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Supplementary Methods 

Nicotine Dependence (ND) Study Descriptions 

African American Nicotine Dependence (AAND). The community-based AAND 

study was designed to compare nicotine dependent smokers with smokers who never developed 

ND symptoms. Recruitment focused on AAs from the Chicago area between 2010 and 2013. 

Participants reported smoking >100 cigarettes during their lifetime, and their ND was assessed 

using the FTND. Genotyping was performed on the Illumina Omni Express array. Following 

standard QC, the final analysis data set included 1,687 AAs with complete data on lifetime 

FTND (i.e., FTND based on when they reported smoking the most) and covariates—age, sex, 

and principal component (PC) eigenvectors. PC eigenvectors were computed to remove any 

residual bias due to population stratification. 

Alcohol Dependence in African Americans: A Case-Control Genetic Study 

(ADAA). Data for the ADAA study were collected between 2009 and 2013. Alcohol dependent 

cases, who met Diagnostic and Statistical Manual of Mental Disorders, 4th. Edition (DSM-IV) 

criteria as assessed using a modified version of the Semi‐Structured Assessment for the Genetics 

of Alcoholism, were recruited from treatment centers in St. Louis, Missouri. Alcohol dependent 

controls, who had consumed at least 12 alcohol beverages in their lifetime but did not meet 

DSM-IV criteria for alcohol abuse or dependence, were recruited from households in 

neighborhoods located in proximity to neighborhoods where the alcohol dependent cases resided. 

Participants were genotyped on a custom array that is based on an Illumina 

HumanOmniExpressExome background, and QC steps were applied with procedures that largely 

mimic our standard QC, excluding participants with call rate >1%, gender discrepancy, ancestry 

discrepancy, chromosomal anomalies, duplicate samples, or first-degree relatives and excluding 
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SNPs with call rate >2%, no mapping, >2 discordant calls in duplicated samples, >5 discordant 

calls at the same position, or HWE P<1×10-4. The ND GWAS analysis included 1,145 current 

and former smokers, and covariate adjustments were made for age, sex, alcohol dependence 

(DSM-IV), cocaine dependence (DSM-IV), and PC eigenvectors. 

Collaborative Genetic Study of Nicotine Dependence (COGEND and 

COGEND2). AAND was modeled after its predecessor, COGEND. Beginning in 2001, 

COGEND compared nicotine dependent smokers to smokers who never developed dependences 

symptoms.1 Participants included EURs and AAs, who were aged 25 to 44 years old and 

recruited from St. Louis and Detroit. The FTND was administered to determine study eligibility 

as either nicotine dependent cases (current smokers who reported an FTND score of >4) or 

controls (smokers who reported >100 cigarettes during their lifetime but reported an FTND score 

<1). Participants were genotyped on either the Illumina Human1M-Duo array as part of the 

Study of Addiction: Genetics and Environment (SAGE)2 or the Illumina HumanOmni2.5 array 

as part of the Gene Environment Association Studies Initiative (GENEVA).3 The genotyping 

data are available via dbGaP accession numbers phs000092.v1.p1 

[http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1] and 

phs000404.v1.p1 [http://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000404.v1.p1], respectively. We retained genotyped SNPs surpassing 

call rate >98% and HWE P>1×10-4 thresholds in each subset, combined the subsets, removed 

duplicated participants and first-degree relatives, and retained only the SNPs genotyped at the 

intersection of the different arrays to circumvent potential bias.4 After applying standard QC on 

the combined COGEND subsets, the final dataset included 1,935 EAs and 704 AAs with lifetime 

FTND scores and covariates (age, sex, and PC eigenvectors) for analysis.  
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Our analyses also included COGEND2 participants who were recruited more recently 

(2011–2014) following the COGEND study design. COGEND2 participants were genotyped on 

the Illumina Omni Express array, alongside the AAND participants, but analyzed separately. 

Following standard QC, there were 292 EURs and 313 AAs from COGEND2 for analysis with 

lifetime FTND scores and covariates (age, sex, and PC eigenvectors). 

Center for Oral Health Research in Appalachia 1 (COHRA1). COHRA1 was 

primarily designed to conduct GWAS analyses of dental caries,5 as one contributing site of a 

four-site study. COHRA1 was the only site that collected FTND data. COHRA1 recruited 

families beginning in 2003 from Appalachian regions: four rural counties (West Virginia and 

Pennsylvania) and an urban area. Eligible families included at least one adult and one biological 

child residing in the same household. We obtained COHRA1 genotyping data, as assayed on the 

Illumina Human610 array, via dbGaP accession number phs000095.v2.p1 

[http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000095.v2.p1]. We 

obtained FTND phenotype data from the original study investigators. When FTND data were 

available on parent(s) and children, we selected a single person from each relative pair/cluster 

based on the following criteria: (1) FTND data availability and (2) highest call rate if more than 

one relative had FTND data available. Following standard QC, we retained 243 EAs with current 

FTND scores and covariates (age, sex, and PC eigenvectors) for our final analysis dataset. 

Twelve of the participants were <18 years old. 

Chronic Obstructive Pulmonary Disease Gene (COPDGene and COPDGene2).  

COPDGene is a longitudinal observational study of COPD with participants ascertained at 

multiple centers across the United States.6 Participants, aged 45 to 80 years old, reported a 

current or former history of smoking and 10 or more cigarette pack-years. The Global Initiative 
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for Chronic Obstructive Lung Disease (GOLD) criteria were used to stage disease severity 

among COPD cases based on their post-bronchodilator pulmonary function measures: GOLD = 

1–2 for mild cases and 3–4 for moderate/severe cases. COPD controls had pulmonary function 

measures in the normal range for their sex, age, and height. Acute and chronic respiratory 

disease, cancer and other conditions were used as exclusion criteria.  

Our prior GWAS included 2,211 Non-Hispanic white (henceforth referred to as EUR) 

and 2,115 AA current smokers with current FTND data available from the baseline examination 

and with a determinant COPD case/control status.7 For the present study, we added participants 

from the same examination with current FTND data available and an indeterminant COPD status 

(GOLD = -1). Together, we included 2,549 EUR and 2,534 AA current smokers from the 

baseline examination (denoted COPDGene1).  

In a further expansion of COPDGene for the present study, we included participants who 

were not captured in COPDGene1 but had lifetime FTND data collected as part of the phase 2 

follow-up examination (denoted COPDGene2; total N=2,630 EURs and 267 AAs). COPDGene2 

comprised mostly former smokers but some current smokers, who had missing FTND at the 

baseline examination. Both COPDGene1 and COPDGene2 participants were genotyped on the 

Illumina HumanOmni1-Quad array and made available via dbGaP accession number 

phs000765.v1.p2 [http://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000765.v1.p2]. We conducted QC, imputation, and GWAS analysis 

for each ancestry in each of the two study phases, separately. Covariates for the GWAS analysis 

included age, sex, GOLD stage (-1 for indeterminant status, 1 or 2 for mild cases, and 3 or 4 for 

moderate/severe cases, with 0 for controls as the reference category), and PC eigenvectors.  
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deCODE. deCODE Genetics is a large population-based study from Iceland with data 

collection spanning 1996 to 2014. It was approved by the Data Protection Commission of 

Iceland and the National Bioethics Committee of Iceland. Participants were originally recruited 

to conduct genetic studies of smoking-related and a range of other phenotypes along with 

population controls. Personally identifiable information that was associated with phenotypic 

information and blood samples were encrypted by a third-party system.8 Collection of smoking 

data has been described elsewhere.9 Briefly, questionnaires were used to gather data on cigarettes 

per day (CPD) and the other FTND items.  

Our prior ND GWAS meta-analyses included 9,090 smokers from deCODE.7,10 The 

present analysis used an expanded sample size of 15,312 smokers using new smoking data 

collected in deCODE. Participants were genotyped on Illumina SNP arrays, and QC was applied 

as described before.11 The ND definitions mimicked our prior analyses,7,10 whereby mild 

dependence included smokers with lifetime FTND data (here, N=6333) as well as low-intensity 

smokers with CPD, but not the full-scale FTND, data available (N=8979). Smokers defined as 

moderately and severely dependent all had the full-scale FTND data available. See Methods in 

the main text for further details. Association tests were carried out using a linear mixed model 

implemented in BOLT-LMM12. The FTND score was corrected for age and sex. LD score 

regression13 was applied to account for inflation in test statistics due to cryptic relatedness and 

stratification. The χ2 statistics from the GWAS was regressed against LD score with a set of 1.1 

M variants, and the intercept was used as the correction factor. The LD scores were downloaded 

from a LD score database 

(ftp://atguftp.mgh.harvard.edu/brendan/1k_eur_r2_hm3snps_se_weights.RDS; accessed 23 June 

2015). 
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Environment and Genetics in Lung Cancer Etiology Study (EAGLE). EAGLE is a 

population-based study of newly diagnosed lung cancer cases and matched controls, who were 

aged 35 to 79 years old and recruited from the Italian region of Lombardy.14,15 Genotyping was 

done on the Illumina HumanHap550v3 array, as part of GENEVA.3 We obtained the genome-

wide genotype, phenotype, and covariate data via dbGaP accession number phs000093.v2.p2 

[http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000093.v2.p2] as well 

as the original study investigators. Lifetime FTND scores were collected among current and 

former smokers. Following our standard QC steps, the final analysis data set for EAGLE 

included 3,006 participants with complete data available on FTND scores and covariates (age, 

sex, and PC eigenvectors). As before,7,10 lung cancer case/control status was not included as a 

covariate, because FTND scores were collected among current and former smokers based on 

lifetime and not current smoking habits. 

Electronic Medical Records and Genomics (eMERGE) network. We obtained data 

from eMERGE participants in “A Genome-Wide Association Study on Cataract and HDL in the 

Personalized Medicine Research Project Cohort” via dbGaP accession number phs000170.v2.p1 

[http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000170.v2.p1]. These 

eMERGE participants were recontacted to collect data on a broad range of phenotypes and 

exposures to facilitate harmonization with other studies as part of the PhenX Rising project 

(https://www.genome.gov/27549243/phenx-rising/). FTND data were collected in this study 

based on current habits among current smokers and on period of maximum usage (i.e., lifetime) 

among former smokers. We combined the data from current and former smokers, given our prior 

findings that any measurement variance in the FTND has negligible effects on genetic 

association results, with very similar patterns observed between current and lifetime FTND.16 
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The final analysis data set included 730 EURs. Covariates for GWAS analysis included age, sex, 

and PCs. 

FINRISK. The population-based FINRISK study was initiated in 1972 with follow-up 

taking place every 5 years until 2012. Recruitment occurred in several geographic areas across 

Finland, making FINRISK a nationally representative study as previously described.17 

Genotyping was performed on the Illumina Human610-Quad or HumanCoreExome array, 

followed by QC and imputation with reference to the all-Finnish panel from the Sequencing 

Initiative Suomi project,18 as described before.19 The final analysis data set included 2,211 

unrelated participants, including current and former smokers, with complete data on lifetime 

FTND scores and covariates (age, sex, and PC eigenvectors).  

Finnish Twin Cohort (FTC). As before,7 FTC participants originated from these sub-

cohorts: the Nicotine Addiction Genetics study of adult twins, born 1938–1957 and concordant 

for being ever smokers, and their relatives (mainly siblings); and population-based longitudinal 

studies of five consecutive Finnish twin birth cohorts from 1983–1987 (FinnTwin12) and 1975–

1979 (FinnTwin16).20,21 The FTC sample size has increased from our prior GWAS analyses7 due 

to new genotyping data. Genotyping was done using Illumina’s Human610-Quad, Human670-

QuadCustom, or HumanCoreExome array. QC was performed in two batches—(1) Human610-

Quad and Human670-QuadCustom together and (2) HumanCoreExome—with variants removed 

for low call rate (<97.5% in batch 1 or <95% in batch 2), MAF<1%, or HWE P<1×10-6 and 

participants removed for low call rate (<98% for batch 1 or <95% for batch 2), excessive 

heterozygosity, discordant sex, or ancestry outlier.  Imputation was conducted separately by 

genotyping array with Minimac3 v2.0.1 using the Michigan Imputation Server.22 Imputed 

variants were merged across batches to construct the final analysis dataset of 2,507 participants 
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with complete data on lifetime FTND scores and covariates (age, sex, birth cohort, and PC 

eigenvectors). Their kinship matrix was taken into account as a random effect in a linear mixed 

model. Imputation quality scores were re-calculated across the merged batches using the impute-

info plugin for BCFtools. 

Molecular Genetics of Schizophrenia—Genetic Association Information Network 

(GAIN) and nonGAIN studies. The overarching Molecular Genetics of Schizophrenia study 

was designed as a United States-based case-control study of schizophrenia/schizoaffective 

disorder. Cases were diagnosed with schizophrenia or schizoaffective disorder according to 

DSM-IV criteria, whereas controls were assessed and determined to have no history of these 

illnesses. One subset of the study participants were genotyped as part of GAIN23 with data 

obtained via dbGaP accession number phs000021.v3.p2 

[http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000021.v3.p2], 

whereas the other subset was genotyped separately and denoted nonGAIN with data obtained via 

dbGaP accession number phs000167.v1.p1 [http://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000167.v1.p1]. Both subsets were genotyped using the Affymetrix 

6.0 array. For the prior7 and present ND GWAS analyses, we applied our standard QC steps and 

used only the schizophrenia controls. The final analysis datasets included 774 EAs from GAIN, 

477 AAs from GAIN, and 471 EAs from nonGAIN with complete data available on lifetime 

FTND scores and covariates (age, sex, and PC eigenvectors for each dataset analyzed 

separately). 

German Nicotine Cohort study (NCS) (German study). The German study is a 

population-based case-control study specifically conducted to assess the genetics of ND24. Data 

collection occurred from 2007-2009 at 7 recruitment centers across Germany (Departments of 
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Psychiatry at the Universities of Aachen, Berlin, Bonn, Düsseldorf, Erlangen, Mainz, 

Mannheim). Probands were randomly selected from the local population via residents’ registers 

at each site, and subjects were required to meet the following inclusion criteria: age 18-65 years; 

current smoker or occasional smoker (>=7 cigarettes per week or 1 cigarette per day) or never 

smoker (<=20 cigarettes over lifetime); grandparents born in Germany or adjacent country; 

native-level German language proficiency; letter invitation via official local residents’ register. 

Furthermore, the following exclusion criteria were applied: former smoker; alcohol or substance 

abuse within previous six months (DSM-IV); a history of alcohol or substance dependence 

(DSM-IV); DSM-IV axis-1 psychiatric diagnosis within previous six months; non-German 

origin; not native-level proficient in German language; pregnant; any medical condition that may 

interfere with the study; CNS-relevant medication within previous 6 months; CNS-relevant 

(neurological) illnesses (lifetime). Out of 55,000 subjects contacted, 2,396 were enrolled in the 

study. 

DNA extracted from whole-blood samples acquired from study subjects were genotyped 

using the Illumina InfiniumOmniExpressExome-8v1-3_A array. Genotype QC steps included 

missing rate (missing rate>=0.05 and MAF>=0.05 or missing rate>=0.03 and MAF<0.05) and 

HWE P<5.38×10-8. Subject QC steps included missing rate >=5%, excess heterozygosity (plink -

-het, F more than 2*sigma deviations from the mean), high degree of relatedness (plink –genome 

full, pi_hat>=0.26), and PCA-based ancestral outlier removal (1000 Genomes Phase 3 

reference). Following QC, imputation was performed using IMPUTE2 with the 1000 Genomes 

Phase 3 reference panel. The final analysis dataset with complete phenotype and genotype 

information included 991 current smokers of EUR ancestry. 
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Jackson Heart Study (JHS) / Atherosclerosis Risk in Communities (ARIC). The 

longitudinal JHS was designed to evaluate cardiovascular disease risk among AAs from the 

general population in Jackson, Mississippi and its surrounding area.25 JHS was an extension of 

the ARIC study of EURs and AAs from 4 communities across the United States (Jackson, 

Mississippi; Forsyth County, North Carolina; suburbs of Minneapolis, Minnesota; and 

Washington County, Maryland).26 JHS recruited AAs were aged 35 to 84 years old, alongside 

their relatives who were aged 21 to 34 years old. Across JHS and ARIC, smokers were defined 

based on reports of having smoked 400 or more cigarettes in their lifetime. In parallel with the 

approach taken in deCODE, we included smokers with lifetime FTND data (N=682, all from 

JHS) and augmented the sample size by including 461 low-intensity AA smokers from ARIC 

with only CPD data available in the mild ND category (see Methods in the main text for 

additional details).  

Genotyping for both JHS and ARIC were performed on the Affymetrix 6.0 array, and we 

obtained these data via dbGaP (accession numbers phs000286.v3.p1 

[http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000286.v3.p1] for 

JHS and phs000090.v1.p1 [http://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000090.v1.p1] for ARIC). After applying our standard QC, there 

were 1,143 AA smokers with FTND scores or CPD reported and covariate (age, sex, and PC 

eigenvectors) data available: N=628 from JHS and 515 from ARIC. We confirmed that no 

participants were duplicated across the JHS and ARIC subsets in our final analysis data set, with 

identity-by-state estimates <0.9 for all pairwise comparisons. 

Minnesota Center for Twin and Family Research (MCTFR). MCTFR is composed 

of two longitudinal studies, the Minnesota Twin Family Study and the Sibling Interaction and 
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Behavior Study. The Minnesota Twin Family Study recruited three studies of twin pairs and their 

parents and the Sibling Interaction and Behavior Study recruited adoptive and biological siblings 

and their parents. Families were initially recruited as a community study to study a broad range 

of psychological domains. Altogether, we included data for 1,073 current and former smokers, 

with lifetime FTND data available, who were genotyped on the Illumina 660W-Quad. Their 

genotyping protocols and QC were described previously.27,28 Sex and age were included as 

covariates and to account for family relatedness, we used a kinship matrix and included PC 

eigenvectors as covariates. Additional covariates were included based on sample ascertainment 

and structure; we used four dummy coded variables to account for each of the three Minnesota 

Twin Family Study intake studies and the Sibling Interaction and Behavior Study, and a variable 

indicating if an individual was a parent. 

Netherlands Twin Registry (NTR). The NTR began in 1987 as a longitudinal study of 

twins and other multiple birth siblings. The NTR is comprised of two collections: (1) adult twins 

and their family members, and (2) younger twins recruited at birth or in early life, their parents, 

and their siblings.29 Genome-wide genotyping was performed on a subset of NTR participants 

using various Affymetrix and Illumina arrays,30,31 followed by QC as described elsewhere.31 

Genotyped SNPs passing QC were merged across different arrays and used for imputation. 

Imputed SNPs were filtered out for the following reasons: MAF<0.5%, HWE P<1×10-5, 

estimated r2<0.3, Mendelian error rate<2%, or absolute reference frequency allele 

difference>0.15 between NTR and 1000G. With an increased sample size from before due to a 

continued increase in the number of NTR participants who were genotyped, the present analysis 

included 4,489 NTR participants who had lifetime FTND32 and covariate (age, sex, dummy 

variables to correct for genotyping array, and PC eigenvectors) data available.  
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GWAS of Alcohol Use and Alcohol Use Disorder in Australian Twin-Families 

(OZ-ALC) Study. Data for the present study were obtained from dbGaP study “International 

Consortium on the Genetics of Heroin Dependence” (accession number phs000277.v1.p1 

[http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000277.v1.p1]), for 

which OZ-ALC participants served as a source of DSM-IV-assessed non-opioid dependent 

controls. No other components of the heroin dependence study had FTND data. The OZ-ALC 

study data were derived from telephone diagnostic interviews of Australian twins from the 

general population and their spouses. Alcohol dependent cases from OZ-ALC were minimized 

for inclusion in the heroin dependence study made available in dbGaP. We began with the 1,172 

participants, who were all of Australian European ancestry, genotyped on the CIDR370v1 or 

CIDR370v3 array, and had lifetime FTND data available.33 Genotype imputation was based on 

the overlap of the two arrays. The final analysis dataset included 1,138 unrelated participants. 

Our statistical analyses included adjustment for age, sex, and PCs. 

Study of Addiction: Genetics and Environment (SAGE). SAGE was assembled from 

three case-control studies collected in the United States for addictive disorders: COGEND, the 

Collaborative Study on the Genetics of Alcoholism (COGA),34 and the Family Study of Cocaine 

Dependence (FSCD).35 Genotyping was conducted using the Illumina Human1M-Duo array, 

from which we obtained via dbGaP accession number phs000092.v1.p1 

[http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1]. 

COGEND participants were removed to avoid participant overlap; all other participants from 

COGA and FSCD (henceforth referred to as SAGE*) were analyzed together as previously 

done.2,7,10 Following our standard QC, there remained 832 EAs and 633 AAs with lifetime 
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FTND scores and covariates (age, sex, DSM-IV-defined cocaine dependence, DSM-IV-defined 

alcohol dependence, and PC eigenvectors) for GWAS analysis. 

Spit for Science. Spit for Science, is an ongoing longitudinal study of Virginia 

Commonwealth University students. Briefly, incoming students age 18 or older were eligible to 

complete phenotypic assessments, which covered a wide range of topics but focused on alcohol 

use.36 Study data were collected and managed using REDCap electronic data capture tools37 

hosted at Virginia Commonwealth University. Follow-up assessments were completed in 

subsequent spring semesters. Individuals who did not participate in the first wave of data 

collection (including those who turned 18 after the end of the first wave of data collection) had 

the opportunity to join the study the following spring; those who participated during their first 

year were eligible to complete follow-up assessments each spring. Participants who completed 

the phenotypic assessments were eligible to provide a DNA sample. There was a total of 7,603 

participants across three studies, which matriculated in Fall 2011 (N=2,714), 2012 (N=2,486), 

and 2013 (N=2,403). Of these, 98% provided a DNA sample. The current analyses are based on  

FTND data captured after the Spring 2014 survey, with data available for up to 4 waves per 

participant. Lifetime FTND data were collected among current and former smokers, using the 

FTND with the heaviest smoking reported when data were available from more than one wave. 

Genotyping was performed on the Affymetrix BioBank array, and QC steps were applied as 

detailed elsewhere.38 For this study, we used only genotyped EURs, which was the largest 

ancestry group and had sufficient representation in each of the three ND categories 

(mild/moderate/severe). Following QC, there were 1,717 individuals with FTND scores and 

covariate data (age, sex, and PCs) available. 
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University of Wisconsin-Transdisciplinary Tobacco Use Research Center (UW-

TTURC). UW-TTURC represents a collection of smokers recruited from Madison and 

Milwaukee, Wisconsin, beginning in 2001, for smoking cessation treatment clinical trials.5 

Participants were deemed eligible, based on having smoked at least 10 CPD and reported being 

motived to quit smoking. Genotyping was performed using the Illumina HumanOmni2.5 array. 

We obtained their genotypes, FTND scores, and covariate data via dbGaP accession number 

phs000404.v1.p1 [http://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000404.v1.p1]. After applying standard QC, there remained 1,534 

EAs and 247 AAs with current FTND scores and covariate data (age, sex, and PC eigenvectors) 

for analysis. 

Yale-Penn. The Yale-Penn study was designed to conduct genetic studies for addiction 

using mostly unrelated individuals but also small nuclear families, all of whom were recruited 

from the eastern United States.39-41 ND was not considered in the inclusion or exclusion criteria, 

but lifetime FTND data were collected among smokers.42 Genotyping was conducted on the 

Illumina HumanOmni1-Quad array. QC mimicked prior analysis,7 except that ancestry 

assignments were refined using K-means clustering to assign individuals based on the nearest 

centroid across the first 10 PC eigenvectors with reference to 1000G EUR or AFR population. 

There were 1,579 EAs and 2,637 AAs in the final analyses, which included adjustment for age, 

sex, and PC eigenvectors. 

Supplementary Note 1 
AAND was funded by the National Institute on Drug Abuse (NIDA) grant R01 

DA025888 (Multiple Principal Investigators [MPIs] Eric O. Johnson and Laura J. Bierut). 
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Supplementary Table 1. Leave-one-study-out analyses of lead single nucleotide polymorphisms (SNPs) 

discovered in the cross-ancestry genome-wide association study (GWAS) meta-analysis of nicotine dependence 

(ND). 

Nominal p-values were calculated by the METAL software package, which uses a two-sided Z-test. 

Study (ancestry) removed Remaining N rs1862416-T association with ND rs2714700-T association with ND 

β SE P β SE P 

AAND (AA) 56,313 0.039 0.0069 1.2×10-8 -0.023 0.0041 2.2×10-8 

ADAA (AA) 56,855 0.038 0.0069 2.6×10-8 -0.022 0.0041 6.6×10-8 

COGEND (EUR) 56,065 0.039 0.0069 2.5×10-8 -0.023 0.0041 3.4×10-8 

COGEND (AA) 57,296 0.039 0.0068 1.3×10-8 -0.022 0.0041 4.3×10-8 

COGEND2 (EUR) 57,708 0.038 0.0068 2.2×10-8 -0.022 0.0041 3.6×10-8 

COGEND2 (AA) 57,687 0.038 0.0068 2.2×10-8 -0.023 0.0041 1.4×10-8 

COHRA1 (EUR) 57,757 0.039 0.0068 1.2×10-8 -0.023 0.0041 2.3×10-8 

COPDGene1 (EUR) 55,451 0.038 0.0070 4.0×10-8 -0.024 0.0041 9.8×10-9 

COPDGene1 (AA) 55,466 0.038 0.0069 3.6×10-8 -0.024 0.0041 7.4×10-9 

COPDGene2 (EUR) 55,370 0.038 0.0070 5.3×10-8 -0.022 0.0042 1.2×10-7 

COPDGene2 (AA) 57,733 0.038 0.0068 2.8×10-8 -0.022 0.0041 3.2×10-8 

deCODE (EUR) 42,688 0.036 0.0078 3.9×10-6 -0.024 0.0047 3.0×10-7 

EAGLE (EUR) 54,994 0.039 0.0070 2.9×10-8 -0.021 0.0042 3.1×10-7 

eMERGE (EUR) 57,270 0.038 0.0070 6.2×10-8 -0.023 0.0042 7.4×10-8 

FINRISK (EUR) 55,789 0.039 0.0071 4.7×10-8 -0.022 0.0042 1.3×10-7 

FTC (EUR) 55,493 0.040 0.0070 7.2×10-9 -0.023 0.0042 5.6×10-8 
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GAIN (EUR) 57,226 0.038 0.0068 2.0×10-8 -0.023 0.0041 1.6×10-8 

GAIN (AA) 57,523 0.039 0.0068 1.6×10-8 -0.023 0.0041 3.1×10-8 

German (EUR) 57,009 0.036 0.0069 1.3×10-7 -0.023 0.0041 1.7×10-8 

JHS/ARIC (AA) 56,857 0.039 0.0069 1.6×10-8 -0.022 0.0041 8.4×10-8 

MCTFR (EUR) 56,927 0.040 0.0069 7.2×10-9 -0.022 0.0041 4.9×10-8 

nonGAIN (EUR) 57,329 0.039 0.0068 1.3×10-8 -0.022 0.0041 7.3×10-8 

NTR (EUR) 53,511 0.040 0.0070 1.0×10-8 -0.023 0.0042 4.0×10-8 

OZ-ALC (EUR) 56,862 0.038 0.0070 6.6×10-8 -0.023 0.0041 2.7×10-8 

SAGE (EUR) 57,168 0.038 0.0069 2.5×10-8 -0.023 0.0041 3.0×10-8 

SAGE (AA) 57,367 0.039 0.0068 1.1×10-8 -0.022 0.0041 3.7×10-8 

Spit for Science (EUR) 56,283 0.039 0.0072 6.0×10-8 -0.022 0.0043 2.1×10-7 

UW-TTURC (EUR) 56,466 0.040 0.0069 1.1×10-8 -0.023 0.0041 4.1×10-8 

UW-TTURC (AA) 57,753 0.038 0.0068 2.2×10-8 -0.023 0.0041 2.1×10-8 

Yale-Penn (EUR) 56,421 0.040 0.0069 5.6×10-9 -0.023 0.0041 1.9×10-8 

Yale-Penn (AA) 55,363 0.038 0.0069 4.4×10-8 -0.022 0.0042 1.2×10-7 

Abbreviations: AA, African American ancestry; EUR, European ancestry; SE, standard error. 
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Supplementary Table 2. Characteristics of participants included in the genome-wide association study (GWAS) 

meta-analyses of nicotine dependence (ND), separated into each of the 23 studies and the two ancestry groups.  

Study 

Total 

N 

N (%), 

females 

Mean 

age 

(SD) 

European ancestry  

(total N=46,213) 

African American ancestry  

(total N=11,787) 

N (%), 

mild 

ND 

N (%), 

moderate 

ND 

N (%),  

severe 

ND 

GWAS 

λ 

N (%), 

mild 

ND 

N (%), 

moderate 

ND 

N (%), 

severe 

ND 

GWAS 

λ 

AAND 1,687 969  

(57.4) 

41.2 

(10.3) 

NA NA NA NA 526 

(31.2) 

830  

(49.2) 

331 

(19.6) 

1.00 

ADAA 1,145 472  

(41.2) 

41.2 

(10.3) 

NA NA NA NA 526 

(31.2) 

830  

(49.2) 

331 

(19.6) 

1.01 

COGEND a 2,639 1,628 

(61.7) 

36.6 

(5.57) 

941 

(48.6) 

521 (26.9) 473 

(24.4) 

1.01 248 

(35.2) 

283  

(40.2)  

173 

(24.6) 

1.01 

COGEND2 605 324 

(53.6) 

34.4 

(5.87) 

60 

(20.5) 

91  

(31.2) 

141 

(48.3) 

1.01 13  

(4.2) 

137  

(43.8) 

163 

(52.1) 

1.03 

COHRA1 243 129 

(53.1) 

32.1 

(9.1) 

79 

(32.5) 

127 (52.3) 

 

37 

(15.2) 

1.01 NA NA NA NA 

COPDGene1 a 5,083 2,817 

(55.4) 

55.4 

(7.3) 

743 

(29.1) 

1,118 

(43.9) 

688 

(27.0) 

1.03 711 

(28.1) 

1,149 

(45.3) 

674 

(26.6) 

1.00 

COPDGene2 a 2,897 1,395 

(48.2) 

63.7 

(8.0) 

955 

(36.3) 

1,172 

(44.6) 

503 

(19.1) 

1.03 146 

(54.7) 

103 (38.6) 18 (6.7) 1.00 
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deCODE a,b 15,312 9,127 

(59.6) 

66.5 

(15.4) 

11,494 

(75.1) 

2,250 

(16.6) 

1,268 

(8.3) 

1.12 NA NA NA NA 

EAGLE 3,006 478 

(15.9) 

NA c 1,416 

(47.1) 

1,027 

(34.2) 

563 

(18.7) 

1.00 NA NA NA NA 

eMERGE a 730 319 

(43.7) 

72.1 

(9.2) 

487 

(66.7) 

193 (26.4) 50 (6.8) 1.02 NA NA NA NA 

FINRISK 2,211 1,025 

(46.4) 

50.5 

(13.3) 

1,401 

(63.4) 

614 (27.8) 196 

(8.9) 

1.02 NA NA NA NA 

FTC a 2,507 1,111 

(44.3) 

45.5 

(16.2) 

1,436 

(57.3) 

828 (33.0) 243 

(9.7) 

1.00 NA NA NA NA 

GAIN 1,251 655 

(52.4) 

52.0 

(15.2) 

327 

(42.2) 

280 (36.2) 167 

(21.6) 

1.01 221 

(46.3) 

176  

(36.9) 

80 

(16.8) 

0.99 

German 991 543 

(54.8) 

36.3 

(12.6) 

565 

(57.0) 

313 (31.6) 113 

(11.4) 

1.00 NA NA NA NA 

JHS/ARIC b 1,143 641  

(56.1) 

52.9 

(9.2) 

NA NA NA NA 867 

(75.9) 

218  

(19.1) 

58  

(5.1) 

1.01 

MCTFR a 1,073 492 

(45.9) 

20.6 

(5.4) 

687 

(64.0) 

293 (27.3) 93 (8.7) 1.01 NA NA NA NA 

nonGAIN 671 322 

(48.0) 

52.9 

(15.5) 

298 

(44.4) 

234 (34.9) 139 

(20.7) 

1.02 NA NA NA NA 

NTR a 4,489 2,750 

(61.3) 

45.5 

(15.0) 

2,842 

(63.3) 

1,276 

(28.4) 

371 

(8.3) 

1.01 NA NA NA NA 
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Abbreviations: NA, not available; SD, standard deviation 

a European ancestry participants were included in the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN) 

consortium.43 b ND was categorized according to Fagerström Test for Nicotine Dependence (FTND) scores: mild (FTND score 0–3), 

moderate (FTND score 4–6) or severe (FTND score 7–10). For deCODE and JHS/ARIC only, the mild category included participants 

with FTND score 0–3 as well as low-intensity smokers with no FTND data available but with <10 cigarettes per day (CPD). c Age was 

only available as a categorical variable: 23.2% aged 59 or less, 18.2% aged 60–64, 22.4% aged 65–69, 21.4% aged 70–74 and 14.8% 

aged 75–79.  

 

OZ-ALC 1,138 379 

(33.3) 

45.6 

(9.3) 

976 

(85.8) 

125 (11.0) 37 (3.3) 1.01 NA NA NA NA 

SAGE 1,465 649 

(44.3) 

40.9 

(9.9) 

243 

(29.2) 

295 (35.5) 294 

(35.3) 

1.01 211 

(33.3) 

272  

(43.0) 

150 

(23.7) 

1.00 

Spit for 

Science 

1,717 994 

(57.9) 

20.4 

(1.5) 

1,532 

(89.2) 

158 (9.2) 33 (1.9) 0.99 NA NA NA NA 

UW-TTURC 1,781 1,040 

(58.4) 

43.4 

(11.2) 

311 

(20.3) 

723 (47.1) 500 

(32.6) 

1.01 40 

(16.2) 

119  

(48.2) 

88 

(35.6) 

1.01 

Yale-Penn 4,216 1,833 

(43.5) 

40.1 

(9.42) 

284 

(18.0) 

751 (47.6) 544 

(34.4) 

1.01 837 

(31.7) 

1,346 

(51.0) 

454 

(17.2) 

1.04 
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Supplementary Table 3. Associations of the novel nicotine dependence (ND)-implicated single nucleotide 

polymorphisms (SNPs) with other smoking traits in the GWAS and Sequencing Consortium of Alcohol and 

Nicotine use (GSCAN) consortium43—initiation (ever vs. never smoking), age at initiation, cigarettes per day, and 

cessation (current vs. former smoking). Score test p-values were calculated using the RVTESTS44 software 

package. 

SNP associations at P<0.05 are bolded.  

SNP  

(effect allele) 

Initiation  

(N=1,232,091) 

Age at initiation 

(N=341,427) 

Cigarettes per day 

(N=337,334) 

Cessation  

(N=547,219) 

β (SE) P β (SE) P β (SE) P β (SE) P 

rs1862416 (T) 0.005 (0.003) 0.033 -0.01 (0.005) 0.080 0.001 (0.003) 0.61 -6.6×10-5 (0.004) 0.50 

rs2714700 (T) -0.003 (0.002) 0.016 -4×10-4 (0.003) 0.80 -0.004 (0.002) 0.045 -0.001 (0.002) 0.31 

Abbreviation: SE, standard error. 
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Supplementary Table 4. Linkage disequilibrium (LD) structure and conditional association testing of the nicotine 

dependence (ND)-associated TENM2 single nucleotide polymorphism (SNP) rs1862416 (chr. 5: 167,394,595) and 

the nearby lead SNPs implicated at genome-wide statistical significance for smoking initiation (ever vs. never 

smoking) by the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN) consortium.43  

LD was determined using the LDlink tool,45 and conditional modeling was conducted using ND GWAS meta-analysis summary 

statistics as input into the Genome-wide Complex Trait Analysis (GCTA) software package. P-values were generated using the 

GCTA-COJO tool.46,47 

GSCAN 

lead SNP 

chr. 5 

position 

(NCBI 

build 37) 

P, cross-

ancestry 

meta-

analysis 

for ND 

LD in 1000G  

European panel 

LD in 1000G  

African panel 

rs1862416 associations with ND 

conditioned on GSCAN lead SNP(s) 

r2  D’  r2  D’  

P, 

European 

ancestry-

specific 

meta-

analysis  

P, African 

American-

specific 

meta-

analysis 

P, cross 

ancestry 

meta-analysis 

rs3909281  165,096,435 0.12 0.0020 0.11 0.00090 0.041 7.5×10-7 7.0×10-3 2.2×10-8 

rs3843905 165,427,280 0.55 0.00010 0.025 0.00080 0.065 6.2×10-7 7.3×10-3 1.8×10-8 

rs79476395  166,063,680 0.018 0.00030 0.20 0.0014 0.46 1.6×10-6 6.7×10-3 4.6×10-8 

rs6890961  166,778,503 9.9×10-4 0.0047 0.24 0.00030 0.048 2.9×10-6 6.1×10-3 7.9×10-8 

rs4044321 166,989,513 0.78 0.00040 0.040 0.00050 0.072 6.7×10-7 6.9×10-3 1.9×10-8 

rs2173019 167,614,971 0.036 0.0017 0.024 0.0017 0.16 1.0×10-6 6.0×10-3 2.7×10-8 

All SNPs 7.2×10-6 6.6×10-3 2.2×10-7 

Abbreviations: 1000G, 1000 Genomes; NCBI, National Center for Biotechnology Information. 
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Supplementary Table 5. Independent testing of novel nicotine dependence (ND)-associated single nucleotide 

polymorphisms (SNPs) with heaviness of smoking (HSI) in the UK Biobank.  

Nominal p-values were calculated by the METAL software package, which uses a two-sided Z-test. 

SNP (effect 

allele) 

Chr:position 

(NCBI  

build 37) 

Gene / 

closest 

genes 

HSI in UK Biobank (N=33,791) Meta-analysis of FTND GWAS 

and UK Biobank HSI results 

(total N=91,791) 

Effect allele 

freq. 

estimated  

r2 

β (SE) P β (SE) P 

rs1862416 

(T) 

5:167,394,595 TENM2 0.89 1 -0.0064 

(0.0075) 

0.39 0.018 (0.0050) 3.0×10-4 

rs2714700 

(T) 

7:79,367,667 MAGI2 

/ GNAI1 

0.47 1 -0.012 

(0.0047) 

0.014 -0.018 (0.0031) 7.7×10-9 

Abbreviations: FTND, Fagerström Test for Nicotine Dependence (FTND); GWAS, genome-wide association study; NCBI, National 

Center for Biotechnology Information; SE, standard error.



37 
 

Supplementary Table 6. Statistically significant H-MAGMA results from the 

nicotine dependence GWAS meta-analysis of European ancestry participants in the 

iNDiGO consortium, based on P<2.7×10-6 (Bonferroni correction for testing 

18,655 genes), with look-up in the UK Biobank using heaviness of smoking index 

as a proxy for nicotine dependence.  
H-MAGMA was applied in both the iNDiGO consortium and the UK Biobank using chromatin 

interaction maps in fetal and adult brain tissues, separately, as the reference datasets. Results are 

sorted, within each tissue, by H-MAGMA p-values in the iNDiGO consortium. H-MAGMA F-

test p-values in the UK Biobank that surpass Bonferroni correction for testing 16 unique genes 

(P<0.0031) are shown in bold. 

 

Gene 

Chr. 

band 

iNDiGO (N=46,213) UK Biobank (N=33,791) 

No. SNPs 

annotated to gene P 

No. SNPs 

annotated to gene P 

Fetal brain tissue as chromatin interaction mapping reference in H-MAGMA 

CHRNA5 15q25 17 2.6×10-28 19 8.9×10-26 

IREB2 15q25 40 1.7×10-27 42 3.3×10-22 

HYKK 15q25 16 2.4×10-27 20 4.8×10-25 

CHRNA3 15q25 82 6.4×10-24 84 5.7×10-25 

CHRNB4 15q25 93 1.8×10-14 101 2.3×10-15 

ADAMTS7 15q25 30 1.6×10-12 32 2.9×10-14 

CHRNA4 20q13 264 7.7×10-12 282 1.0×10-2 

PSMA4 15q25 52 2.3×10-11 58 1.3×10-10 

MORF4L1 15q25 60 2.9×10-11 63 1.7×10-11 

ADAMTSL2 9q34 277 3.4×10-8 296 3.2×10-8 

DBH 9q34 114 1.7×10-6 127 1.1×10-4 

Adult brain tissue as chromatin interaction mapping reference in H-MAGMA 

CHRNA5 15q25 17 2.6×10-28 19 8.9×10-26 

WDR61 15q25 31 3.5×10-22 32 1.8×10-20 

IREB2 15q25 130 4.2×10-18 139 2.1×10-13 

CHRNA3 15q25 101 5.4×10-15 115 6.6×10-16 

HYKK 15q25 143 2.2×10-14 158 2.1×10-14 

ACSBG1 15q25 117 8.0×10-14 126 9.4×10-13 

ADAMTS7 15q25 71 2.3×10-11 76 2.0×10-13 

PSMA4 15q25 52 2.3×10-11 58 1.3×10-10 

CHRNA4 20q13 96 1.0×10-10 99 7.0×10-5 

CHRNB4 15q25 53 1.7×10-9 59 1.7×10-10 

AFG1L 6q21 281 1.1×10-6 319 0.54 

AK2 1p35 60 1.3×10-6 68 0.38 

RBBP8NL 20q13 172 2.1×10-6 178 8.6×10-3 
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Supplementary Table 7. Genetic correlations of nicotine dependence (ND) with other phenotypes using linkage 

disequilibrium (LD) score regression (LDSC).  
Phenotypes are sorted by disease or measurement category. Phenotypes that have statistically significant correlations with ND, as 

determined by a 1 degree of freedom Chi-square test then Bonferroni correction (α=0.05/47 phenotypes, P1<0.0011), are bolded.  

Category Phenotype Reference h2 (single 

trait SNP 

heritability) 

Cross-trait comparison with ND 

gcov_inta rg SE P1 

(H0: rg = 0) 

P2 

(H0: rg = 1) 

Brain volume Accumbens volume 48 0.092 0.0020 0.13 0.15 0.37 6.5×10-9 

Caudate volume 48 0.25 0.0067 -0.091 0.094 0.33 3.4×10-22 

Hippocampus volume 48 0.14 0.0062 -0.15 0.13 0.25 2.2×10-11 

Intracranial volume 48 0.18 0.00040 -0.24 0.12 0.036 5.2×10-11 

Pallidum volume 48 0.16 0.0050 -0.075 0.11 0.50 2.0×10-16 

Putamen volume 48 0.30 -0.0010 0.17 0.083 0.045 8.8×10-24 

Thalamus volume 48 0.14 -0.0017 -0.092 0.12 0.43 1.1×10-14 

Cancer Lung adenocarcinoma 49 0.069 0.0037 0.48 0.11 8.6×10-6 1.1×10-6 

Lung cancer (overall) 49 0.087 0.0065 0.68 0.089 3.4×10-14 2.9×10-4 

Small cell lung cancer 49 0.11 0.0085 0.40 0.13 0.0024 7.5×10-6 

Squamous cell lung cancer 49 0.053 0.0065 0.75 0.11 3.0×10-11 0.03 

Cardiometabolic Adiponectin 50 0.12 -0.0051 0.035 0.11 0.74 2.6×10-20 

Coronary artery disease 51 b 0.080 -0.0032 0.32 0.064 6.0×10-7 4.6×10-26 

Age of smoking initiation 43 0.047 -0.042 -0.55 0.066 1.7×10-16 8.9×10-12 
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Cigarette 

smoking 

Cigarettes per day 43 0.075 0.14 0.95 0.054 3.1×10-70 0.35 

Cotinine levels 52 0.22 0.020 0.46 0.23 0.051 0.021 

Heaviness of smoking UK Biobank, 

as presented 

herein 

0.080 -0.0013 1.09 0.15 1.8×10-13 0.53 

Smoking cessation (current/former) 43 0.032 0.032 0.51 0.063 3.4×10-16 8.2×10-15 

Smoking initiation (ever/never) 43 0.069 0.012 0.40 0.049 3.2×10-16 2.8×10-34 

Cognitive / 

education 

Childhood IQ 53 0.28 0.00080 -0.17 0.10 0.11 2.1×10-15 

College completion 54 0.079 -0.024 -0.23 0.070 0.0012 4.3×10-28 

Intelligence 55 0.19 0.0024 -0.17 0.056 0.0031 1.3×10-50 

Years of schooling 56 c 0.11 -0.012 -0.34 0.041 9.2×10-17 8.6×10-58 

Drug and 

alcohol 

Alcohol dependence 57 0.096 0.025 0.57 0.13 6.3×10-6 1.4×10-4 

Alcohol drinks per week 43 0.049 0.017 0.13 0.054 0.016 1.4×10-58 

Cannabis use disorder 58 0.027 0.0029 0.40 0.15 0.010 9.4×10-5 

Lifetime cannabis use (ever/never) 59 0.067 -0.0057 0.057 0.056 0.31 3.9×10-63 

Neurologic Alzheimer’s disease 60 0.045 -0.0043 -0.087 0.12 0.48 1.5×10-13 

Amyotrophic lateral sclerosis 61 0.049 0.0010 -0.060 0.12 0.62 1.3×10-14 

Parkinson’s disease 62 0.41 6.3×10-7 0.074 0.092 0.42 9.2×10-24 

Personality Conscientiousness 63 0.073 -0.014 0.052 0.18 0.77 1.6×10-7 

Neuroticism 64 0.089 0.0054 0.28 0.067 3.2×10-5 1.4×10-26 

Openness to experience 63 0.11 -0.0077 -0.12 0.13 0.35 2.8×10-12 
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Psychiatric Anorexia nervosa 65 0.18 -0.014 0.098 0.066 0.14 5.0×10-43 

Attention deficit hyperactivity disorder 66 0.24 -0.0033 0.49 0.063 5.7×10-15 9.1×10-16 

Autism spectrum disorder 67 0.20 -0.0068 0.23 0.078 0.0024 2.7×10-24 

Bipolar disorder 65 0.35 -0.0024 0.25 0.050 3.3×10-7 2.6×10-52 

Depressive symptoms 64 0.047 -0.00080 0.40 0.075 9.6×10-8 1.1×10-15 

Major depressive disorder 68 0.038 -0.0046 0.38 0.051 6.1×10-14 1.7×10-33 

Posttraumatic stress disorder 69 0.017 -0.0077 0.72 0.15 6.5×10-7 0.056 

Psychiatric cross-disorder 70 0.17 0.0021 0.17 0.080 0.031 4.6×10-25 

Schizophrenia 71 0.46 0.0077 0.18 0.043 3.2×10-5 1.3×10-65 

Subjective well being 64 0.025 -0.0092 -0.24 0.075 0.0016 9.4×10-25 

Respiratory Chronic obstructive pulmonary disease 

(COPD) 

72 0.10 -0.0065 0.18 0.088 0.033 1.8×10-20 

Forced expiratory volume in 1 second 

(FEV1) 

73 0.27 -0.0048 -0.0017 0.060 0.98 1.4×10-63 

Forced vital capacity (FVC) 73 0.26 -0.0054 -0.0073 0.057 0.90 4.2×10-69 

FEV1/FVC 73 0.26 -0.0020 0.012 0.059 0.84 6.1×10-63 

a Deviation of the cross-trait intercept term from 0 is indicative of study overlap in the GWAS results being compared. 

b Results are based on cross-ancestry meta-analysis results that are available in LDHub; results for all other results correspond to 

European-specific meta-analyses. 

c The GWAS results for educational attainment (years of schooling) include all discovery cohorts, except for 23andMe, resulting in a 

total sample size of 766,345.
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Supplementary Table 8. Credible set analysis and annotation of the novel nicotine dependence (ND)-associated 

loci.  
For the novel ND-associated loci (chromosomes 5q34 and 7q21), we applied a Bayesian method74 implemented via LocusZoom75 to 

identify a credible set likely to contain the causal variant at each loci. The calculated posterior probability for each variant is provided 

as well as the cross-ancestry, European ancestry-specific, and African American ancestry-specific meta-analysis results for 

comparison. P-values were derived from Z-score tests implemented in the METAL software package. HetPval is the Cochran’s Q-test 

p-value calculated by METAL from the meta-analysis. The credible set was annotated using GTEx,76 BrainSeq,77 and HaploReg.78 

RS_ID Chr Pos (b37) 
Cred. 

set 

Posterior 

probability 
beta P HetPVal beta P beta P GTEx BrainSeq HaploReg 

rs2714700 7 79367667 TRUE 0.44 -0.0227 
2.34× 

10-8 
0.84 -0.0219 

1.16× 

10-6 
-0.0262 

5.47× 

10-3 
NA 

hippocampus 

eQTL 

(P=8.54× 

10-4) 

NA 

rs2714674 7 79385250 TRUE 0.37 0.0228 
2.76× 

10-8 
0.78 0.0222 

1.09× 

10-6 
0.0254 

7.34× 

10-3 
NA NA NA 

rs1464692 7 79378243 TRUE 0.11 0.0219 
9.96× 

10-8 
0.76 0.0218 

1.12× 

10-6 
0.0223 

3.06× 

10-2 
NA 

hippocampus 

eQTL 

(P=8.07× 

10-4) 

NA 

rs2707864 7 79403735 TRUE 0.04 -0.0211 
2.60× 

10-7 
0.79 -0.0211 

2.68× 

10-6 
-0.0209 

3.39× 

10-2 
NA NA 

DNase 

hypersensitivity 

site in lung 

fibroblast cells 

(adult primary 

and fetal cell 

line) and others 

rs1862416 5 167394595 TRUE 0.57 0.0386 
1.47× 

10-8 
0.75 0.0368 

5.37× 

10-7 
0.0494 

6.59× 

10-3 

Lung 

(P=2.0× 

10-10) 

NA 

Enhancer 

histone and/or 

promoter marks 

in brain 
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(germinal 

matrix, 

prefrontal 

cortex, anterior 

caudate, and 

cingulate gyrus 

tissues), fetal 

lung, and 

others 

rs36064369 5 167396567 TRUE 0.36 -0.0392 
2.36× 

10-8 
0.64 -0.0366 

1.57× 

10-6 
-0.0538 

2.89× 

10-3 

Lung 

(P=2.2× 

10-10) 

NA 

Enhancer 

histone and/or 

promoter marks 

in brain 

(prefrontal 

cortex, 

astrocyte), fetal 

lung, and 

others 

rs116612101 5 167383503 TRUE 0.04 -0.0371 
2.17× 

10-7 
0.60 -0.0362 

1.89× 

10-6 
-0.0441 

3.83× 

10-2 

Lung 

(P=1.3× 

10-10) 

NA NA 
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Supplementary Table 9. Lead single nucleotide polymorphism (SNP) associations from genome-wide significant 

loci in the cross-ancestry combined genome-wide association study (GWAS) meta-analysis for nicotine 

dependence and heaviness of smoking index (total N = 91,791).  
The SNPs span seven loci: chromosomes 2p13, 5q34, 7q21, 8p11, 9q34, 15q25, 19q13, and 20q13. “Direction” indicates the 

association of the effect allele, corresponding to the β coefficient (with + corresponding to increased risk, – corresponding to 

decreased risk of nicotine dependence/heaviness of smoking, or ? for missing), across the 24 studies (23 from the Nicotine 

Dependence GenOmics [iNDiGO] consortium and the UK Biobank). Results are sorted by chromosome. Nominal p-values were 

calculated by the METAL software package, which uses a two-sided Z-test. 

SNP (effect allele) 

Chr:position  

(NCBI build 37) 

Gene / closest 

genes 

Effect allele 

frequenciesa  β (SE) P Direction 

rs144481999 (T) 2:68,973,932 ARHGAP25 0.015; NA 0.079 (0.014) 3.5×10-8 ?????++?-?++?+???-+??+++??-+?+?+ 

rs2714674 (T) 7:79,385,250 MAGI2 / 

GNAI1 

0.53; 0.28 0.018 (0.0032) 6.6×10-9 ++-++++--++++-+++--+++++++++-+++ 

rs4950 (A) 8:42,552,633 CHRNB3 0.78; 0.17 0.022 (0.0037) 1.9×10-9 -++--+-++--++++-+-++-+++-+++-++? 

rs56116178 (A) 9:136,460,224 FAM163B / 

DBH 

0.93; 0.99 -0.040 (0.0054) 2.0×10-13 ???+?--?-?------?--?-----?--?-?- 

rs8034191 (T) 15:78,806,023 AGPHD1 0.63; 0.85 -0.060 (0.0034) 1.3×10-70 +------------------+-?---------- 

rs56113850 (T) 19:41,353,107 CYP2A6 0.41; 0.63 -0.031 (0.0039) 4.2×10-16 --+----------+----+--+++--+--+-- 

rs6011779 (T) 20:61,984,317 CHRNA4 0.81; 0.45 -0.031 (0.0039) 4.2×10-16 ----+-+-----+---------+?----+--- 

Abbreviations: NA, not available (due to monomorphism); NCBI, National Center for Biotechnology Information.  

a Frequencies correspond to 1000 Genomes European and African superpopulation reference panels, respectively. 
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Supplementary Table 10. Agreement between heaviness of smoking index (HSI) and Fagerström Test for 

Nicotine Dependence (FTND) categories for mild, moderate, and severe nicotine dependence (ND) in COGEND 

participants of European ancestry. 
 

 FTND categorya, N (% of total N in HSI category) 

Total Mild Moderate Severe 

H
S

I 

ca
te

g
o
ry

 b
 Mild 998 (94.9) 54 (5.1) 0 (0) 1,052 

Moderate 3 (0.6) 417 (81.9) 89 (17.5) 509 

Severe 0 (0) 72 (15.1) 404 (84.9) 476 

a Categories for the full-scale, 6-item FTND (score range = 0–10) were defined as follows: mild (scores 0–3), moderate (scores 4–6), 

or severe (scores 7–10). 

b Categories for the 2-item HSI (score range = 0–6) were defined as follows: mild (scores 0–2), moderate (scores 3–4), or severe 

(scores 5–6). 
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Supplementary Figure 1. Quantile-quantile plots for nicotine dependence 

genome-wide association study (GWAS) meta-analyses.  
Results are shown for (A) the cross-ancestry meta-analysis (European ancestry and African 

American participants from all studies), (B) the European ancestry-specific meta-analysis, and 

(C) African American-specific meta-analysis. The observed vs expected meta-analysis –log10 p-

values (black dots) are plotted along the identity line (red) with the corresponding genomic 

inflation factor (lambda) indicated. 
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Supplementary Figure 2. Manhattan plots for ancestry-specific nicotine dependence genome-wide association 

study (GWAS) meta-analyses.  
Results are shown for (A) the European ancestry-specific (total N=46,213) and (B) African American-specific (total N=11,787) meta-

analyses. The –log10 meta-analysis p-values (calculated using the two-sided Z-test implemented in the software METAL)are plotted 

by chromosomal position of single nucleotide polymorphisms (SNPs; depicted as circles) and insertions/deletions (indels; depicted as 

triangles). The genome-wide statistical significance threshold (P=5×10-8) is shown as a solid black line. 
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Supplementary Figure 3. Regional association plots for two novel loci identified at genome-wide significance in 

the cross-ancestry nicotine dependence genome-wide association study (GWAS) meta-analyses.  
Results are shown for rs2714700 on chromosome 7 in reference to the 1000 Genomes (A) European and (B) African superpopulation 

panels and rs1862416 on chromosome 5in reference to the same (C) European and (D) African panels. The –log10 meta-analysis p-

values are plotted by chromosomal position with r2 values between the lead single nucleotide polymorphism (SNP; in purple) and 

nearby SNPs indicated in 0.2 increments (e.g., 0.8–1 in red). 
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Supplementary Figure 4. Novel single nucleotide polymorphism (SNP) associations with nicotine dependence 

(ND) by study and ancestry group.  
Associations are presented for the (A) MAGI2/GNAI1 SNP allele rs2714700-T and (B) TENM2 SNP allele rs1862416-T with severe 

vs. mild ND, by calculating odds ratio (OR) and 95% confidence interval (CI) estimates using the regression coefficients from the 

discovery genome-wide association study analyses of categorical FTND (i.e., OR=exp[2×βSNP] for severe vs. mild ND). Diamonds 

indicate the OR point estimates, and error bars correspond to the 95% CI estimates for the ORs. The number of biologically 

independent samples from each cohort used to generate the OR and CI estimates for each association are displayed in the N column.  



55 
 

 



56 
 

Supplementary Figure 5. Posterior probability matrices for traits evaluated for 

shared genetics with ND using GWAS-PW at the 5 FTND-associated genome-

wide significant loci. 
For the 12 traits, variants in LD (r2>0.2 in 1000 Genomes EUR populations) with the lead SNP 

from each genome-wide significant FTND locus was analyzed using GWAS-PW to find shared 

genetic influences between FTND and each trait. Shown are GWAS-PW posterior probabilities 

that the genomic region surrounding a lead GWAS SNP contains a variant that influences ND 

(Model 1); contains a variant that influences the other trait (Model 2); contains a variant that 

influences both traits (Model 3); or contains a variant that influences ND and a separate variant 

that influences the other trait (Model 4). The genomic position for each lead GWAS SNP is in 

reference to GRCh37. 
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Supplementary Figure 6. Linkage disequilibrium (LD) matrix of rs1862416 

(marked by blue boxes) and other TENM2 single nucleotide polymorphisms 

(SNPs) included in the genome-wide association study (GWAS) catalog79 

(https://www.ebi.ac.uk) for their genome-wide significant associations (P<5×10-8). 
r2 values, as obtained from LDlink45, correspond to the 1000 Genomes European panel. 

Numerical values correspond to the originally reported GWAS: 1, educational attainment56; 2a, 

smoking initiation (ever vs. never smoking)43,80-82; 2b, age of smoking initiation43; 2c, smoking 

cessation (current vs. former smoking)43; 2d, alcohol consumption (drinks per week)43; 3, lung 

function82,83; 4, height82; 5, number of sexual partners80; 6, depression84,85; 7, risk taking 

tendency80; 8, body mass index82; 9, menarche (age at onset)86; 10, cigarette pack-years87; and 

11, regular attendance at a religious group88. rs11739827, associated with alcohol consumption43, 

was not available for comparison with rs1862416 in LDlink. 
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Supplementary Figure 7. Quantile-quantile plot for the combined nicotine 

dependence and heaviness of smoking index genome-wide association study 

(GWAS) meta-analysis.  
Results are shown for the cross-ancestry GWAS meta-analysis. The observed vs expected meta-

analysis –log10 p-values (black dots) are plotted along the identity line (red) with the 

corresponding genomic inflation factor (lambda) indicated. 
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Supplementary Figure 8. Manhattan plot for the combined nicotine dependence 

and heaviness of smoking index genome-wide association study (GWAS) meta-

analysis.  
Results are shown for cross-ancestry (total N= 91,791) GWAS meta-analysis. The –log10 meta-

analysis p-values are plotted by chromosomal position of single nucleotide polymorphisms 

(SNPs; depicted as circles) and insertions/deletions (indels; depicted as triangles). The genome-

wide statistical significance threshold (P=5×10-8) is shown as a solid black line. 
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