 
unassembled regions at acrocentric chromosomes 13 and 15. (d) Circos plot depicting translocations and 
averaged gene expression values across genomic windows77, computed from RNA-seq data generated for 
BM510 (here denoted ‘B), RPE-1 (‘R’) and C7 (‘C’). Fig. S11 resolves expression by haplotype. (e) Validation 
of gene fusion in BM510. RNA-seq based read depth for NTRK3 (green), NTRK3-AS1 (yellow) and TP53 (blue) 
is depicted for C7, RPE-1 and BM510. Purple dashed lines: detected fusion junctions. Lower left corner: 
inferred fusion transcript. Purple boxes show start codon locations. Lower right corner: NTRK3 dysregulation in 
BM510. R1-3, RNA-seq replicates of RPE-1. Ex., exon. 
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Fig. 4. Single cell characterization of complex rearrangement processes. (a) Strand-specific read depth of 
C7 cell with region of InvDup mediated amplification on 10p, with adjacent terminal deletion (DelTer) of the 
same haplotype, resulting from BFB cycles. (b) Aggregated read data from 154 C7 cells. Colours indicate six 
copy number segments (red, blue, green, purple, orange and yellow) identified within the amplicon. Grey: 
regions flanking the amplicon. (c) Depiction of three C7 cells, with estimated maximum copy-number (CN) of 1 
(upper panel), CN of ~110 (middle panel), and CN of ~440 (lower panel) at the 10p amplicon region indicated 
in red. A gained segment on 15q, which scTRIP inferred to have undergone unbalanced translocation with the 
amplicon region, is shown beneath (this SV is absent from cells lacking the amplicon; upper panel). Read counts 
for W (green) and C (orange) are capped at 50 (*, saturated read counts; see also Fig. S13, which uses a 
different y-axis scale). Tr, translocation. (d) Genetic diversity at 10p. CN (x-axis) is shown across 154 
sequenced C7 cells (y-axis), providing cell-by-cell estimates of CN for each segment in (b). At least 3 different 
groups are readily discernible: high CN, intermediate CN, and loss of the 10p region (compare with panel (c)). 
Error bars reflect 95% confidence intervals. Arrows denote cells with CN=1 and CN of ~440 at the 10p 
amplicon. (e) Model of sSVs leading to the observed structures seen for the ‘major clone’. Amplification via 
BFB cycles typically proceeds in 2n copy-number steps, suggesting ~7 successive BFB cycles occurred. 
According to our model, translocation of 15q terminal sequence stabilized 10p. DSB, double strand break. (f) 
The scar of BFBs, corresponding to InvDups flanked by DelTer on the same haplotype, identified in single 
BM510 cells. (g) Clustered rearrangements involving Dels and Invs in a single BM510 cell. Shown is the 
binned read data (left) seperated into the three data channels typical to scTRIP. All clustered SVs affect a single 
haplotype (H1, red). 
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Fig. 5. Single cell sequencing based karyotypes of PDX-derived T-ALL relapses. (a) Haplotype-resolved 
consensus P33 karyotype constructed from 41 sequenced cells, using single cell sequencing based SV calls 
generated by scTRIP. Heterozygous SVs are depicted only on the haplotype they have been mapped to. 
Homozygous SVs (by definition) appear on both haplotypes. CNN-LOH, copy-neutral loss in heterozygosity 
(shown on both haplotypes) 78. Chromosomes colored in pink reflect duplicated homologs. This T-ALL patient 
carries two chromosome X haplotypes (see also Fig. S16) as well as a Y chromosome, indicating transmission 
of an X and a Y chromosome from the father, whereas the mother contributed her X chromosome to the 
karyotype (Klinefelter or XXY syndrome). Affected leukemia-related genes are highlighted in red. ‘BCL11B-
enh’ denotes a previously described enhancer region in 3′ of the BCL11B gene. (b) “Heatmap” of SVs arranged 
using Ward's method for hierarchical clustering of SVs genotype likelihoods in P33, showing the presence of a 
single dominant clone and evidence of few additional somatic DNA alterations resulting in karyotypic diversity 
in this T-ALL relapse.  (c) “Heatmap” of SV events called in an additional T-TALL sample, P1. Red dotted box 
outlines a clear subclonal population in the sample, represented by 25 cells. 
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Fig. 6. Single cell sequencing of PDX-derived T-ALL relapse P1 reveals previously unrecognized SVs.  
(a) Haplotype-resolved balanced 14q32 Inv inferred in P1 using scTRIP. The leftmost breakpoint  (thick light 
blue line) resides close to TCL1A, whereas the rightmost breakpoint  (thin light blue line) is in 3′ of BCL11B. (b) 
The rightmost Inv breakpoint falls into a “gene desert” region in 3′ BCL11B containing several enhancers. Black 
arrows show breakpoints of translocations resulting in T-ALL oncogene dysregulation from a recent study45. 
Colored arrows: SV breakpoints in T-ALL donors P1 and P33. (c) Dysregulation of TCL1A in conjunction with 
14q32 Inv. Larger barplot shows TCL1A dysregulation in P1 compared to five arbitrarily chosen T-ALLs. Inset 
barplot shows allele-specific RNA-seq analysis demonstrating TCL1A dysregulation occurs only on the inverted 
(H2) haplotype. (d) Reconstruction of subclonal clustered DNA rearrangements at 6q via scTRIP. (e) 
Haplotype-resolved analysis of SVs clustered at 6q, all of which fall onto haplotype H2. (f) Detection of 
interspersed losses and retention of LOH in conjunction with the clustered SVs, indicative for a DNA 
rearrangements burst41. (LOH, signified by an abundance of red dots, was called as reported in the Methods. 
Regions with normal density of reference heterozygous SNPs (red), but with decreased density of additionally 
detected heterozygous SNPs (black), are indicative for LOH.) (g) Verification of subclonal clustered 
rearrangement burst at 6q, by bulk long-insert size paired-end sequencing75 to 165x physical coverage. 
Breakpoints inferred by scTRIP are shown as dotted lines, and scTRIP-inferred segments are denoted using the 
letters A to L. Colored breakpoint-connecting lines depict the paired-end mapping based rearrangement graph 
(i.e., deletion-type, tandem duplication-type, and inversion-type paired-ends). Using bulk whole-exome and 
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mate-pair sequencing, read-depth shifts at these breakpoints were subtle and thus, this subclonal complex 
rearrangement escaped prior de novo SV detection efforts in bulk sequencing data. 
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