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Abstract

Cell-to-cell transmission of toxic forms of α-Synuclein (αS) is thought to underlie disease

progression in Parkinson disease. αS in humans is constitutively N-terminally acetylated

(αSacetyl), although the impact of this modification is relatively unexplored. Here, we report

that αSacetyl is more effective at inducing intracellular aggregation in primary neurons than

unmodified αS (αSun). We identify complex N-linked glycans as binding partners for αSacetyl

and demonstrate that cellular internalization of αSacetyl is reduced significantly upon cleav-

age of extracellular N-linked glycans, but not other carbohydrates. We verify binding of

αSacetyl to N-linked glycans in vitro, using both isolated glycans and cell-derived proteolipo-

somes. Finally, we identify neurexin 1β, a neuronal glycoprotein, as capable of driving gly-

can-dependent uptake of αSacetyl. Importantly, our results are specific to αSacetyl because

αSun does not demonstrate sensitivity for N-linked glycans in any of our assays. Our study

identifies extracellular N-linked glycans—and the glycoprotein neurexin 1β specifically—as

key modulators of neuronal uptake of αSacetyl, drawing attention to the potential therapeutic

value of αSacetyl-glycan interactions.

Introduction

The pathologies of Parkinson disease and related synucleinopathies are characterized by the accu-

mulation of aggregates of the neuronal protein α-Synuclein (αS) [1]. The prevailing hypothesis is

that toxicity is mediated by prefibrillar oligomers of αS [2]. Emerging evidence suggests that cell-

to-cell transmission of toxic αS species may be the basis of disease propagation [3].

αS is a small, soluble protein that is intrinsically disordered in the cytoplasm [4]. It associ-

ates peripherally to anionic lipid bilayers through its N-terminal domain, which becomes α-

helical upon binding [5]. The localization of αS to nerve terminals [6,7] and to cellular lipid

raft domains [8] suggests that there are components or properties of cellular membranes that

are important for αS binding and function that may not be fully reproduced by simple lipid

mixtures. Indeed, specific components of the extracellular membrane, including proteins [9]

and proteoglycans [10], have been identified as having roles in the uptake of pathogenic αS

species.
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αS is subject to various post-translational modifications, including phosphorylation, ubi-

quitination, glycation, acetylation, and arginylation, some of which are correlated with pathol-

ogy [11–13]. Mass spectrometry analysis indicates that the majority of these modifications are

found on only a very small fraction of αS [14]. N-terminal acetylation, however, is unique in

that it appears to be present on the majority of αS in vivo [11,15,16], in both healthy persons

and patients with Parkinson disease [14,15]. Acetylation of the amino terminus occurs co-

translationally [17], and, for many proteins, it is required for recognition of cellular binding

partners [18]. Work from our group [19] and others have demonstrated that N-terminal acety-

lation alters the fundamental biophysical properties of αS; it moderately affects its binding to

synthetic lipid bilayers [5,20] and rates of aggregation [20]. How this modification impacts

interactions with other cellular binding partners—and in particular the plasma membrane

proteins that have been identified as receptors involved in cellular uptake and aggregation—

has not been explored. Here, we investigate the role of N-terminal acetylation of αS on cellular

binding and internalization. Using cell biological and biophysical approaches, we demonstrate

that N-terminal acetylation of αS confers interactions with extracellular N-linked glycans that

impact cellular uptake, identify neurexin 1β as a receptor for glycan-dependent uptake of αS,

and provide insight into the mechanism of cellular recognition relevant to uptake.

Results

N-terminal acetylation of αS enhances formation of intracellular

aggregates in neurons

Recently, observations that exogenously added aggregates of αS are capable of seeding aggregation

of endogenous αS have prompted an interest in understanding the molecular players involved.

However, investigations of this phenomenon have relied on aggregates composed of unmodified

αS (αSun). To determine whether N-terminal acetylation of αS (αSacetyl) alters this seeding behav-

ior, primary hippocampal neurons were incubated with preformed fibrils (PFFs) of αSacetyl or

αSun [21] (S1 Fig). Both αSacetyl and αSun PFFs resulted in the formation of abundant intracellular

aggregates (Fig 1A), demonstrating that the internalized material retains its fibrillar character, as

previously characterized [2]. However, the kinetics of aggregate formation differ significantly. For

αSun PFFs, the time course was in good agreement with previously published studies [21]; aggre-

gates were observed in axons by day 7 and had spread to somatodendritic compartments by day

10. For αSacetyl PFFs, aggregates in axons were already prevalent by day 3, and spreading to soma-

todentric compartments was readily apparent by day 7. Measurements beyond 7 days were not

possible for neurons treated with αSacetyl PFFs due to significant cell death.

To compare the effectiveness of αSacetyl and αSun PFFs in nucleating intracellular aggregate

formation and growth, we quantified the total number of aggregates per neuron, reflecting the

seeding capacity of the added αS PFFs (i.e., their ability to induce the initial formation of intra-

cellular αS aggregates), as well as total aggregate area per neuron, reflecting the overall ability

of the added αS PFFs to accelerate further aggregate growth. This quantification revealed that

the overall rate of aggregate formation is >2-fold faster for neurons treated with αSacetyl PFFs

compared with αSun PFFs (Fig 1B). This result demonstrates that αSacetyl PFFs are markedly

more potent seeds for pathological propagation of αS aggregation in neurons.

αSacetyl is more rapidly internalized by SH-SY5Y cells than αSun

This observation sparked our interest in determining the origin in differences in aggregate

propagation in neurons. To do so, human neuroblastoma (SH-SY5Y) cells were chosen

because they retain many of the pathways dysregulated in Parkinson disease and thus are
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widely used as a cellular model for disease. Moreover, SH-SY5Y cells spontaneously internalize

αS without requiring the use of a transfection agent [22]. SH-SY5Y cells were incubated with

monomer or PFF αS fluorescently labeled with Alexa Fluor 488 (αS-AL488). After 12 hours

of incubation, monomer and PFF αSacetyl and αSun appeared as puncta, colocalized with an

endosomal marker (Fig 2A and 2B, S2A and S2B Fig). In order to make a more quantitative

comparison of both kinetics and quantity of uptake between αSacetyl and αSun, cellular inter-

nalization was measured as a function of time. Three orthogonal methods were used to quan-

tify uptake: (1) loss of monomer αS from the cell media was measured using fluorescence

correlation spectroscopy (FCS) [23], (2) the amounts of internalized monomer and PFF αS

were quantified by confocal imaging, or (3) both extracellular and internalized monomer and

PFF αS were quantified by polyacrylamide gel electrophoresis (S3 Fig). Results of all three of

these approaches are consistent and reveal that both monomer and PFF αSacetyl are internal-

ized more rapidly (Fig 2C) and to a greater extent (Fig 2D, S3 Fig) than αSun. Uptake was

inhibited at 4˚C, indicating that active endocytotic pathways are required (S4A Fig). Control

measurements made using non-neuronal lineage human embryonic kidney 293T (HEK) cells

Fig 1. αSacetyl PFFs are more effective at inducing pathological aggregates in primary neurons. (A) Representative

images of aggregates of endogenous αS in cultured mouse hippocampal neurons following incubation with αSacetyl or

αSun PFFs. Images shown at day 7 in the absence of PFFs (upper row) and after 3 and 7 days following treatment with

PFFs. Red: αS-pS129 antibody; blue: βIII-tubulin antibody. (B) Quantification of αS aggregates as seen in images in

(A). Aggregates in neurons treated with αSacetyl PFFs are larger and more numerous. n = 80 neurons, 3 independent

experiments, ��P< 0.001 and ���P< 0.0001 by Student t test compared to αSun PFF-treated neurons. The data are

presented as mean ± SD, n = 3. Scale bars = 20 μm. The underlying data for this figure can be found in S1 Data. αS, α-

Synuclein; αS-pS129, αS phosphorylated at serine 129; αSacetyl, N-terminally acetylated αS; αSun, unmodified αS; PFF,

preformed fibril.

https://doi.org/10.1371/journal.pbio.3000318.g001
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Fig 2. Complex N-linked glycans selectively enhance uptake of αSacetyl by SH-SY5Y cells. (A) Representative images of SH-SY5Y cells following

12-hour incubation with monomer or PFF αSacetyl-AL488, −/+ PNGase F treatment. (B) As in (A) but for monomer or PFF αSun -AL488. (C) Upper:

kinetics of internalization by SH-SY5Y cells of monomer αS as quantified by loss from extracellular medium by FCS, −/+ PNGase F treatment.

Lower: kinetics of internalization by SH-SY5Y cells of PFF αS as quantified by puncta analysis of confocal images, −/+ PNGase F treatment. (D)

Quantification of internalization of αS PFFs by SH-SY5Y cells, −/+ Heparinase I/III treatment. Images collected following 12-hour incubation with

protein and quantified by puncta analysis. (E) Quantification of internalization of αS monomer and PFF by SH-SY5Y cells, −/+ PNGase F treatment.

Glycan-dependent cellular uptake of α-Synuclein
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found no spontaneous internalization of either αSacetyl or αSun (S4B Fig), consistent with prior

studies of αS uptake by HEK cells that utilized transfection agents [24–26]. Both SH-SY5Y and

HEK cells showed rapid uptake of transferrin, indicating that lack of αS internalization is not

due to inherent differences in rates of clathrin-dependent endocytosis between the cell lines

(S4C Fig).

Cleavage of extracellular N-linked glycans inhibits uptake of αSacetyl by

SH-SY5Y cells

Cell-surface heparan sulfate proteoglycans have been observed to promote uptake of a number

of fibrillar amyloid proteins, including αSun PFFs [27]. To investigate the relevance of proteo-

glycans to αSacetyl uptake, SH-SY5Y cells were treated with Heparinase I/III, an enzyme that

cleaves these carbohydrates, for 6 hours. After exchange of media to remove the enzyme,

αS-AL488 was added and incubated an additional 12 hours. This incubation period was cho-

sen because it allows for reproducible quantification of puncta, and there is no evidence of

protein or fluorophore degradation that may occur at longer time points (S2B Fig). In agree-

ment with previous reports, we found that treatment of SH-SY5Y cells with Heparinase

reduced the uptake of αSun PFFs (Fig 2D, S5A Fig). Interestingly, however, Heparinase pre-

treatment did not alter uptake of αSacetyl PFFs nor that of αSacetyl monomer (Fig 2D, S5A and

S5B Fig).

These results prompted us to consider other endoglycosidases, as the majority of cell-sur-

face proteins are modified by glycosylation [28], including a number of proteins that have

been identified as receptors for αSun PFFs [9,29,30]. Complex N-linked glycans were selectively

removed from SH-SY5Y cells using peptide-N-glycosidase F (PNGase F). Following incuba-

tion with αSacetyl, a decrease in the number of intracellular puncta in the PNGase F–treated

cells relative to untreated cells was observed, both for monomer and PFF αSacetyl, reflecting a

significant decrease in uptake by deglycosylated cells (Fig 2A, 2C and 2E, S3 Fig). Removal of

N-linked glycans was confirmed using concanavalin A (con A), a lectin that binds α-D-man-

nose and α-D-glucose moieties found on N-linked glycans (S5C Fig). Control measurements

showed that PNGase F treatment did not impact clathrin-dependent endocytosis (S5D Fig).

Under our measurement conditions (200 nM protein and 12-hour incubation), neither

untreated nor PNGase F–treated cells showed evidence of increased toxicity upon incubation

with monomer or PFF αSacetyl or αSun (S5E Fig). Moreover, and strikingly, internalization of

monomer and PFF αSun did not demonstrate sensitivity to PNGase F treatment (Fig 2B, 2C

and 2E). Lastly, we tested endoglycosidase H (Endo H), which cleaves high mannose N-linked

carbohydrates, and found that this enzyme had only a minor impact on uptake of αSacetyl by

SH-SY5Y cells (S5B Fig).

Our observations in SH-SY5Y cells were corroborated in cultured primary hippocampal

neurons. Monomer and PFF αSacetyl and αSun were readily internalized by primary hippocam-

pal neurons (Fig 3A and 3B). Removal of extracellular N-linked glycans by PNGase F resulted

in a 10-fold decrease in the amount of internalized αSacetyl (Fig 3A), while no effect was

observed for αSun (Fig 3B). Similar to our observation in SH-SY5Y cells, PNGase F treatment

of neurons caused no defects in clathrin-dependent endocytosis (S5D Fig).

Images collected following 12-hour incubation with protein and quantified by puncta analysis. All protein uptake measurements with 200 nM

monomer or 200 nM PFFs (monomer units, 20:1 αS:αS-AL488); n = 100 cells, 3 independent experiments, ���P< 0.0001 by Student t test). Scale

bars = 20 μm. The underlying data for this figure can be found in S1 Data. αS, α-Synuclein; αSacetyl, N-terminally acetylated αS; αSun, unmodified αS;

AL488, Alexa Fluor 488; FCS, fluorescence correlation spectroscopy; PFF, preformed fibril; PNGase F, peptide-N-glycosidase F; SH-SY5Y, human

neuroblastoma.

https://doi.org/10.1371/journal.pbio.3000318.g002
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Removal of complex N-linked glycans alters αS binding to SH-SY5Y

GPMVs

Our results thus far support specific interactions between αSacetyl and complex, N-linked gly-

cans found on neurons and SH-SY5Y, but not HEK, cells that drive internalization of both

monomer and PFF αSacetyl. To investigate the molecular details of the interactions of αS with

cell-surface glycans, we used cell membrane–derived giant plasma membrane vesicles

(GPMVs) that have a lipid and protein composition that closely resembles the cell plasma

membrane [31]. Thus, they serve as an excellent model of the cell membrane while lacking the

active processes of cells, such as uptake, allowing for binding interactions to be observed.

GPMVs were harvested from SH-SY5Y cells and incubated with monomer and PFF αSacetyl-

AL488. Both monomer and PFF αSacetyl-AL488 formed large, bright assemblies on the exterior

of the SH-SY5Y GMPVs and caused their clustering, with larger assemblies and more clusters

observed with increasing protein concentrations (Fig 4A, S6A and S6B Fig). Monomer and

PFF αSun-AL488, on the other hand, bound more uniformly and apparently more weakly than

αSacetyl (Fig 4B, S6C Fig). The images present a striking contrast, suggesting differences in

Fig 3. Complex N-linked glycans selectively enhance uptake of αSacetyl by primary hippocampal neurons. (A) Representative

images of mouse hippocampal neurons cells following 12-hour incubation with monomer or PFF αSacetyl-AL488, −/+ PNGase F

treatment. Uptake quantified by total cellular fluorescence. (B) As in (A) but for monomer and PFF αSun-AL488. All internalization

measurements with 200 nM monomer or 200 nM PFF (monomer units, 20:1 αS:αS-AL488); n = 100 cells, 3 independent

experiments, �P< 0.01 and ���P< 0.0001 by Student t test). Scale bars = 20 μm. The underlying data for this figure can be found in

S1 Data. αS, α-Synuclein; αSacetyl, N-terminally acetylated αS; αSun, unmodified αS; AL488, Alexa Fluor 488; PFF, preformed fibril;

PNGase F, peptide-N-glycosidase F.

https://doi.org/10.1371/journal.pbio.3000318.g003
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binding affinity for αSacetyl and αSun. Binding of monomer αS to GPMVs was quantified by

FCS (Fig 4C). In these experiments, monomer αS-AL488 was added to GPMVs in a sample

chamber, and the amount of αS-AL488 that remained in solution after incubation was deter-

mined. After 60 minutes of incubation, 47% ± 4% of αSun and 80% ± 6% of αSacetyl were

bound to the GPMVs (Fig 4C). Direct quantification of GPMV fluorescence resulting from

αS-AL488 binding was consistent with the FCS results (S6D Fig).

Carbohydrates were selectively removed from the extracellular surface of the SH-SY5Y

GPMVs by incubation with the same endoglycosidases used in the cell uptake measurements.

Treatment with PNGase F resulted in a loss of inhomogenous binding and the bright αSacetyl

Fig 4. Removal of N-linked glycans disrupts binding of αSacetyl to SH-SY5Y proteoliposomes. (A) Images of

SH-SY5Y GPMVs incubated with 100 nM αSacetyl-AL488 and unlabeled αSacetyl (concentrations indicated). (B) Upper: as

in (A) but with 100 nM αSun-AL488 and 80 μM unlabeled αSun. Lower: as in upper panel but with treatment with

PNGase F. (C) Binding of 80 nM αSacetyl-AL488 or αSun-AL488 to GPMVs quantified by FCS as loss of protein (N,

number of molecules) from solution. The number of molecules in control wells lacking GPMVs is indicated by the red-

dashed line. (D) Representative images of SH-SY5Y GPMVs incubated with 100 nM αSacetyl-AL488 and 80 μM unlabeled

αSacetyl after treatment of GPMVs with the indicated endoglycosidase. (E) Binding of αSacetyl-AL488 to Heparinase- and

Endo H-treated SH-SY5Y GPMVs measured by FCS, as in panel C. Binding +/− PNGase F from panel C shown for

comparison. (F) GPMVs incubated with 50 nM conA-AL488 in the absence and presence of 100 nM αSacetyl-AL594 and

80 μM of unlabeled αSacetyl. The data are presented as mean ± SD, n = 3. Scale bars = 10 μm. The underlying data for this

figure can be found in S1 Data. αS, α-Synuclein; αSacetyl, N-terminally acetylated αS; αSun, unmodified αS; AL488, Alexa

Fluor 488; Endo H, endoglycosidase H; FCS, fluorescence correlation spectroscopy; GPMV, giant plasma membrane

vesicle; PNGase F, peptide-N-glycosidase F; SH-SY5Y, human neuroblastoma; conA-AL488, AL488-labeled conA.

https://doi.org/10.1371/journal.pbio.3000318.g004
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assemblies (Fig 4D, S6E Fig), as well as significantly decreased the amount of bound αSacetyl

(Fig 4E). In contrast, binding of αSun to SH-SY5Y GPMVs was unaltered by PNGase F treat-

ment (Fig 4B). By comparison, bright αSacetyl assemblies were still observed after treatment

with Heparinase or Endo H (Fig 4D and 4E, S6F Fig), consistent with our cellular uptake mea-

surements. Also consistent with our cellular uptake measurements is that very weak binding

was observed for αSacetyl to GPMVs derived from HEK cells (S6G Fig).

Uniform binding of Alexa 488-labeled conA (conA-AL488) to SH-SY5Y GPMVs demon-

strates that glycoproteins were distributed throughout the GPMV bilayer in the absence of

αSacetyl (Fig 4F, S6H Fig); treatment with PNGase F significantly reduced the amount of conA

bound (S6H Fig). The addition of αSacetyl resulted in clustering of conA-stained proteins (Fig

4F, S6I and S6J Fig). αSacetyl appeared to induce assembly through binding to and noncova-

lently crosslinking multiple membrane glycoproteins, likely observed because GPMVs lack an

intact cytoskeleton that would otherwise restrict large-scale rearrangement of plasma mem-

brane proteins.

αSacetyl binds complex N-linked glycans with a distinct structure

Because its native function is thought to involve interactions with cellular membranes, binding

of αS to synthetic lipid vesicles has been thoroughly investigated by a number of experimental

methods [32–34]. The interaction is mediated through the first approximately 95 residues of

αS, which form an α-helix upon binding to synthetic lipid vesicles [33,35]. To interrogate the

conformational features of αS bound to GPMVs, intramolecular Förster resonance energy

transfer (FRET) measurements were made. αS was labeled at residues 9 and 72, positions

encompassing much of the membrane-binding domain. Mean energy transfer efficiencies

(ETeff) of αSacetyl and αSun bound to SH-SY5Y GPMVs were 0.43 ± 0.08 and 0.21 ± 0.06,

respectively (Fig 5A and 5B). This lower ETeff measured for αSun was consistent with a single,

long α-helix that we have previously measured using single-molecule FRET for αS bound to

synthetic lipid vesicles [35]. The higher ETeff measured for αSacetyl demonstrates that it binds

in a distinct conformation. Strikingly, when complex N-linked glycans were removed from

GPMVs by treatment with PNGase F, ETeff distribution peaks of 0.19 ± 0.06 and 0.17 ± 0.03

were observed for αSacetyl and αSun, respectively (Fig 5A and 5B). Our interpretation of these

findings is that, in the absence of complex N-linked glycans, αSacetyl binds to GPMVs through

interactions with the lipid bilayer resulting in a predominantly extended conformation. In the

presence of N-linked glycans, αSacetyl binding is enhanced, and it assumes a conformation dis-

tinct from the extended, membrane-bound α-helix. The higher mean ETeff and relatively

broad distribution of αSacetyl may reflect a dynamic, disordered C-terminal half of the mem-

brane-binding domain that does not strongly associate with the GPMVs in the presence of sur-

face glycans. Binding of αSun, on the other hand, occurs primarily through its interactions

with the lipid bilayer resulting in the extended helical state even in the presence of N-linked

glycans. These results provide a basis for understanding why no differences in GPMV binding

(Fig 4C) or in cellular uptake (Figs 2C, 2E and 3B) were observed for αSun upon PNGase F

treatment.

αSacetyl binds isolated N-linked glycans from SH-SY5Y cells

To identify whether αSacetyl binding to glycans requires either the associated glycoproteins or a

lipid bilayer, binding to isolated glycans in solution was measured by FCS. SH-SY5Y cells were

treated with each of the 3 endoglycosidases used in the cell and GPMV experiments, and the

cleaved carbohydrates were retained. The carbohydrates were titrated into αSacetyl-AL488 for

FCS measurements, and the autocorrelation curves (S7A Fig) were fit to extract the diffusion

Glycan-dependent cellular uptake of α-Synuclein
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time and average number of fluorescent molecules, N (Fig 6A, S7B Fig). The diffusion time—

which reflects the hydrodynamic size of the diffusing species—of αSacetyl increased more than

25% with increasing concentrations of PNGase F–derived glycans, comparable to similar mea-

surements of conA-AL488 (Fig 6A and 6B, S7C Fig). No increase in the diffusion time of αSun

was observed in the presence of PNGase F–derived glycans (Fig 6A). Similarly, the addition of

Fig 5. Intramolecular FLIM-FRET measurements of αS bound to SH-SY5Y GPMVs. (A) FLIM-FRET

measurements of αSacetyl bound to GPMVs without (upper) and with (lower) treatment with PNGase F. Left:

representative image of a GPMV, colored by donor fluorophore lifetime shown in the scale bar. Right: histogram of

ETeff calculated from the images, with Gaussian fits shown. The pixels used to calculate the histograms are indicated by

dashed lines on the GPMV images. (B) As in (A) but with αSun. Histograms indicated are an average of 3 GPMVs per

biological replicate (n = 3). The underlying data for this figure can be found in S1 Data. αS, α-Synuclein; αSacetyl, N-

terminally acetylated αS; αSun, unmodified αS; ETeff, energy transfer efficiency; FLIM, fluorescence lifetime imaging

microscopy; FRET, Förster resonance energy transfer; GPMV, giant plasma membrane vesicle; PNGase F, peptide-N-

glycosidase F.

https://doi.org/10.1371/journal.pbio.3000318.g005
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carbohydrates obtained from Endo H or Heparinase treatment of SH-SY5Y cells or PNGase F

treatment of HEK cells resulted in minimal changes in the diffusion time of αSacetyl by FCS

(Fig 6B, S7D Fig). Nuclear magnetic resonance (NMR) measurements showed nonuniform

glycan-dependent changes in αSacetyl peak intensity in the presence of PNGase F–cleaved gly-

cans, but not simple carbohydrates (Fig 6C and 6D). These changes likely result not only from

direct and specific interactions of αSacetyl with the cell-derived glycans through its acetylated

N-terminus, but also changes in the overall conformational ensemble as a result. Only a mini-

mal increase in signal intensity was observed for αSun with PNGase F–cleaved glycans (Fig

6C). By a filtration-based assay, both monomer and PFF αSacetyl were found to pull down

PNGase F–cleaved glycans from solution (S7E Fig). In contrast to GPMV images, there was no

evidence of glycan-mediated assembly of αSacetyl in solution (S7B Fig). This may reflect a dif-

ference in αSacetyl binding to disperse glycans in solution compared to the relatively high den-

sity of glycans on the GPMV surface. Alternatively, it could be due to the absence of the

relevant glycoprotein(s) because αSacetyl binding may involve interactions both with N-linked

glycans as well as the associated glycoprotein(s).

Neurexin 1β drives internalization of αSacetyl

Our results to this point demonstrate that the uptake of both monomer and PFF αSacetyl by

SH-SY5Y cells or primary neurons is strongly impacted by interactions with complex, N-

linked glycans. Our biophysical measurements with GPMVs and isolated carbohydrates sup-

port this observation. This prompted efforts to identify a specific glycoprotein binder partner

for αSacetyl. One recent screen of transmembrane proteins identified neurexin 1β and lympho-

cyte activation gene 3 (LAG3), both of which contain a single N-linked glycosylation site in

their extracellular domains, as binding partners for αSun [9]. Although this study did not

address the impact of N-terminal acetylation of αS, nor of glycosylation of the neurexin 1β or

LAG3, it found that both receptor proteins exhibit specificity for PFF over monomer αSun,

with the effect more striking for LAG3. To specifically address a possible role for glycosylation

of these proteins in αS uptake, HEK cells were transfected with either LAG3 or neurexin 1β,

each bearing an enhanced green fluorescent protein (eGFP) tag on its intracellular domain

(S8A Fig). At comparable transfection levels, the proteins localized to the plasma membrane,

as expected (S8B Fig). αS was labeled with AL594 (αS-AL594) to allow for simultaneous imag-

ing of the transfected protein and exogenously added αS. In the absence of LAG3 or neurexin

1β, no uptake of αSacetyl or αSun monomer or PFF by HEK cells was observed (S4B Fig). Upon

the addition of either αSacetyl or αSun PFFs to LAG3 expressing cells, colocalization with LAG3

on the plasma membrane followed by uptake was observed (Fig 7A). Consistent with the

results of the screen that identified these proteins, neither colocalization nor uptake were

detected for monomer αSun (Fig 7A and 7C), nor did we observe it for monomer αSacetyl (Fig

7A and 7C). Treatment of the LAG3-expressing cells with PNGase F did not decrease uptake

of αSun or αSacetyl PFFs (Fig 7B and 7C).

The results from the neurexin 1β expressing HEK cells stand in striking contrast. Both

monomer and PFF αSacetyl were internalized by these cells where they colocalized in distinct

intracellular puncta (Fig 7D and 7F). Intracellular puncta containing neurexin 1β were not

observed in the absence of αS (S8A Fig), demonstrating that αSacetyl drives internalization of

neurexin 1β during its uptake. We saw no evidence of uptake of monomer or PFF αSun in

neurexin 1β expressing HEK cells (Fig 7D and 7F). At short incubation times, both αSun and

αSacetyl PFFs colocalized with neurexin 1β on the cell surface; however, only αSacetyl PFFs were

internalized upon longer incubation (S8C Fig). Treatment of neurexin 1β transfected HEK

cells with PNGase F greatly decreased binding and uptake of αSacetyl monomer and PFF (Fig
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7E and 7F). Moreover, neurexin 1β maintained its plasma membrane localization (Fig 7E).

These data identify neurexin 1β and its glycosylation as key modulators of pathogenic cell-to-

cell transmission of αSacetyl.

Discussion

In this study, we present compelling evidence that cellular internalization of αSacetyl by primary

neurons and SH-SY5Y cells is dependent upon complex, N-linked glycans. αSacetyl binds to

these complex, N-linked glycans in solution and on cell-derived proteoliposomes. Glycan

binding is a novel result for αSacetyl, and we propose that it is likely to be critical for recognition

of functional protein binding partners. We identify one of those binding partners, neurexin

1β, and show that both its binding to αSacetyl and the consequent uptake of αSacetyl are depen-

dent upon its glycosylation.

Critically, the underlying factor in our discovery is our use of αSacetyl and our ability to

make direct comparisons between αSacetyl and αSun. Mass spectrometry analysis of αS derived

from mammalian brain tissue and various mammalian cells types, as well as from post-mortem

human brain tissue, note the presence of the N-terminal acetyl modification on both soluble

and insoluble forms of the protein [11,14,15,36,37]. However, despite the fact that αSacetyl can

be produced in Escherichia coli [19], many studies—including those aimed at understanding

Fig 6. Binding of αSacetyl to isolated cell-surface N-linked glycans. (A) Diffusion time of αSacetyl-AL488 and αSun-

AL488 (80 nM) as a function of PNGase F–derived glycan concentration measured by FCS. (B) Comparison of αSacetyl-

AL488 and αSun-AL488 binding to carbohydrates (30 μg) cleaved by the indicated endoglycosidases as measured by

FCS. (C) Percent increase in peak intensity for selected residues (n = 9: T22, K32, T44, H50, T59, T64, G86, G93, and

N103) strongly enhanced by glycan binding relative to selected residues (n = 9: A17, A27, L38, V40, V71, V95, I112,

E130, and Y136) weakly affected by glycan binding. Measurements were performed for αSacetyl in the presence of

PNGase F–cleaved glycans, H-Tri, and GlcNAc and for αSun with PNGase F–cleaved glycans. The ratio of sugar to

protein used is indicated. (D) Cross-sections from 15N-1H HSQC spectra along the nitrogen dimension at 8.15 ppm for

αSacetyl in the absence (gray) and in the presence of PNGase F–derived glycans (orange). For (A–C), data are presented

as mean ± SD, n = 3. ���P< 0.0001 by Student t test). The underlying data for this figure can be found in S1 Data. αS,

α-Synuclein; αSacetyl, N-terminally acetylated αS; αSun, unmodified αS; AL488, Alexa Fluor 488; FCS, fluorescence

correlation spectroscopy; GlcNAc, N-acetylglycosamine; H-Tri, H-Trisaccharide; ns, not significant; HSQC,

heteronuclear single quantum coherence; PNGase F, peptide-N-glycosidase F.

https://doi.org/10.1371/journal.pbio.3000318.g006
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function and uptake mechanisms of αS—still rely on the unmodified protein. Current esti-

mates are that approximately 80% of mammalian proteins are modified by N-terminal acetyla-

tion [38]. In contrast to other protein modifications, including side-chain acetylation, no N-

terminal deacetylase enzymes have yet been identified, suggesting that N-terminal acetylation

is not reversible [39]. To illustrate, one recent study found fractional acetylation on lysines 6

and 10 of αS from mouse brain but that the N-terminal acetyl group was ubiquitously present

[11]. For many N-terminally acetylated proteins, e.g., tropomyosin binding to actin [40], this

modification is required for recognition of binding partners [41]. Our current work demon-

strates that this is true for αSacetyl and neurexin 1β (Fig 7) and may also be true for other cellu-

lar binding partners of αS. Moreover, the increased uptake (Figs 2 and 3), as well as the

resulting enhancement of intracellular aggregate formation induced by αSacetyl PFFs relative to

αSun PFFs (Fig 1), provide compelling evidence that N-terminal acetylation of αS has physio-

logical consequences that thus far have been overlooked. From our findings, we speculate that

the increased potency of αSacetyl PFFs in inducing aggregation of endogenous neuronal αS (Fig

1) may result from more rapid internalization of αSacetyl PFFs relative to αSun PFFs. We antici-

pate that our results may help reconcile conflicting cellular and animal models with biochemi-

cal and biophysical studies of αS in which the protein may lack the appropriate modifications.

Disordered proteins such as αSacetyl often participate in highly specific—but relatively low-

affinity—interactions [42]. As such, multivalency provides sufficient avidity for biological inter-

actions between disordered proteins and binding partners in vivo, in examples as diverse as

tubulin polymerization [43], liquid-liquid phase separation [44], and nuclear transport [45].

Intriguingly, interactions between glycan-binding proteins—including lectins—and their bind-

ing partners are often described in the same terms. The binding between these proteins and a

single glycan is often relatively low affinity (μM-mM) [46]. We estimate the apparent Kd for

monomer αSacetyl and PNGase F–derived glycans in solution from the FCS data shown in Fig

6A to be approximately 10–20 μM. Multivalency both enhances the affinity and confers specific-

ity on the interaction, as high affinity binding only occurs when the correct cluster of glycans is

present and in the correct orientation. This requirement may underlie the differences we

observe for αSacetyl in its interactions with SH-SY5Y and primary neurons relative to HEK cells.

While complex N-linked glycans are abundant on all mammalian cells membranes, there are

significant differences in the specific glycome between cell types; moreover, the glycome may be

modified in response to development or disease [47]. Most glycan-binding proteins are mem-

bers of well-characterized families and share similar structures or amino acid sequences [48].

To our knowledge, there are no prior examples of entirely disordered proteins showing selective

binding to complex, N-linked glycans, further underscoring the novelty of our results.

Monomer αS is disordered in solution, with transient helical structure in the amino termi-

nus [33]. N-terminal acetylation enhances the helical propensity of the first 12 residues of αS,

Fig 7. Glycosylated neurexin 1β is a receptor for αSacetyl. (A) HEK cells transfected with LAG3-eGFP after

incubation with monomer or PFF αSacetyl-AL594 or αSun-AL594. (B) HEK cells transfected with LAG3-eGFP but

treated with PNGase F prior to incubation with monomer or PFF αSacetyl-AL594 or PFF αSun-AL594. (C)

Quantification of uptake of monomer and PFF αS-AL594 by LAG3-eGFP transfected HEK cells and +/− PNGase F

treatment quantified by puncta analysis (for αSacetyl and αSun PFFs, as no significant uptake of monomer αSacetyl or

αSun is observed without treatment). (D) As in (A) but HEK cells transfected with neurexin 1β-eGFP. (E) As in (B) but

HEK cells transfected with neurexin 1β-eGFP. (F) As in (C) but HEK cells transfected with neurexin 1β-eGFP and with

analysis of monomer αSacetyl and αSun. All internalization measurements with 200 nM monomer or 200 nM PFF

(monomer units, 20:1 αS:αS-AL594) n = 50 cells, 3 independent experiments, ���P< 0.0001 by Student t test). Scale

bars = 20 μm. The underlying data for this figure can be found in S1 Data. αS, α-Synuclein; αSacetyl, N-terminally

acetylated αS; αSun, unmodified αS; AL594, Alexa Fluor 594; eGFP, enhanced green fluorescent protein; HEK, human

embryonic kidney 293T; LAG3, lymphocyte activation gene 3; PFF, preformed fibril; PNGase F, peptide-N-glycosidase

F.

https://doi.org/10.1371/journal.pbio.3000318.g007
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as well as exerting long-range effects up through approximately residue 50 [49]. These changes

in conformational sampling conferred by N-terminal acetylation may have a role in the selec-

tive glycan binding of αSacetyl relative to αSun. Also relevant to our study, which finds that both

monomer and PFF αSacetyl interact with N-linked glycans, there are several recent structures of

αS fibrils that found that the first approximately 45 residues of αS remain flexible and

extended—and thus presumably available for binding—in aggregates [50–52]. That both

monomer and PFF αSacetyl and αSun are internalized by SH-SY5Y cells, while only αSacetyl

uptake is impacted by N-linked glycans and only PFF αSun uptake is impacted by Heparinase,

strongly suggests that there are multiple modes by which αS interacts with the extracellular

plasma membrane. For αSacetyl, binding to the extracellular membrane is driven by its specific

interactions with N-linked glycans. For αSun, binding appears to be derived primarily from

interactions with outer leaflet lipids and, for PFF αSun, proteoglycans. In all cases, altering the

amount of bound αS, whether by cleaving a specific carbohydrate or increasing the amount of

glycoprotein (as with neurexin 1β), correspondingly alters the amount of internalized αS.

One consequence of our identification of αSacetyl as a glycan-binding protein is that it elicits

a reconsideration of interactions between αS and putative binding partners. Many of the pro-

teins identified as such, including glucocerebrosidase [53] and Rab3b [54], as well as the LAG3

and neurexin 1β [9] examined here, contain N-linked glycosylation sites. Consistent with the

description of glycan-binding proteins above, our results with LAG3 and neurexin 1β empha-

size the relevance of the specific glycans modifying the glycoprotein in determining binding of

αSacetyl. Both LAG3 and neurexin 1β are modified by N-linked glycans; however, only the gly-

cans on neurexin 1β mediate binding and uptake of αSacetyl (Fig 7). As αS is a major target for

drug development to treat Parkinson disease and other synucleinopathies, identification of

αSacetyl as a glycan-binding protein provides new considerations for therapeutic approaches.

Materials and methods

Ethics statement

The primary neurons used in this manuscript were purchased from Neurons R Us Culture Ser-

vice Center at Penn Medicine Translational Neuroscience Center (PTNC) at the University of

Pennsylvania. The use and care of animals were in accordance with the NIH Guide for the

Care and Use of Experimental Animals, and protocols were approved by the University of

Pennsylvania Institutional Animal Care and Use Committee (IACUC).

αS expression and purification

αS was expressed in E. coli BL21 cells; for αSacetyl, BL21 stocks containing the N-terminal acet-

yltransferase B (NatB) plasmid with orthogonal antibiotic resistance were used. The purifica-

tion of both αSacetyl and αSun protein was carried out as previously described [19], with minor

modifications. Briefly, two ammonium sulfate cuts were used (0.116 g/mL and 0.244 g/mL)

with αS precipitating in the second step. The pellet was resolubilized in Buffer A (25 mM Tris

[pH 8.0], 20 mM NaCl, 1 mM EDTA) with 1 mM PMSF and dialyzed against Buffer A to

remove ammonium sulfate. Dialyzed samples were loaded to an anion exchange column (GE

HiTrap Q HP, 5 ml) and eluted with a gradient to 1 M NaCl. αS elutes at approximately 300

mM NaCl. Fractions containing αS were pooled and concentrated using Amicon Ultra con-

centrators (3,000 Da MWCO). Concentrated samples were then loaded to a size exclusion col-

umn (GE HiLoad 16/600 Superdex75) and eluted at 0.5 ml/minute. Fractions containing αS

were again pooled and concentrated, then stored at −80˚C. All αS constructs used in this work

were checked by matrix-assisted laser desorption/ionization (MALDI) to confirm correct

mass and presence of acetylation (S1 Fig).
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For NMR measurements, 15N-labeled αS was grown in E. coli BL21 stocks containing the

NatB plasmid in minimal medium (6 g/L Na2HPO4.7H2O, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 mM

MgS04, 300 μM CaCl2, 0.5 g/L 15NH4Cl) instead of LB medium and purified as described

above.

αS labeling

αS was site-specifically labeled at a single position by introduction of a cysteine at either resi-

due 9 or residue 130. For labeling reactions, freshly purified αS (typically 200–300 μL of

approximately 200 μM protein) was incubated with 1 mM DTT for 30 minutes at room tem-

perature to reduce the cysteine. The protein solution was passed over 2 coupled HiTrap Desalt-

ing Columns (GE Life Sciences, Pittsburgh, PA) to remove DTT and buffer exchanged into 20

mM Tris (pH 7.4), 50 mM NaCl, and 6 M guanidine hydrochloride (GdmCl). The protein was

incubated overnight at 4˚C with stirring with 4× molar excess AL488 or AL594 maleimide

(Invitrogen). The labeled protein was concentrated and buffer exchanged into 20 mM Tris

(pH 7.4), 50 mM NaCl using an Amicon Ultra 3K Concentrator (Millipore, Burlington, MA),

with final removal of unreacted dye and remaining GdmCl by passing again over a set of cou-

pled desalting columns equilibrated with 20 mM Tris (pH 7.4), 50 mM NaCl.

For dual fluorophore labeling for FRET measurements, cysteines were introduced at resi-

dues 9 and 72. The protein was labeled as described above, with the following modifications.

The protein was first incubated with donor fluorophore AL488 maleimide at a ratio of protein:

dye of 1:0.5 for 2 hours at room temperature with stirring. Then, 4× molar excess of acceptor

fluorophore AL594 maleimide was added, and the reaction was continued overnight at 4˚C.

The labeled protein was separated from unreacted dye as described above. αS labeled at these

positions has been extensively studied in our lab; as documented in our previous publications,

they do not perturb αS binding to lipid membranes and serve as excellent reporters of different

conformations of membrane-associated αS [35,55].

Fibril formation

αS PFFs were prepared as previously described [21]. Briefly, 100 μM αS was mixed with 5 μM

αS-AL488 in 20 mM Tris (pH 7.4) and 100 mM NaCl. To induce aggregation, this solution

was incubated at 37˚C for 5 days with agitation (1,500 rpm on an IKA MS3 digital orbital

shaker) in parafilm-sealed 1.5 mL Eppendorf tubes to ensure minimal solvent evaporation.

The aggregation reaction was analyzed by Congo Red absorbance by diluting 10 μl of the

aggregation solution in 140 μl 20 μM Congo Red. The mature fibrils were then pelleted by cen-

trifugation (13,200 rpm for 90 minutes at 4˚C), and the supernatant was removed. Fibers were

resuspended in an equal volume (relative to supernatant) of 20 mM Tris (pH 7.4), 100 mM

NaCl. Mature fibers were subsequently fragmented on ice using a sonicator (Diagenode UCD-

300 bath sonicator) set to high, 30 seconds’ sonication followed by a delay period of 30 seconds

—10 minutes total—to form PFFs.

Assessment of fibrillar material

TEM and PAGE were used to characterize fibrillar αS (S1 Fig). For TEM, 10 μL of aggregated

protein samples (from both before and after sonication) were incubated on TEM grids

(400-mesh Formvar carbon-coated copper, Electron Microscopy Sciences, Hatfield, PA) for 1

to 2 minutes. Sample solution was wicked with filter paper, and the grid was washed with

water to remove any excess material and improve background contrast. Grids were then incu-

bated with 1% (w/v) aqueous uranyl acetate solution (10 μL) for 30 to 60 seconds. Excess ura-

nyl acetate was wicked away with filter paper, and grids were air dried. TEM images were

Glycan-dependent cellular uptake of α-Synuclein

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000318 June 18, 2019 15 / 29

https://doi.org/10.1371/journal.pbio.3000318


collected using a JOEL JEM 1011 TEM (JEOL, Peabody, MA) (operating voltage 100 kV)

equipped with a charge-coupled device camera (ORIUS 832. 10W; Gatan, Pleasanton, CA).

The lengths of the PFFs post sonication were quantified using the Fiji measuring tool on TEM

images [57].

For PAGE, aggregated protein solutions were centrifuged to pellet the aggregated material.

The supernatant was removed and pellet was resuspended in the starting volume of buffer.

Both supernatant and resuspended pellet (20 μL) were loaded on a 4% to 12% polyacrylamide

gel. Gels were imaged using a Typhoon FLA7000 gel imager (GE Life Sciences, Pittsburgh, PA)

using Coomassie stain mode.

Cell culture

SH-SY5Y and HEK cells were grown at 37˚C under a humidified atmosphere of 5% CO2. The

SH-SY5Y cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) plus 10% fetal

bovine serum, 50 U/ml penicillin, and 50 μg/ml streptomycin. The HEK cells were cultured in

DMEM supplemented with 10% FBS, 2 mM L-glutamine, and 100 units/ml penicillin-

streptomycin.

Cells were passaged upon reaching approximately 95% confluence (0.05% Trypsin-EDTA,

Life Technologies, Carlsbad, CA), propagated, and/or used in experiments. Cells used in

experiments were pelleted and resuspended in fresh media lacking Trypsin-EDTA.

Primary neuronal culture

Primary neuronal cultures were obtained from the Neurons-R-Us facility at the University of

Pennsylvania. They were prepared from E15-E17 embryos of CD1 mice. All procedures were

performed according to the NIH Guide for the Care and Use of Experimental Animals and

were approved by the University of Pennsylvania IACUC. Dissociated hippocampal neurons

were plated onto sterile, poly-D-lysine coated on IBIDI chambers at 200,000 cells/coverslip for

live cell imaging and were allowed to mature for 5 days in complete neuronal medium (neuro-

basal without phenol red [Thermo Fisher, Waltham, MA], 5% B27 supplement [Thermo

Fisher]). Medium was partially exchanged every 3 to 4 days.

GPMVs

GPMVs are blebs obtained directly from the cell plasma membrane that contain lipid bilayers

and the embedded membrane proteins but lack the other biological components of the cell

[31]. GPMVs were isolated from SH-SY5Y and HEK cells according to established methods

[56]. Briefly, cells were plated in 25 cm2 culture flasks and cultured for 48 hours, washed with

GPMV buffer (10 mM HEPES, 150 mM NaCl, 2 mM CaCl2 [pH 7.4]) twice, and then exposed

to 25 mM formaldehyde and 2 mM DTT for 2 hours to induce blebbing. To reduce the content

of DTT, GPMVs were dialyzed in GPMV buffer prior to use in experiments. GPMVs were also

created using N-ethylmaleimide as the blebbing reagent, with comparable results. The phos-

pholipid content of final material was measured by total phosphate assay.

Phosphate assay

Lipid concentrations for GPMV preparations were estimated by measuring total phosphate,

assuming that all measured phosphate is from phospholipids and that all lipids are phospholip-

ids. This is a practical assumption designed to ensure reproducibility.
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Enzymatic cleavage of carbohydrates

For cleavage of carbohydrates from GPMVs, endoglycosidases were added to the GPMVs in

GPMV buffer at concentrations recommended by the manufacturers (PNGase F: 5,000 units/

ml; Endo H: 2,500 units; Heparinase I/III: 2,500 units) and incubated at 37˚C for 6 hours.

PNGase F was tagged with a chitin binding domain (Remove-IT PNGase F, New England Bio-

labs, Ipswich, MA). For the images shown in this manuscript, the enzyme was removed by

incubation of GPMVs with 50 μl of chitin binding magnetic beads. Control experiments were

conducted without removal of PNGase F and found to be comparable. Cleavage of N-linked

glycans by PNGase F was confirmed by comparing images of GPMVs +/− PNGase F treatment

after incubation with 50 nM conA, a lectin that binds to binding to α-D-mannose and α-D-

glucose moieties, or wheat germ agglutinin, a lectin that binds to N-acetyl-D-glucosamine and

sialic acid. A significant decrease in the amount of both proteins is observed in these images

(S6B Fig).

For cleavage of carbohydrates from cells, cells were first plated for 42 hours. After 42 hours,

media were removed from cells and replaced with FBS-free media complimented with the

endoglycosidase (PNGase F: 5,000 units/ml; Endo H: 2,500 units; Heparinase I/II: 2,500 units).

The cells were incubated at 37˚C under a humidified atmosphere of 5% CO2 for an additional

6 hours. The media were then removed and replaced with cell growth media prior to the addi-

tion of αS. Cleavage of N-linked glycans from cells was confirmed by comparing images +/−-

PNGase F treatment after incubation with 50 nM conA-AL488, showing a significant reduc-

tion in the amount of conA bound (S5D Fig).

To ensure that PNGase F is removed from GPMVs or cells after incubation (and therefore

does not remain associated with either, blocking potential αS binding sites), we compared the

amount of PNGase F added to either GPMVs or cells with that removed after incubation.

PNGase F (5,000 units/ml) containing a chitin domain was added to chambers containing

either GPMVs or cells and was incubated at 37˚C for 6 hours, as for the experiments described

above. After incubation, the buffer or media containing PNGase F were removed and incu-

bated with chitin magnetic beads to isolate and concentrate the enzyme. Blank chambers con-

taining only PNGase F in buffer or media were subjected to the same treatment; 20 μL of each

sample was run on a 4%–12% polyacrylamide gels and stained with Coomassie blue. Gels were

imaged using a Typhoon FLA7000 gel imager (GE Life Sciences, Pittsburgh, PA) using Coo-

massie stain mode. The gels indicate that essentially all of the enzyme is removed (S9A Fig).

Quantification of carbohydrates

Concentrations of carbohydrates isolated from GPMVs or cells were quantified by using the

Total Carbohydrate Quantification Assay Kit (Abcam, Cambridge, MA) following the manu-

facturer’s instructions. Briefly, the carbohydrates are first hydrolyzed to monomer sugar units

and then converted to furfural or hydrofurfural. These compounds are converted to chromo-

gens, which can be detected by absorbance at 490 nm. Glucose was used to generate a standard

curve for calculation of the total carbohydrate concentration of the samples.

αS-captured carbohydrate pull-down assay

Carbohydrates cleaved and isolated from GPMVs (50 μg) were incubated with 100μM αS in

100μL 10 mM HEPES, 150 mM NaCl, 2 mM CaCl2 (pH 7.4) for 1 hour at room temperature.

Binding reaction mixes were transferred to Amicon Ultra (3,000 Da MWCO) centrifugal con-

centration devices that had been washed with 500μL deionized water. The concentrators were

centrifuged for 5 minutes at 4,200 rpm and the filtrates collected. The flow-through contains

carbohydrates that did not bind αS and thus were not retained in the chamber of the
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concentrator. The amount of carbohydrate in the flow-through was quantified by the total car-

bohydrate assay as described above. The fraction of carbohydrate bound and retained by αS

(Ccaptured) was calculated relative to the starting concentration (50 μg) of the carbohydrate mix-

ture, using

Ccaptured ¼ Ctotal � Cflow� through ð1Þ

where Ctotal corresponds to the absorption of the starting stock concentration of carbohydrates

used and Cflow−through is the absorption of the flow-through.

Samples containing αS with no glycans or conA with 50 μg glycans were used as negative

and positive controls, respectively. As expected, no signal at 490 nm was detected for the αS-

only sample; the conA results are shown in S7E Fig. The absorbance of flow-through at 280

nm was measured, confirming that all protein was retained in the concentrator and could not

be detected in the flow-through.

Cell imaging and analysis

All cell imaging was carried out by confocal fluorescence microscopy using an Olympus

FV3000 scanning system configured on a IX83 inverted microscope platform with a 60× Plan-

Apo/1.1-NA water-immersion objective with DIC capability (Olympus, Tokyo, Japan). For all

experiments, the gain setting for the blue channel was kept constant from sample to sample

(excitation 488 nm, emission BP 500–540 nm). For detection of αS-AL594, the green channel

was used (excitation 561 nm, emission BP 570–620 nm). Images were obtained in 8-well ibidi

chambers (μ-Slide, 8-well glass bottom, ibidi GmbH, Germany) coated with Poly-D-lysine and

were seeded with 20,000–25,000 cells/well. Cells were cultured for 48 hours after passage

before beginning experiments. For cellular uptake experiments, 200 nM αS-AL488 was incu-

bated with cells for 0 to 24 hours before acquiring images. For experiments using deglycosy-

lated cells, cells were pretreated with the tested endoglycosidase for 6 hours as described above

prior to addition of protein. For colocalization with lysosomes, cells were treated with 75 nM

Lysotracker Deep Red (Life Technologies, Carlsbad, CA) for 1 hour prior to imaging. For all

experiments, the gain setting for each channel was kept constant from sample to sample.

Image acquisition and processing were performed with the software accompanying the

FV3000 microscope and Image J software [57]. For SH-SY5Y cells, internalized αS was quanti-

fied either by analysis of the punctate structures in the cells or by the total cellular fluorescence;

for primary neurons, internalized αS was quantified by total cellular fluorescence. For total cel-

lular fluorescence, the integrated fluorescence intensity of the cells is reported. Cellular puncta

were analyzed using the Image J particle analysis plug-in. This algorithm detects puncta

through a user-defined threshold and counts the number of puncta that meet or exceed the

threshold. The threshold was initially defined by manual identification and averaging of a sub-

set of puncta. Colocalization with lysosomes was computed by obtaining a Pearson coefficient

using the ImageJ plugin for colocalization (Coloc_2).

Endocytosis inhibition

For inhibition of exocytosis experiments, monomer αS-AL488 (200 nM) or PFFs (200 nM in

monomer units, 20:1 αS:αS-AL488) was initially incubated with cells for 30 minutes at 4˚C.

Control cells were moved to 37˚C while the endocytosis-inhibited cells were incubated at 4˚C

for another 4 hours before acquiring images. For all experiments, the gain setting for each

channel was kept constant from sample to sample. Image acquisition and processing were

achieved using the software accompanying the FV3000 microscope and Image J software [57].
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GPMV imaging and analysis

All GPMV images were carried using a PicoQuant MicroTime 200 time-resolved fluorescence

system based on an inverted Olympus IX73 microscope (Olympus, Tokyo, Japan) with a 60×
Plan-Apo/1.4-NA water-immersion objective using a 482 nm excitation laser and a frame size

of 512 × 512 pixels. Images acquired with this instrument were in lifetime mode but were inte-

grated to obtain intensity-based images comparable to typical confocal images. This instru-

ment has the advantage of very sensitive avalanche photodiode detectors (SPADs) that are

capable at detecting nM concentrations of protein. Fluorescence intensities were analyzed via

the lifetime mode (both intensity and FRET images) using SymPhoTime 64 (PicoQuant, Ber-

lin, Germany). The intensity of images was then adjusted on ImageJ analysis program [57].

For FLIM-FRET experiments, measurements were made of donor-only and donor-accep-

tor labeled proteins. SPAD signals were processed with the TimeHarp 300 photon counting

board and analyzed with the SymPhoTime 64 software (PicoQuant, Berlin, Germany) taking

into account the instrument response function to allow consideration of short lifetime compo-

nents with a high accuracy. FLIM images were acquired for 180 seconds, with a pixel integra-

tion time of 40 μs per pixel and an average photon count rate of 10,000–30,000 counts per

second. Regions of interest of the GPMV membrane were selected from FLIM images, and

fluorescent lifetimes were obtained from TCSPC decay curves fitted by an exponential equa-

tion using the SymPhoTime 64 software. Fitting of the fluorescence images was then per-

formed pixel wise with a single exponential model on all pixels above an intensity threshold of

200 photons. By characterizing donor lifetime in the absence and presence of acceptor, ETeff

can be calculated from:

ETeff ¼ 1 �
tDA
tD

ð2Þ

where τDA and τD and are the donor excited state lifetime in the presence and absence of

acceptor. Six FLIM images were recorded for each of 3 biological repeats per condition. The

histograms shown in Fig 5 represent ETeff values for selected pixels from equatorial sections of

the GPMVs as indicated in the images to their left. The histograms were fit with a Gaussian

function to extract the mean ETeff.

Images were obtained in 8-well NUNC chambers (Thermo Scientific, Rochester, NY) con-

taining 250 μl of GMPV at 5 μM phospholipid concentration and 80 nM of αS-AL488. For all

experiments using these chambers, the chambers were passivated by polylysine-conjugated

PEG treatment to prevent any nonspecific absorption to the chamber surfaces [55]. Quantifi-

cation of fluorescence on GPMVs resulting from bound αS-AL488 was calculated by deter-

mining the integrated intensity per pixel. The fluorescence intensities of 10 GPMVs per

condition were quantified.

FCS

FCS measurements were carried out on a lab-built instrument, as described previously [35]. A

488-nm–wavelength laser was adjusted to 5 μW prior to entering the microscope. Fluores-

cence emission was collected through the objective and separated from laser excitation using a

Z488RDC Long-Pass Dichroic and an HQ600/200M Band-Pass Filter (Chroma, Bellows Falls,

VT). The fluorescence emission was focused into the aperture of a 50-μm–diameter optical

aperture fiber (OzOptics, Canada) directly coupled to an avalanche photodiode. A digital cor-

relator (Flex03LQ-12; Correlator.com) was used to generate the autocorrelation curves. For

each experiment, 30 autocorrelation curves of 10 seconds each were acquired and averaged

together to obtain statistical variations. These average autocorrelation curves were then fit to a

Glycan-dependent cellular uptake of α-Synuclein

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000318 June 18, 2019 19 / 29

http://Correlator.com
https://doi.org/10.1371/journal.pbio.3000318


function for single fluorescent species undergoing Brownian motion in a three-dimensional

Gaussian volume weighted by the inverse square of the SD:

G tð Þ ¼
1

N
�

1

1þ t

tD

�

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ s2t
tD

s

ð3Þ

where G(τ) is the autocorrelation function for translational diffusion as a function of time τ, N
is the average number of fluorescent molecules in the laser focal volume, and τD is the transla-

tional diffusion time of the particles. The structure factor, s, is the ratio of the radial to axial

dimensions of the focal volume and was obtained from a calibration procedure using AL488

hydrazide dye solutions (s = 0.2) and fixed for all subsequent fitting. Several datasets of auto-

correlation curves obtained in the presence of carbohydrates were analyzed considering a sin-

gle component system. For carbohydrate binding, both the diffusion time, τD (Fig 6A and 6B,

S4C, S7A, S7C, S7D and S9B Figs), and the number of molecules, N (Fig 4C and 4E, S7B Fig),

were analyzed.

GPMV binding and cellular uptake by FCS

FCS was used to monitor αS both binding to GPMVs and uptake by cells. FCS measurements

were made on the instrument described above. For GPMV binding, experiments were per-

formed in 8-well NUNC chambers (Thermo Scientific, Rochester, NY) containing 250 μl of

GMPV at 5 μM phospholipid concentration. The laser focal volume was located to a height of

100 μm from the bottom surface of the wells, above all GMPVs. αS-AL488 (80 nM) was added

to wells with GPMVs, and the autocorrelation measurements were taken immediately and

after 60 minutes. Each curve was integrated for 30 seconds and repeated 10 times, and data

were analyzed as described above. Binding was quantified by measuring the change in the

number of molecules, N, of fluorescently labeled αS present in the solution surrounding the

GMPVs relative to the starting concentration. There was no change in the diffusion time of the

αS that remained in the cell media over this time course, evidence that protein is stable and the

fluorophore intact (S9B Fig).

For cell uptake experiments, cells were plated in phenol red-free medium in 8-well ibidi

chambers (μ-Slide, 8-well glass bottom, ibidi GmbH, Germany) coated with Poly-D-lysine

wells and cultured for 48 hours prior to measurements. Control wells contained the same vol-

ume of media without cells; these control for nonspecific adsorption of protein to the well sur-

faces. αS-AL488 (200 nM) was added to the wells at the start of the experiment, and the

autocorrelation curves were taken in the medium well above the cells, at a height of 100 μm

from the bottom surface of the wells. The curves were collected at regular intervals, over a

period ranging from 2 to 24 hours, and each autocorrelation curve integrated for 30 seconds,

repeated 10 times. Data were analyzed as described above. Cellular uptake was assessed by

measuring the change in the number of molecules of fluorescently labeled αS present in the

media surrounding the cells relative to the starting concentration. In between measurements,

the chambers were returned to the incubators to maintain the temperature in the wells at

37˚C. As a negative control for both the GPMV binding and cell uptake studies, GPMVs or

cells were incubated with 80 nM eGFP. There was no evidence of eGFP binding to the GPMVs

nor of internalization by SH-SY5Y cells (S9C Fig).

Cellular uptake by PAGE

As an orthogonal approach to the FCS and imaging approached described above, uptake of

both monomer and PFF αS were quantified by PAGE. SH-SY5Y cells were incubated with 200
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nM αS, as described above for FCS uptake experiments. After incubation for the desired time

(1, 3, 5, 8, 12, or 24 hours), the media were removed from cells and stored at 4˚C. After all sam-

ples were collected, 20 μl of each sample was run on a 4%–12% polyacrylamide gel.

To quantify the amount of protein internalized, an identical set of experiments was carried

out, with modifications as described following. For each time point, transferrin-AL488 (100

nM) was added 30 minutes prior to the due time of the time point to serve as a loading control.

At the desired time points, the cells were detached from the wells by 0.05% Trypsin-EDTA

(Life Technologies Carlsbad, CA), pelleted, and lysed in 250 μl RIPA lysis buffer (Thermo

Fisher, Waltham, MA). Cell lysates (20 μl of stock) were run on PAGE gels. Cell lysates (20 μl)

were run on 4%–12% polyacrylamide gels.

Gels of both extracellular and internalized αS were imaged using a Typhoon FLA7000 gel

imager (GE Life Sciences, Pittsburgh, PA) using fluorescent imaging mode to detect αS-AL488

or transferrin-AL488. Image J was used to quantify the bands [57].

Statistical analysis

Data are expressed as the mean±SD and were examined by a one-way analysis of variance

(n = 3). More than 3 experiments were performed, and similar results were obtained. P< 0.05

was considered to be significant.

Trypan blue quenching

Trypan blue solution 0.4% (Thermo Fisher, Waltham, MA) and fresh neurobasal without phe-

nol red, B27, or antibiotic supplementation were equilibrated at 37˚C. A 10× dilution of trypan

blue was prepared freshly in the warmed neurobasal media. The trypan blue solution was then

added to cells dropwise and incubated at 37˚C for an hour prior to imaging. Trypan Blue

quenching was performed for all imaging experiments performed using PFFs and when mono-

mer protein was introduced in experiments utilizing primary neurons. Trypan Blue quenching

was used to eliminate signal from extracellular material, allowing the fluorescence quantifica-

tion of intracellular fluorescence signal.

Propagation of amyloid in primary neurons

Primary wild-type mouse hippocampal neurons (obtained as described above) were grown for

6 days on round coverslips prior to addition of αSacetyl or αSun PFFs (100 nM final PFF concen-

tration). Cells were fixed with 4% (wt/vol) paraformaldehyde and costained with antibodies

specific to αS phosphorylated at serine 129 (rabbit monoclonal phospho 129, 1:250 dilution)

and neuronal tubulin (mouse monoclonal anti-β-III tubulin, 1:100 dilution) after 3-, 7-, and

10-day incubations with PFFs. Primary antibodies were visualized by secondary staining with

AL488 donkey anti-rabbit IgG (Invitrogen, Carlsbad, CA) and AL647 goat anti-mouse IgG

(Invitrogen, Carlsbad, CA) (1:1,000 dilution).

Transfection of HEK cells

HEK cells were transfected with plasmid encoding LAG3-eGFP or Neurexin 1 β-eGFP by

Lipofectamine 3000, following the manufacturer’s directions. The media were removed from

cells 48 hours after transfection and replaced with FBS-free media complimented with PNGa-

seF (5,000 units/ml) for experiments that required PNGaseF treatment. The cells were then

incubated at 37˚C under a humidified atmosphere of 5% CO2 for an additional 6 hours. The

media were then removed and replaced with cell growth media prior to the addition of αS.

Cells were incubated with monomer αS-AL594 (final concentration 200 nM) or PFF αS (final
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concentration 200 nM monomer units, 1:20 labeled:unlabeled) for either 1 hour or 12 hours

prior to imaging.

Flow cytometry

To quantify LAG3-eGFP and Neurexin 1 β-eGFP expression levels, HEK cells were plated and

transfected as above. After 48 hours, cells were detached using 0.05% Trypsin-EDTA, centri-

fuged, and washed with PBS + 2mM EDTA and 2% BSA. The cells were then treated with the

Zombie Yellow fixable cell viability kit (BioLegend San Diego, CA) at room temperature in

PBS + 2 mM EDTA for 20 minutes and then fixed at 4˚C using Cytofix for 20 minutes. Cells

were then placed in PBS + 2 mM EDTA and 2% BSA. Data were collected on an LSR II flow

cytometer (BD Biosciences) and postcollection data were analyzed using FlowJo (Treestar,

flowjo.com) (S8B Fig). Gating was performed on live single cells in the lipofectamine-only

control.

Cell viability

Cell viability was measured colorimetrically using the Cell-Titer Blue (CTB, Promega,

Madison, WI) fluorescence-based assay. Cells were plated at a density 5,000 cells/well in

96-well plates (BD Biosciences, San Diego, CA). Protein was directly introduced to each well

after 48 hours of culture and then incubated for an additional 48 hours. After incubation, 30μL

CTB reagent was added to each well and incubated at 37˚C and 5% CO2 for 2.5 to 5 hours.

Fluorescence of the resorufin product was measured on a FluoDia T70 fluorescence plate

reader (Photon Technology International, Birmingham, NJ). Wells that included vehicle but

not protein served as the negative control (0% toxic), and wells containing 10% DMSO were

the positive control (100% toxic). Percent toxicity was calculated using the following equation:

%Toxicity ¼ 100 � 100
hSi � hPi
hNi � hPÞ

� �� �

ð4Þ

Each independent variable is the average of 8 plate replicates from the negative control

(<N>), positive control (<P>), and samples (<S>). Results presented for viability experi-

ments are an average of 3 such experiments conducted independently on different days. Error

bars represent the standard error of the mean.

NMR
1H-15N HSQC NMR titrations were carried out at 25˚C using Varian 600 MHz or Agilent 800

MHz spectrometers equipped with room temperature probes. A uniformly labeled 15N-αS

solution was added to either N-linked glycans obtained by PNGase F cleavage from SH-SY5Y

cells or commercially available mono- or trisaccharides at the concentrations indicated in Fig

6C in GPMV buffer (10 mM HEPES, 150 mM NaCl, 2 mM CaCl2 [pH 7.4], 10% D2O; final

concentration of 15N-αS was 350 μM). HSQC spectra were collected with VnmrJ software

(openvnmrj.org) using built-in pulse sequence including WATERGATE solvent suppression

and were analyzed with Mnova software suite (Mestrelab; mestrelab.com/software/mnova/).

Standard parameters for zero-filling, apodization, and baseline correction were applied. 1H

chemical shifts were referenced using water resonance, and 15N chemical shifts were refer-

enced indirectly based on gyromagnetic ratios of respective nuclei. Previously assigned αS

backbone resonances were used [49].

The PNGase F–derived glycans are a heterogeneous mixture of complex glycans of various

sizes and monosaccharide building blocks. For comparison with the mono- and trisaccharide
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measurements, we approximated the amount of PNGase F–derived carbohydrate from μg (as

determined by the carbohydrate quantification assay described above) to μM using the molec-

ular weight of glucose, 180.16 g/mol. Thus, the 1.3:1 molar ratio reported in the NMR refers to

the approximate number of available monosaccharide groups from the PNGase F glycans; the

actual concentration of complex N-linked glycans is much lower.

Binding to the PNGase F–derived glycans results in nonuniform peak intensity increases

throughout the sequence of αS. For analysis, 9 peaks showing large increases (T22, K32, T44,

H50, T59, T64, G86, G93, and N103) and 9 peaks showing small or no increases (A17, A27,

L38, V40, V71, V95, I112, E130, and Y136) were selected to roughly cover the entire sequence.

The same residues were used for each analyzed dataset. For each set of peaks, the relative mag-

nitude of increase (compared to αS in solution without glycans) expressed as a percentage was

calculated and averaged.

Supporting information

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

and statistical analysis for Figure panels 1B, 2C, 2D, 2E, 3A, 3B, 4C, 4E, 5A, 5B, 6A, 6B,

6C, 6D, 7C, 7F, S1A, S1C, S2B, S3, S4, S5B, S5E, S6D, S7A, S7B, S7C, S7D, S7E, S8B and

S9B Figs.

(XLSX)

S1 FCSfile. FCSFACS file for lipofectamine flow cytometry data in S8B Fig. FCSFACS, flow

cytometry standard.

(FCS)

S2 FCSfile. FCSFACS file for LAG3 flow cytometry data in S8B Fig. FCSFACS, flow cytometry

standard; LAG3, lymphocyte activation gene 3

(FCS)

S3 FCSfile. FCSFACS file for neurexin 1β flow cytometry data in S8B Fig. FCSFACS, flow

cytometry standard.

(FCS)

S1 Fig. Characterization of monomer and PFF αS. (A) MALDI-TOF mass spectrometry was

used to confirm the presence of the N-terminal acetyl group as well as the purity of the samples

for both unlabeled and AL488-labeled αS. The expected masses for αSacetyl
E130C and αSacety-

l
E130C-AL488 are 14,576 and 15,174, respectively; for αSun

E130C and αSun
E130C-AL488, they are

14,434 and 15,132, respectively; the reported values are within expected accuracy for MALDI-

TOF. (B) The fibril morphology before and after sonication was examined by TEM at 100,000x

magnification. Scale bar = 200 μm.(C) Frequency distribution of PFF length following sonica-

tion; 50 fibers were measured, with an average length of 192.2 ± 56.9 nm for αSacetyl and

209.7 ± 110.2 nm for αSun. (D) PAGE analysis at the end of the aggregation assay indicates

that very little monomer αS is present in PFF preparations. 1 = molecular weight standards; 2

= αSacetyl pellet; 3 = αSacetyl supernatant; 4 = αSun pellet; 5 = αSun supernatant. The underlying

data for this figure can be found in S1 Data.

(TIF)

S2 Fig. Time-dependent endocytosis of αSacetyl monomer and PFFs. (A) Time-dependent

uptake of αSacetyl (green) monomer or PFFs by untreated or PNGase F–treated SH-SY5Y cells.

Incubation time indicated above each image. Cells were stained with LysoTracker Deep Red

(purple) prior to imaging. (B) Image overlap statistics for (A) of LysoTracker and αSacetyl

monomer and PFFs at the indicated incubation time. Colocalization was analyzed with the
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Pearson correlation coefficient. A larger coefficient reflects more overlap between αSacetyl-

AL488 puncta and LysoTracker puncta (endosomes). Correlation coefficient was computed

using the ImageJ plugin for colocalization (n = 100 cells, 3 independent experiments). Scale

bars = 20 μm. The underlying data for this figure can be found in S1 Data.

(TIF)

S3 Fig. Quantification of cell uptake measured by PAGE analysis. Uptake of αSacetyl mono-

mer (200 nM αSacetyl-AL488) or PFFs (200 nM in monomer units, 20:1 αSacetyl:αSacetyl-AL488)

by SH-SY5Y cells as measured by PAGE analysis with fluorescence imaging of the gels (to

detect only αSacetyl-AL488). (Upper) Gels show αSacetyl remaining in the media at the time

points indicated above the gels. Uptake is measured by quantifying the decrease of αSacetyl-

AL488 in the media as a function of time. Quantification of the gels is shown as the scatter plot

for monomer and PFF αSacetyl +/− PNGase F treatment. The measurements are analogous to

the FCS measurements shown in Fig 2C in the main manuscript, and the results of both

approaches are comparable. (Lower) Gels show αSacetyl internalized by cells at the time points

indicated above the gels. Uptake is measured by quantifying the amount of αSacetyl-AL488

from lysed cells as a function of time. Transferrin-AL488, which exhibits very rapid uptake

kinetics (S4C Fig), was added to cells for 30 minutes prior to lysis, to be used as loading con-

trol. The scatter plot compares the amount of internalized monomer and PFF αSacetyl, and the

bar plot compares the amount of both forms internalized +/− PNGase F treatment. Quantifica-

tion of gel band intensity was computed using ImageJ. These measurements are analogous to

the image analysis shown in Fig 2C, and the results from both approaches are comparable. For

each experiment, 3 independent measurements were made. The underlying data for this figure

can be found in S1 Data.

(TIF)

S4 Fig. Clathrin-dependent endocytosis. (A) Inhibition of endocytosis monitored by uptake

of αSacetyl monomer or PFFs at 4˚C. Images are shown of uptake of protein at 37˚C and 4˚C

for each condition. Protein was added to the cells followed by incubation at 4˚C for 30 min-

utes. The controls were then moved to 37˚C incubator. The two groups of cells were incubated

in the respective temperatures for an additional 4 hours. (B) HEK cells incubated with αS acetyl

monomer or PFFs for 12 hours. (C) Rates of clathrin-dependent endocytosis of SH-SH5Y and

HEK cells compared by loss of 100 nM transferrin-AL488 from extracellular medium of cells

as measured by FCS. All αSacetyl uptake measurements used 200 nM αS-AL488 monomer or

PFF (concentration in monomer units, 20:1 αS:αS-AL488) Scale bar = 20μm. The underlying

data for this figure can be found in S1 Data.

(TIF)

S5 Fig. Treatment of cells with endoglycosidases. (A) Heparinase treatment of SH-SY5Y

cells inhibits uptake of αSun PFF (upper) but not of αSacetyl PFF (lower). Images made after 12

hours of incubation of SH-SY5Y cells with 200 nM PFF αSacetyl-AL488 or αSun-AL488 (con-

centration in monomer units, 20:1 αS:αS-AL488) following treatment with Heparinase. (B)

Heparinase and Endo H treatments of SH-SY5Y cells do not inhibit uptake of monomer αSace-

tyl. Images were made after 12 hours of incubation of SH-SY5Y cells with monomer αSacetyl-

AL488 (200 nM) following treatment with Endo H or Heparinase. Quantification of monomer

αSacetyl uptake by SH-SY5Y cells treated with Endo H or Heparinase shown relative to PNGase

F–treated or–untreated cells (Fig 2E). Numbers of puncta were computed using the ImageJ

plugin for particle analysis (n = 100 cells, 3 independent experiments, significance analyzed by

Student t test. (C) 50 nM conA-AL488 incubated with SH-SY5Y cells +/− PNGase F treatment.

A significant reduction in the amount of conA-AL488 is observed in cells treated with PNGase
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F. (D) (Upper) Uptake of transferrin and αSacetyl by PNGase F–treated SH-SY5Y cells. Inter-

nalization of transferrin-AL488 is not impacted by this treatment, indicating that clathrin-

mediated endocytic pathways are functional. Uptake of αSacetyl-AL594 is significantly reduced.

(Lower) As with the SH-SY5Y cells, uptake of transferrin by primary neurons from embryonic

mouse hippocampus is not impacted by PNGase F treatment, indicating that clathrin-medi-

ated endocytic pathways are functional. (E) Colorimetric measure of toxicity following the

incubation of SH-SY5Y cells with 200 nM αSacetyl monomer or PFFs (concentration in mono-

mer units) for times indicated on plots. Data are expressed relative to vehicle-only addition.

Each histogram bar is the average of 8 on-plate repeats across each of 3 independently per-

formed replicates (n = 24). The underlying data for this figure can be found in S1 Data.

(TIF)

S6 Fig. αS binding to and clustering of SH-SY5Y GPMVs is dependent on N-linked gly-

cans. (A) Representative images of SH-SY5Y GPMVs incubated with 100 nM αSacetyl-AL488

and 80 μM of unlabeled αSacetyl. (B) Representative images of SH-SY5Y GPMVs incubated

with 100 nM of αSacetyl-AL488 PFFs (monomer units, 20:1 αS:αS-AL488). (C) As in (B) but

with with αSun-AL488 PFFs. (D) Intensity per pixel of 100 nM αSacetyl-AL488 and αSun-AL488

and 80 μM of unlabeled protein bound to GPMVs with and without PNGase F treatment. (E)

Representative images of PNGase F–treated SH-SY5Y GPMVs incubated with 100 nM

αS-AL488 and 80 μM of unlabeled αS. (F) Representative images of Endo H- and Heparinase-

treated SH-SY5Y GPMVs incubated with 100 nM αSacetyl-AL488 and 80 μM of unlabeled

αSacetyl. (G) Representative images of HEK GPMVs incubated with 100 nM αSacetyl-AL488 and

varying concentrations of unlabeled αSacetyl (indicated). (H) GPMVs incubated with 50 nM

conA-AL488 or 50 nM wheat germ agglutinin-AL488, +/− PGNase F treatment (upper/lower).

(I) GPMVs incubated with 100 nM αSacetyl-AL594 and 80 μM of unlabeled αSacetyl prior to

addition of 50 nM conA-AL488. (J) GPMVs incubated with 80 μM of unlabeled αSacetyl prior

to the addition of 50 nM conA-AL488. For all experiments, GPMVs equivalent to 5 μM total

lipid as measured by the phosphate assay were used. Scale bars = 10 μm. The underlying data

for this figure can be found in S1 Data.

(TIF)

S7 Fig. αS binding to isolated glycans. (A) Averaged autocorrelation curves (30 curves of 10

seconds each) and fits to Eq 3 for αSacetyl in the presence and absence of PNGase F–cleaved gly-

cans. (B) The number of αSacetyl molecules, N, upon, titration with PNGase F–cleaved glycans

by FCS (same measurements as analyzed for diffusion time in Fig 6A). A decrease in N as a

function of glycan concentration would reflect aggregation or oligomerization of the protein;

this is not seen here. (C) Diffusion time of 80 nM conA-AL488 as a function of increasing con-

centrations of PNGase F–derived glycans. (D) Diffusion time of 80 nM αSacetyl-AL488 as a

function of increasing concentrations of Endo H- and Heparinase-derived glycans. Data for

PNGase F–derived glycans also shown for comparison (Fig 6A). (E) Quantification of PNGase

F–cleaved glycans bound to monomer and PFF forms of αSacetyl using total carbohydrate assay

(reported as absorption at 490 nm). For comparison, positive-control conA is shown. All

results are relative to the initial glycan pool, which is treated to the same filtration and quantifi-

cation protocol as the samples. Details of the assay are described in the Materials and methods.

The underlying data for this figure can be found in S1 Data.

(TIF)

S8 Fig. Internalization of αS by HEK cells transfected with LAG3 or neurexin 1β. (A) HEK

cells transfected with eGFP-tagged LAG3 (upper) or eGFP-tagged neurexin 1β (lower), imaged

48 hours after transfection. (B) Transfection efficiencies of eGFP-tagged neurexin 1β (upper:
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approximately 21%) or eGFP-tagged LAG3 (lower: approximately 16%) measured by flow

cytometry. Lipofectamine-only sample was used as an eGFP negative control used for gating

purposes in the analysis. (C) HEK cells transfected with eGFP-tagged neurexin 1β as in (A) but

with the addition of αSacetyl-AL594 or αSun-AL594 PFFs. Cells were incubated with 200 nM

PFFs (concentration in monomer units, 1:20 labeled:unlabeled) for 1 hour prior to imaging.

To visualize the binding of PFFs to the extracellular membrane, no Trypan blue solution was

used in these experiments. Scale bars = 20 μm. The underlying data for this figure can be

found in S1 Data and S1 FCSfile, S2 FCSfile, and S3 FCSfile.

(TIF)

S9 Fig. PNGase F does not remain bound to cell membranes after incubation. (A) The

amount of PNGase F before and after treatment of GPMVs and SH-SY5Y cells was examined

by PAGE. The majority of the enzyme is recovered from the GPMV buffer or cell media, indi-

cating that it does not remain bound to the membranes, potentially blocking αSacetyl binding.

(B) αSacetyl is stable during incubation with cell media during uptake studies. FCS was used to

monitor the diffusion time of αSacetyl in media as a function of time during incubation with

SH-SY5Y cells. The diffusion time is stable over the 24-hour period, indicating that the protein

is not degraded nor is the fluorophore cleaved, both of which would be expected to result in a

faster diffusion time. (C) SH-SY5Y GPMVs and cells do not bind or uptake eGFP, respectively.

eGFP was used as negative control. The addition of 80 nM eGFP to GPMVs shows no evidence

of binding. Likewise, there is no evidence of uptake of eGFP by SH-SY5Y cells following 12

hours of incubation. Scale bar = 20 μm. The underlying data for this figure can be found in S1

Data.

(TIF)
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