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Abstract Genome-wide association studies (GWAS) have identified thousands of variants

associated with human diseases and traits. However, the majority of GWAS-implicated variants are

in non-coding regions of the genome and require in depth follow-up to identify target genes and

decipher biological mechanisms. Here, rather than focusing on causal variants, we have undertaken

a pooled loss-of-function screen in primary hematopoietic cells to interrogate 389 candidate genes

contained in 75 loci associated with red blood cell traits. Using this approach, we identify 77 genes

at 38 GWAS loci, with most loci harboring 1–2 candidate genes. Importantly, the hit set was

strongly enriched for genes validated through orthogonal genetic approaches. Genes identified by

this approach are enriched in specific and relevant biological pathways, allowing regulators of

human erythropoiesis and modifiers of blood diseases to be defined. More generally, this

functional screen provides a paradigm for gene-centric follow up of GWAS for a variety of human

diseases and traits.

DOI: https://doi.org/10.7554/eLife.44080.001

Introduction
As genotyping technologies and accompanying analytical capabilities have continued to improve,

genome-wide association studies (GWAS) have identified tens of thousands of variants associated

with numerous human diseases and traits. Despite these advances, our ability to discern the underly-

ing biological mechanisms for the vast majority of such robust associations has remained limited,

with a few exceptions (Claussnitzer et al., 2015; Gupta et al., 2017; Mohanan et al., 2018;
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Musunuru et al., 2010; Sankaran et al., 2008; Smemo et al., 2014). In general, published successes

have required in-depth mechanistic studies of individual loci and implicated genes to decipher bio-

logical mechanisms.

Recent innovations in functional and computational genomics have advanced the field and

enabled more rapid and higher-throughput identification of putative causal variants. Approaches

that have shown the most success include the use of massively parallel reporter assays to examine

allelic variation (Tewhey et al., 2016; Ulirsch et al., 2016; Vockley et al., 2015) and perturbation

approaches for dissecting the necessity of regulatory elements (Canver et al., 2015; Chen et al.,

2015; Fulco et al., 2016; Simeonov et al., 2017). In addition, genetic fine mapping approaches

have improved our ability to identify putative causal variants among larger sets of variants in linkage

disequilibrium (Guo et al., 2017; International Inflammatory Bowel Disease Genetics Consortium

et al., 2017; Ulirsch et al., 2019). However, even when putative causal variants are identified at a

disease or trait-associated locus, they most often localize to non-coding regions of the genome,

making it difficult to connect variants to genes that mediate the observed effects in a scalable man-

ner (Claussnitzer et al., 2015; Gupta et al., 2017; Smemo et al., 2014).

In the context of hematopoiesis, GWAS studies have identified thousands of variants associated

with various blood cell traits, including hundreds associated with red blood cell traits alone

(Astle et al., 2016; van der Harst et al., 2012). Thorough follow-up efforts at individual loci have

identified important regulators of hematopoiesis, such as the key regulator of fetal hemoglobin

expression, BCL11A (Basak et al., 2015; Liu et al., 2018; Sankaran et al., 2008). However, as in

other tissues, the low-throughput with which associated genetic variants can be connected to target

genes underlying phenotypes continues to pose a problem for gaining biological insights and clinical

actionability in complex traits and diseases.

To accelerate the rate at which genetic variants can be connected to target genes, high-through-

put loss-of-function screens involving putative causal genes underlying the genetic associations can

be undertaken. This approach is complementary to conventional variant-focused methods and over-

comes bottlenecks that can arise during downstream target gene identification. As a proof-of-princi-

ple, we connected variants associated with RBC traits to genes regulating erythropoiesis by directly

perturbing all candidate genes in primary human hematopoietic stem and progenitor cells (HSPCs)

undergoing synchronous differentiation into the erythroid lineage. We demonstrate unique opportu-

nities to rapidly screen for potential candidate gene mediators and identify networks of biological

actors underlying trait-associated variation. We additionally illustrate the value of such screens to

uncover previously unappreciated regulators of human hematopoiesis that may serve as key disease

modifiers.

Results

Design and execution of an shRNA screen using blood cell trait GWAS
hits to identify genetic actors in erythropoiesis
We applied a gene-centric loss-of-function screening approach to GWAS of RBC traits. We focused

on 75 loci associated with RBC traits that were identified by a GWAS performed in up to 135,000

individuals (van der Harst et al., 2012) spanning 6 RBC traits (Figure 1—figure supplement 1A).

Importantly, these 75 loci have been robustly replicated in more recently reported association stud-

ies performed on larger cohorts and thus represent important targets for perturbation studies

(Astle et al., 2016; Ulirsch et al., 2019). We endeavored to select candidate genes that could

potentially underlie these 75 GWAS signals. To do this, each of the 75 sentinel SNPs was first

expanded to a linkage disequilibrium (LD) block including all SNPs in high LD (r2 >0.8, Figure 1A,

Figure 1—figure supplement 1B), then further to the nearest genomic recombination hotspot.

Based upon insights from previous expression quantitative trait locus (eQTL) studies

(Montgomery and Dermitzakis, 2011; International Inflammatory Bowel Disease Genetics Con-

stortium et al., 2011; Veyrieras et al., 2008), each gene annotated in the genome was expanded

to include a wingspan encompassing 110 kb upstream and 40 kb downstream of the transcriptional

start and end sites, respectively, to also capture potential functional regulatory elements. This

resulted in selection of 389 genes overlapping or in the vicinity of the LD blocks to be tested in the

pooled loss-of-function screen. These were distributed at a median of 4 genes per loci (Figure 1—
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Figure 1. Design and Execution of an shRNA Screen Using Blood Cell Trait GWAS Hits to Identify Genetic Actors in Erythropoiesis. (A) Overview of

shRNA library design.75 loci associated with red blood cell traits (van der Harst et al., 2012) were used as the basis to calculate 75 genomic windows

of LD 0.8 or greater from the sentinel SNP. Genes with a start site within 110 kb or end site within 40 kb of the LD-defined genomic windows were

chosen as candidates to target in the screen. (B) Compositional makeup of the library, depicted as number of genes and number of hairpins for each of

the four included subcategories; GWAS-nominated genes, erythroid genes, essential genes, and negative control genes (Figure 1—source data 2). (C)

Primary CD34+hematopoietic stem and progenitor cells (HSPCs) isolated from three independent donors were cultured for a period of 16 days in

erythroid differentiation conditions. At day 2, cells were infected with the shRNA library, and the abundances of each shRNA were measured at days 4,

6, 9, 12, 14, and 16 using deep sequencing.

DOI: https://doi.org/10.7554/eLife.44080.002

The following source data and figure supplements are available for figure 1:

Source data 1. Table containing annotations and information for the 75 SNPs used to seed the shRNA library.

DOI: https://doi.org/10.7554/eLife.44080.006

Source data 2. Table containing annotations and information for all hairpins, as well as shRNA counts for each time point and replicate.

DOI: https://doi.org/10.7554/eLife.44080.007

Figure supplement 1. Characteristics of GWAS Loci and Gene Selection for Pooled Screen.

DOI: https://doi.org/10.7554/eLife.44080.003

Figure supplement 2. Feasibility of Loss of Function Approaches to Perform Pooled Screens in Primary Hematopoietic Stem and Progenitor Cells

(HSPCs).

Figure 1 continued on next page

Nandakumar et al. eLife 2019;8:e44080. DOI: https://doi.org/10.7554/eLife.44080 3 of 29

Research article Genetics and Genomics Human Biology and Medicine

https://doi.org/10.7554/eLife.44080.002
https://doi.org/10.7554/eLife.44080.006
https://doi.org/10.7554/eLife.44080.007
https://doi.org/10.7554/eLife.44080.003
https://doi.org/10.7554/eLife.44080


figure supplement 1C). This approach may on occasion miss genes targeted by a trait-associated

regulatory element. For example, our approach would miss long-range interactions, as is observed

at the FTO locus with IRX3/IRX5 (Claussnitzer et al., 2015; Smemo et al., 2014). It is becoming

increasingly clear that LD and related metrics will only nominate a fraction of potential regulatory tar-

gets (Whalen and Pollard, 2019). However, there still exists a nontrivial amount of valid targets

within reach of proximity LD approaches, especially when the calculation of such windows are

extended to reach the nearest recombination hotspot, suggesting that our approach would capture

many candidate target genes.

Since the majority of common genetic variation underlying RBC traits appears to act in a cell-

intrinsic manner within the erythroid lineage, we decided to perturb the candidate genes during the

process of human erythropoiesis (Giani et al., 2016; Sankaran et al., 2012; Sankaran et al., 2008;

Ulirsch et al., 2016). We chose a pooled short hairpin RNA (shRNA) based loss-of-function approach

in primary hematopoietic cells to leverage a number of distinct strengths. First, we have had prior

success validating individual genes underlying RBC traits using shRNA-based approaches in primary

CD34+ HSPC-derived erythroid cells and our results have been consistent with orthogonal CRISPR

based approaches (Giani et al., 2016). Second, shRNA libraries can be much more efficiently pack-

aged into lentiviruses and delivered to primary HSPCs compared to alternative CRISPR/Cas9-based

guide RNA libraries (Ting et al., 2018). We observe that all in one CRISPR or CRISPRi lentiviral con-

structs that are ideal for primary HSPC screens produce low titer viruses and require very high multi-

plicities of infection that can be challenging to achieve for a pooled functional screen (Figure 1—

figure supplement 2A,B). Third, the shRNA approach avoids potential complications like non-uni-

form loss-of-function or gain-of-function outcomes produced by CRISPR/Cas9 based approaches

due to unpredictable DNA repair processes (Figure 1—figure supplement 2C) (Mandegar et al.,

2016). Furthermore, shRNAs can act rapidly to achieve gene knockdown and thereby avoid compen-

satory effects that can occur when complete CRISPR knockout is achieved (Rossi et al., 2015), better

recapitulating the subtle changes in gene expression that are characteristic of common genetic

variation.

Mobilized peripheral blood-derived primary human CD34+ HSPCs from three independent

healthy donors were infected with a lentiviral-based pooled shRNA library consisting of 2803 hairpins

targeting the 389 GWAS-nominated genes, along with 30 control genes (Moffat et al., 2006). Each

GWAS-nominated gene was targeted with 5–7 distinct shRNAs (Figure 1—figure supplement 3A).

The set of control shRNAs encompassed essential housekeeping genes as positive controls, negative

controls in the form of luciferase and other genes not expressed in humans, and a well-established

set of genes known to be important for erythropoiesis (erythroid controls) (Figure 1B). Using lentivi-

ral libraries with defined titers, we achieved an infectivity of 35–50%, which provides a good tradeoff

between reasonably high infection while minimizing the possibility of multiple integrations per cell

that can lead to combinatorial phenotypes. To achieve sufficient library representation, we infected

at least 1000 CD34+ HSPCs per hairpin (7 ~ 11 * 106 cells per experiment). The infected HSPCs were

cultured using a three-phase semi-synchronous erythroid differentiation method where differentia-

tion blockade reduces cell numbers either through cell death or through a failure of proliferation

(Giani et al., 2016; Hu et al., 2013). We hypothesized that hairpins targeting potential regulators of

erythropoiesis would be depleted or enriched during the three-phase erythroid culture, similar to

our prior experience in analyzing specific GWAS-nominated genes (Giani et al., 2016;

Sankaran et al., 2012; Ulirsch et al., 2016). To assay these hairpins, we isolated and deep-

sequenced genomic DNA from the pool of infected cells at six different culture time points that rep-

resent distinct stages of erythropoiesis to most broadly assess putative causal genes that may act

across the span of differentiation (Figure 1C, Figure 1—figure supplement 3B).

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.44080.004

Figure supplement 3. Pooled shRNA screen in primary HSPCs undergoing erythroid differentiation.

DOI: https://doi.org/10.7554/eLife.44080.005
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Summary characterization of shRNA screen outcomes
For the vast majority of the ~3000 hairpins included in the library, infection was efficient and consis-

tent. Greater than 95% of hairpins were represented at levels of at least five log2 counts per million

(CPM) at day 4, two days post-infection (Figure 2A). Across the two-week time course, a diversity of

effects - in terms of both increased and decreased hairpin abundance - were observed. While many

hairpins were selected against during the course of erythroid differentiation, as reflected in

decreases of those hairpin abundances over time, there were also a number of hairpins that

increased in the culture over the time course (Figure 2B, Figure 2—figure supplement 1).

The tested set of hairpins targeting genes nominated by the 75 loci showed a variety of activities,

forming a broad distribution spanning both decreases and increases in abundance at different time

points (Figure 2B). The various controls included in the library behaved as expected. Hairpins target-

ing genes with known biological roles in erythropoiesis, such as GATA1 and RPS19 (Khajuria et al.,

2018; Ludwig et al., 2014), showed markedly decreased abundance across the time course. Like-

wise, hairpins targeting a set of broadly essential genes (Figure 1—source data 2) were strongly

depleted by day 16 when compared to negative control hairpins targeting non-human genes, which

showed little if any change (Figure 2C–E). These trends were recapitulated with strong correlation in

each of the three donor CD34+ cell backgrounds (Figure 2—figure supplement 2).

Statistical modeling of gene effects and accounting for confounders in
the shRNA screen
The resulting observations of hairpin abundance at each time point were used to model the impor-

tance of each targeted gene during the process of erythropoiesis. A linear mixed model was imple-

mented to account for the longitudinal nature of the time course data (Li et al., 2015) and to handle

the confounding off-target and efficiency effects inherent to the shRNA modality (Riba et al., 2017;

Tsherniak et al., 2017). Since we wanted our model to be able to detect significant changes in hair-

pin abundance at any time point throughout the differentiation process, we converted the absolute

hairpin abundances at each of the six time points to a log2 fold change relative to the initial hairpin

abundances at the start of the differentiation. Using this metric as our response variable, we pooled

together the observations for each of the three donor replicates and specified a fixed effect for each

gene to capture the contribution that suppressing it with shRNAs would have on the respective

abundances for each of the resulting five time intervals. Given the potential variability that could

emerge by using shRNAs, we fit a random effect for each hairpin to minimize the chance of conflat-

ing inefficiency or off-target effects with the specific on-target gene effect.

After fitting this model to the data, we selected our hit set using a two-threshold approach in

which both the magnitude and statistical confidence of the estimated gene effect size were consid-

ered. Specifically, genes were called as hits if they had a fitted slope >0.1 log2 fold change per day

within the interval while simultaneously possessing a Wald chi-square FDR-adjusted q value < 0.1.

This combined approach allowed us to avoid focusing on genes with large, but highly variable or

conflicted effects, as well as genes with highly confident but miniscule effects. In total, this approach

identified 77 genes at 38 of the 75 targeted loci which, when suppressed, had a significant effect on

the slope of shRNA-encoding DNA abundance at any point during the time course. A majority of

these hit loci (27 loci) had 1–2 gene targets prioritized (Figure 3A, Figure 3—figure supplement

1A). These candidate genes were found to be distributed across all 6 of the originally annotated

RBC GWAS traits (Figure 3—figure supplement 1B), and hairpins targeting them showed strong

internal consistency (Figure 3—figure supplement 1C).

To evaluate the validity of this hit set, we began by assaying for enrichment of erythroid essential-

ity, as recently quantified for each gene in the K562 erythroid cell line (Wang et al., 2015). A permu-

tation comparing the sum of K562 essentiality scores for the hit genes with those of randomly

drawn, identically-sized gene sets from the library of targeted genes revealed that the hit set was

indeed enriched with p=0.0269 (Figure 3B). Likewise, when compared to permuted sets of 77 genes

randomly chosen from the genome (Figure 3—figure supplement 2A), there was even stronger

enrichment for erythroid essentiality with p=0.00021, consistent with the idea that genes in the

library likely have stronger essentiality due to their genomic proximity to the GWAS hits. We further

explored whether the enrichment could be due to an intrinsic bias inherent to GWAS screening itself

by permuting sets of genes from libraries nominated by SNPs associated with low-density
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Figure 2. Summary Characterization of shRNA Screen Outcomes. (A) Kernel density plot showing library representation as log2 shRNA CPM across all

hairpins. (B) shRNA abundance log2 fold changes from day 4 to day 16. Represented values are the mean of hairpin abundance log2 fold changes

across hairpins for each gene and two standard deviations. (C) Kernel density plots representing the day 4 to day 16 log2 fold changes of hairpin

abundances for each of the subcategories of the library, including GWAS-nominated genes, known erythroid essential genes, essential genes to cell

viability, and orthogonal genes serving as negative controls. (D) Violin plot of day 4 and day 16 log2 CPM for known actors GATA1 and RPS19 and

negative controls LacZ and luciferase. (E) Log2 hairpin counts averaged for known actors GATA1 and RPS19 as well as negative controls LacZ and

luciferase across the course of the experiment. Gray lines depict the universe of all other gene traces in the library for context.

DOI: https://doi.org/10.7554/eLife.44080.008

The following figure supplements are available for figure 2:

Figure supplement 1. shRNA abundance log2 fold changes from day four to each of the other time points.

Figure 2 continued on next page
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lipoprotein levels, high-density lipoprotein levels, and triglyceride levels, finding the hit set to be sig-

nificantly enriched in all comparisons (Global Lipids Genetics Consortium et al., 2013) (Figure 3—

figure supplement 2B–D).

We further validated the ability of this approach to discover genetically relevant hits by perform-

ing a permutation analysis based upon five ‘gold standard’ genes in the library, which possess known

genetic underpinnings via identified causal variants: CCND3 (Sankaran et al., 2012; Ulirsch et al.,

2019), SH2B3 (Giani et al., 2016), MYB (Galarneau et al., 2010; Sankaran et al., 2013;

Sankaran et al., 2011), KIT (Jing et al., 2008; Ulirsch et al., 2019), and RBM38 (Ulirsch et al.,

2016). Calculating the rank sums of hairpins ordered by our model’s computed FDR scores for

1,000,000 random combinations of five genes from the library yielded a distribution over which

enrichment for the five gold standards was seen with p=0.0249 (Figure 3C). While the vast majority

of putative causal variants at the RBC trait-associated loci are in non-coding regions, which can be

challenging to use to identify a specific target gene, a subset are in coding regions and thereby

nominate a specific gene. As a result, we assayed for the presence of coding variants fine-mapped

to the interrogated loci from a recent large GWAS that demonstrated a minimum posterior probabil-

ity of association of 0.1 among the gene hits and compared this with the overall set of genes interro-

gated in our library (Ulirsch et al., 2019). Collectively, these coding variants were found to be 75%

missense, 19% synonymous, and 5% frameshift. Among the 389 GWAS-nominated genes in our

library, 20 (~5%) were found to contain at least one coding variant from this list. Of these, there was

a significant enrichment observed among the hits (~9%, p=0.03907 as determined by permutation

analysis; Figure 3D).

Having established genetic confidence in our hit set, we next investigated whether the selected

genes satisfied enrichment criterion within the erythroid branch of hematopoiesis. RNA expression

values for each of the 77 hit genes were examined in datasets spanning human hematopoiesis

(Corces et al., 2016), as well as adult and fetal erythropoiesis (Yan et al., 2018) (Figure 3E,F; Fig-

ure 3—figure supplement 3). For each cellular context, gene expression values were z-score nor-

malized for each gene targeted in the screen. Enrichment was tested through permutation by using

the sum of expression z-scores at each stage for the called hits as the benchmark, and comparing

these to sums derived from expression values from a matching number of genes randomly drawn

from the wider screen. In the more holistic hematopoiesis dataset, common myeloid progenitors

(CMPs) and megakaryocyte-erythroid progenitors (MEPs) were significantly enriched for hit gene

expression (p<0.01). These progenitor populations are known to contain the progenitors that give

rise to erythroid cells. Within a more detailed and separate analysis of human adult erythropoiesis,

proerythroblast, early basophilic, and late basophilic erythroblast stages were particularly enriched

(p<0.001). The stage at which given genes are implicated to play a role in erythropoiesis from the lit-

erature likewise often corresponded with the largest magnitude fold changes across the longitudinal

time course measurements, as was the case for earlier genes like RPL7A, RPL23A, RPS19, and KIT

(Gazda et al., 2012; Jing et al., 2008; DBA Group of Société d’Hématologie et d’Immunologie

Pédiatrique-SHIP et al., 2012) as well as late genes like SLC4A1 and ANK1 (Bennett and Stenbuck,

1979; Peters et al., 1996). To examine how our results compare to target gene identification

through eQTL-based approaches, we also examined the whole blood eQTL dataset form the Geno-

type-Tissue Expression (GTEx) Project, finding that none of the 77 shRNA screen hits emerged using

eQTLs located within the LD blocks of the original 75 sentinel SNPs (GTEx Consortium, 2015). This

is not entirely surprising given that the shRNA screen was performed on differentiating erythroid

progenitors which are essentially not present in whole blood, so one would expect to miss cell type-

specific effects or eQTLs that act in early progenitor populations. Taken together, these results show

that this functional gene-centric screen can identify putative causal genes underlying RBC-trait

GWAS hits orthogonal to those that would be found with more conventional eQTL-based methods,

and which demonstrate clear enrichment in independent genetic and cell biological datasets. We

are therefore able to validate the utility of such an approach to identify biologically-relevant genes

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.44080.009

Figure supplement 2. Scatter plots showing agreement of replicate observations across independent CD34+ donor populations.

DOI: https://doi.org/10.7554/eLife.44080.010
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Figure 3. Statistical Modeling of Gene Effect Accounting for Off-target shRNA Confounders. (A) Bar graph showing the 38 of 75 loci in the screen with

at least one corresponding statistically significant (FDR < 0.1, b >0.1) gene effect causing either a positive or negative log2 fold change in shRNA

abundance.Statistical model output for each gene in screen available in Figure 3—source data 1. (B) Kernel density plot showing the expected

distributions of K562 essentiality scores using permuted gene hit sets from the library. (C) Hairpin rank sums for permuted sets of 5 genes. The red line

indicates the enriched rank sums for 5 ‘gold standard’ genes included in the library, CCND3, SH2B3, MYB, KIT, and RBM38, for each which a genetic

basis of action has already been established. (D) Permuted distribution of % inclusion of predicted coding variants among the set of identified hits. (E)

Heat map depicting strength of expression (as z scores within each gene) for each of the 77 identified hit genes across hematopoietic lineages (top)

Figure 3 continued on next page
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underlying human genetic variation and holistically identify potential stages at which such target

genes may act to impact the process of hematopoiesis.

Analysis of interactions among members of the hit set identifies
signaling, structural, and translation-related subnetworks important for
erythropoiesis
By screening all loci and genes at once, our approach afforded us the immediate value of examining

associations between hits in a holistic fashion, unearthing both familiar and more novel gene cas-

settes that play a role in erythropoiesis (Boyle et al., 2017). Using STRING interaction network analy-

ses (version 10.5) (Szklarczyk et al., 2017), we used empirical, database-curated, co-expression,

genomic proximity, and text-mined evidence to identify underlying networks between hits in the

screen. These networks highlighted a number of interacting biological processes of both known and

previously unappreciated importance to erythropoiesis (Figure 4), including cell signaling and tran-

scription, cytoskeletal and membrane structure and function, and mRNA translation. We observed a

number of molecules that play roles in cell signaling or transcriptional regulation. MYB is a master

regulator transcription factor that has been implicated in playing a role in fetal hemoglobin regula-

tion and in erythropoiesis more generally (Mucenski et al., 1991; Wang et al., 2018). The MYB

locus has been associated with numerous red blood cell traits (including mean corpuscular volume,

mean corpuscular hemoglobin concentration, and RBC count) (Sankaran et al., 2013; van der Harst

et al., 2012). ETO2 (CBFA2T3) is a part of the erythroid transcription factor complex containing

TAL1 and is required for expansion of erythroid progenitors (Goardon et al., 2006). Both stem cell

factor receptor KIT and erythropoietin receptor (EPOR) mediated signaling are essential for erythro-

poiesis. Our screen identified KIT as one of the factors underlying common genetic variation.

CCND3 fills a critical role in regulating the number of cell divisions during terminal erythropoiesis

and has been validated as a causal gene associated with variation in RBC counts and size

(Sankaran et al., 2012; Ulirsch et al., 2019).

Interacting networks of hits also emerged in other aspects of red blood cell differentiation and

function. One of these centered around membrane and structural cytoskeletal proteins. Our method

recovered characteristic RBC genes like solute carrier family 4 member 1 (SLC4A1), also known as

band 3, (Peters et al., 1996), which serves as a key component of the RBC membrane skeleton.

Likewise, it recovered a direct interacting partner for SLC4A1, ankyrin 1 (ANK1), which anchors the

cytoskeleton and cell membrane (Bennett and Stenbuck, 1979), as well as N-ethylmaleimide Sensi-

tive Factor, vesicle fusing ATPase (NSF), which facilitates membrane vesicle trafficking within the cell

(Glick and Rothman, 1987).

Within the realm of mRNA translation, a number of genes emerged as hits that specifically high-

light the role of the ribosome. This is interesting in light of recent work that has begun to illuminate

erythroid-specific effects of ribosomal perturbations (Khajuria et al., 2018; Ludwig et al., 2014),

although a connection between translation and common genetic variation affecting RBC traits has

Figure 3 continued

and throughout the specific stages of adult erythropoiesis (bottom). Purple boxes highlight the cell types that were enriched for expression of hit

genes. (F) Calculated enrichment of the identified hit genes for expression across hematopoietic lineages (top) and throughout the specific stages of

adult erythropoiesis (bottom). In both cases, cellular states corresponding to those along the erythropoietic lineage had elevated probability of

expressing genes from the hit set as compared to other genes from the library.

DOI: https://doi.org/10.7554/eLife.44080.011

The following source data and figure supplements are available for figure 3:

Source data 1. Table containing the R model output for each gene.

DOI: https://doi.org/10.7554/eLife.44080.015

Figure supplement 1. Additional Characterization of Modeling Outcomes.

DOI: https://doi.org/10.7554/eLife.44080.012

Figure supplement 2. K562 Essentiality Scores Comparing Hit Genes vs.Genes Implicated by Other Traits.

DOI: https://doi.org/10.7554/eLife.44080.013

Figure supplement 3. Heat map depicting strength of expression (as z scores within each gene) for each of the 77 identified hit genes throughout the

specific stages of fetal erythropoiesis.

DOI: https://doi.org/10.7554/eLife.44080.014
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not been previously appreciated. Both RPL7A and RPL19, for instance, have been implicated by

mutations observed in studies of Diamond-Blackfan anemia (Gazda et al., 2012; DBA Group of

Société d’Hématologie et d’Immunologie Pédiatrique-SHIP et al., 2012). The common genetic

variation affecting these ribosomal protein genes might contribute to the incomplete penetrance

and variable expressivity of anemia seen in Diamond-Blackfan anemia patients (Ulirsch et al., 2018).

Similar effects have been reported in neurodevelopmental disorders, where common genetic var-

iants may influence phenotypic outcomes in patients (Niemi et al., 2018). Non-ribosomal hits in the

Signaling / Transcription

Membrane mRNA Translation

RPL7A RPL23A MRPS6

RPL19 EXOSC9 TRMT61A

CCND3

SF3A2CSF2RB
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PTPRCERBB2
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PNMTTCAP

ZBTB38 CBFA2T3

TP73 DFFB

VWA9TAF8

FBXL20TRIM39

TFR2TMPRSS6

Other Pathways

Empirically Curated Co-expression Gene Textmining
Determined Database Neighborhood

Figure 4. Analysis of Interactions Among Members of the Hit Set Identifies Signaling/Transcription, Membrane, and mRNA Translation-Related

Subnetworks Important to Erythropoiesis. STRING interaction network analysis identifies signaling/transcription, membrane, and mRNA translation-

related subnetworks important to erythropoiesis embedded in the genes identified in the screen hit set. Edges connecting the network are color-coded

according to the evidence supporting the interaction. In STRING, this evidence can derive from empirical determination, curation in a database, co-

expression of the respective gene nodes, genomic proximity, and text-mining of published literature.

DOI: https://doi.org/10.7554/eLife.44080.016

Nandakumar et al. eLife 2019;8:e44080. DOI: https://doi.org/10.7554/eLife.44080 10 of 29

Research article Genetics and Genomics Human Biology and Medicine

https://doi.org/10.7554/eLife.44080.016
https://doi.org/10.7554/eLife.44080


mRNA metabolism space were also found with both previously established and unknown ties to ery-

throid-specific phenotypes. Exosome component 9 (EXOSC9), for instance, has been suggested to

act as part of the exosome complex as a specific gatekeeper of terminal erythroid maturation

(McIver et al., 2014). Other unappreciated components, including the tRNA methyltransferase

TRMT61A, also were highlighted through this analysis.

Transferrin receptor 2 is a negative regulator of human erythropoiesis
We selected several candidate genes identified by our screen for further validation, given their previ-

ously unappreciated roles in human hematopoiesis/erythropoiesis. The first, transferrin receptor 2

(TFR2), encodes a protein canonically involved in iron homeostasis that has recently been shown to

also regulate EPO receptor signaling (Forejtnikovà et al., 2010; Nai et al., 2015). Although TFR2

has been studied in the context of murine erythropoiesis, its role in human erythropoiesis has not

been assessed. To validate TFR2 as a regulator of human erythropoiesis, we performed individual

knockdown experiments using lentiviral shRNAs in primary human CD34+ HSPCs undergoing ery-

throid differentiation. Significant knockdown of TFR2 was observed at both the mRNA (Figure 5A)

and protein levels (Figure 5B) using two independent shRNAs from among the six targeting TFR2 in

the screen. Though two of the six were outliers, the two chosen here for follow-up were part of the

consensus group of four showing similar effects. Downregulation of TFR2 increased erythroid differ-

entiation as observed by increased expression of erythroid-specific cell surface markers CD235a and

CD71 at day 9 (shLUC ~22%; TFR2 sh1 ~42%; TFR2 sh2 ~40%) and day 12 of culture (shLUC ~60%;

TF2 sh1 ~80%; TFR2 sh2 ~80%) (Figure 5C and E). Downregulation of TFR2 also improved the later

stages of erythroid differentiation/maturation, as observed by loss of cell surface marker CD49d at

day 15 of culture, an increased rate of enucleation, and through assessment of cell morphology

(Figure 5D and Figure 5—figure supplement 1A and B). Previous studies have reported the isola-

tion of TFR2 as a component of the erythropoietin (EPO) receptor complex (Forejtnikovà et al.,

2010). To test if downregulation of TFR2 can result in increased EPO signaling Kim et al. (2017), we

measured EPO-dependent STAT5 phosphorylation after TFR2 knockdown in UT7/EPO cells (Fig-

ure 5—figure supplement 1C). TFR2 downregulation resulted in significantly higher pSTAT5 phos-

phorylation in comparison to the control with EPO stimulation from 0.02 U/mL to 200 U/mL

(Figure 5F). In addition, the maximal pSTAT5 response could be achieved within a shorter period of

EPO stimulation upon TFR2 downregulation (Figure 5—figure supplement 1D). Given our findings

that TFR2 is a negative regulator of EPO signaling, it may be an ideal therapeutic target for condi-

tions characterized by ineffective erythropoiesis like b-thalassemia (Rund and Rachmilewitz, 2005).

A recent study has supported this hypothesis, showing that Tfr2 downregulation is beneficial in a

mouse model of b-thalassemia (Artuso et al., 2018).

SF3A2 is a key regulator of human erythropoiesis and is a disease
modifier in a murine model of myelodysplastic syndrome
Extensive mRNA splicing occurs during the terminal stages of erythropoiesis (Pimentel et al., 2016).

However, key regulators of this process remain largely undefined. Our study uncovered splicing fac-

tor 3A subunit 2 (SF3A2) in the subnetwork of erythropoiesis signaling and transcription hits (Fig-

ure 4). SF3A2 specifically was associated with maximal hairpin drop out at day 12 (FDR = 0.005) – a

later time point in erythropoiesis. SF3A2 is a component of the U2SNRP complex whose binding to

the branch point is critical for proper mRNA splicing (Gozani et al., 1996; Gozani et al., 1998).

Knockdown of SF3A2 in primary human CD34+ HSPCs results in decreased cell numbers during ery-

throid differentiation starting from day 7 (Figure 6A–C). To measure early effects of SF3A2 and to

exclude potential toxicity of puromycin selection, we replaced the puromycin resistance gene with a

GFP encoding cDNA in the lentiviral shRNA constructs. We achieved similar infection (30–40% on

day 6) at the early time points between controls (shLuc) and shRNAs targeting SF3A2 (Figure 6—fig-

ure supplement 1A). During erythroid differentiation, we observed a reduction in GFP-expressing

cells comparable to the decreased cell numbers seen with the puromycin resistant constructs (Fig-

ure 6—figure supplement 1A). Decreased cell numbers were associated with decreased erythroid

differentiation as measured by erythroid surface markers CD71 and CD235a (Figure 6D). We also

observed an increase in non-erythroid lineages based on surface marker expression of CD11b (mye-

loid) and CD41a (megakaryocytic) (Figure 6—figure supplement 1B).
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Figure 5. Transferrin receptor two is a Negative Regulator of Human Erythropoiesis. (A) Quantitative RT-PCR and (B) Western blot showing the

expression of TFR2 in human CD34+ cells five days post-infection with the respective lentiviral shRNAs targeting TFR2 (TFR2 sh1 and sh2) and a control

luciferase gene (shLUC). (C) Representative FACS plots of erythroid cell surface markers CD71 (transferrin receptor) and CD235a (Glycophorin A)

expression at various time points during erythroid differentiation. Percentages in each quadrant are represented as mean and standard deviation of 3

independent experiments (D) Hoechst staining showing more enucleated cells after TFR2 knockdown at day 21 of erythroid culture. (E) Representative

histogram plots showing increased expression of CD235a (Glycophorin A) after TFR2 knockdown (F) Enhanced pSTAT5 response after TFR2 knockdown

in UT7/EPO cells.

DOI: https://doi.org/10.7554/eLife.44080.017

The following figure supplement is available for figure 5:

Figure supplement 1. Additional Analysis Showing Transferrin Receptor two is a Negative Regulator of Human Erythropoiesis.

Figure 5 continued on next page
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To identify the molecular mechanisms underlying the reduced differentiation of erythroid cells,

we sorted stage-matched CD71+/CD235a+ cells and performed RNA-Seq analysis. We also ran this

analysis in parallel for data from hematopoietic progenitors of patients with myelodysplastic syn-

drome (MDS), a disorder well-known for significant impairments in terminal erythropoiesis, either

with or without somatic mutations in the related splicing factor SF3B1 (Obeng et al., 2016). Cells

treated with shRNA to suppress SF3A2 were found to differentially express 6061 genes with an

adjusted p value < 0.05 as compared to the shLuc control, whereas only 807 genes were differen-

tially expressed given the same threshold cutoff in the MDS patients with an SF3B1 mutations com-

pared to those without (Figure 6E). Genes from both the SF3A2 differentially expressed set and the

SF3B1 differentially expressed set were significantly enriched for structural constituents of the ribo-

some (p<3.2�10�44 and p<7.5�10-24, respectively) among other cellular components and functions

(Figure 6—source data 3 and 4). Examining differential splicing in the set of genes not differentially

expressed in either condition, both were found to exhibit a similar proportion of altered splicing

events, including alternative 3’ splice sites, alternative 5’ splice sites, mutually exclusive exons, and

skipped exons (Figure 6E).

We therefore wanted to further explore this connection between SF3A2 and its role in common

variation in RBC traits with SF3B1 and the role it plays in the pathogenesis of MDS. To this end, we

utilized a recently developed faithful mouse model harboring the Sf3b1K700E mutation that displays

characteristic features of MDS, including an anemia due to impaired erythropoiesis (Obeng et al.,

2016). We tested if downregulation of Sf3a2 could worsen the already impaired erythropoiesis seen

in these animals. Equal numbers of lineage-negative HSPCs were isolated from bone marrow of

wild-type and Sf3b1K700E mice and infected with shRNAs targeting Sf3a2 and then erythroid differ-

entiation was induced (Figure 6—figure supplement 2A,B). Consistent with previous reports, we

observed that Sf3b1K700E cells show reduced erythroid differentiation and cell growth compared to

wild-type cells infected with control non-targeting shRNAs (Figure 6F,G, Figure 6—figure supple-

ment 2C–E). Downregulation of Sf3a2 using two independent shRNAs further worsens the defects in

both erythroid differentiation and cell growth observed for Sf3b1K700E cells (Figure 6F,G, Figure 6—

figure supplement 2C–E). This data suggest that modulation of SF3A2 could modify the alterations

of erythropoiesis observed in the setting of somatic SF3B1 MDS-causal mutations. This form of MDS

is characterized by significant variation in the degree of anemia found at the time of presentation

(Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium

et al., 2011). We therefore attempted to examine whether such common genetic variation could

contribute to such phenotypic variation. We identified a coding SNP, rs25672, in LD with the sentinel

SNP at the locus, rs2159213 (r2 = 0.737675 in CEU 1000 Genomes phase 3), in which SF3A2 was the

only gene identified by the linear mixed model as a hit. Prevalence of the alternate ‘G’ allele (which

corresponds to the prevalence of the ‘C’ effect for SF3A2) is correlated with an increase in hemoglo-

bin levels () that was likely insignificant due to the limited number of patients studied here. Unfortu-

nately, larger cohorts in such a relatively rare disorder could not be identified. However, these

findings suggest that the subtle variation noted in populations at the rs2159213 locus containing

SF3A2 may more profoundly cause variation among individuals with an acquired blood disorder,

such as MDS, illustrating the value of such a gene-centric study to identify potential disease

modifiers.

Discussion
A major challenge in moving from GWAS-nominated variants to function is to identify potential tar-

get genes systematically. While many functional follow up approaches focus on causal variants, we

reasoned that a gene-centered approach may be complementary to other emerging methods and

represent a scalable approach for gaining broad insights into GWAS. To this end, we designed and

executed a GWAS-informed high-throughput loss-of-function screen to identify key players in pri-

mary human HSPCs undergoing erythroid differentiation. Such dynamic in vitro systems afford a

unique window through which to longitudinally screen, enabling unique insights to be gained into

Figure 5 continued

DOI: https://doi.org/10.7554/eLife.44080.018
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Figure 6. SF3A2 is a Key regulator of Human Erythropoiesis and Modulates Erythropoiesis Defects in a Murine Model of MDS. (A) Quantitative RT-PCR

and (B) Western blot showing the expression of SF3A2 in human CD34+ cells five days post-infection with the respective lentiviral shRNAs targeting

SF3A2 (sh1-4) and a control luciferase gene (shLUC). (C) Growth curves showing that downregulation of SF3A2 results in reduced total cell numbers

during erythroid differentiation from three independent experiments. (D) Representative FACS plots of erythroid cell surface markers CD71 (transferrin

Figure 6 continued on next page
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inherently non-stationary biological processes like erythropoiesis. The screen identified 77 gene hits

at 38 of the original 75 loci used to design the library. Collectively, these hits had strongly amplified

essentiality in erythroid cell lines, included a significant proportion of known, genetically-linked ‘gold

standard’ erythroid genes, and were enriched for red blood cell trait-associated coding variants

orthogonally identified through genetic fine-mapping. From a holistic perspective, the network of

interacting gene hits highlighted a number of high-level biological components and pathways impor-

tant for erythropoiesis, including specific signaling and transcription factors, membrane and struc-

tural components, and components involved in mRNA translation. It is interesting to note that the

hits identified by our screen did not overlap those that would be identified with eQTLs from whole

blood, which emphasizes how studies of variation in developing hematopoietic cells may not be

accurately reflected by studies of circulating blood cells. It does, however, lend credence to the

notion that there are complementary insights to be gained through these differing methods.

Functional follow-up on SF3A2 and TFR2, two gene hits identified in the screen, were fruitful in

elucidating mechanistic ties between alteration in mRNA splicing and EPO signaling activity, respec-

tively, to observed perturbation of erythroid phenotypes. In addition, our studies suggest that at

least SF3A2, and potentially other regulators such as some implicated mRNA translation factors,

may be key disease modifiers that alter the impaired erythropoiesis seen in diseases like MDS or Dia-

mond-Blackfan anemia. These outcomes strongly recommend further exploration of this approach as

a rapid means to screen for genes underlying human erythroid differentiation, with the potential to

connect back and explain the phenotypic links in GWAS studies. Moreover, since shRNA-based loss-

of-function screens are readily accessible and offer demonstrated compatibility with primary cell

model systems, we believe this approach provides a method that is portable and can be applied

across a variety of lines of biological inquiry.

However, it is not a universal solution, and there are certainly a number of considerations that

must be kept in mind regarding the extent to which this type of assay can be adopted across other

diseases and traits. We acknowledge for it to be useful to a given research question, a suitable sys-

tem capable of modeling the trait/disease of interest must first exist, and for many cellular systems

Figure 6 continued

receptor) and CD235a (Glycophorin A) expression at various time points during erythroid differentiation. Percentages in each quadrant are represented

as mean and standard deviation of three independent experiments (E) Altered splicing events identified by RNA-Seq analysis of stage matched

erythroid cells (shSF3A2 vs. shLUC). Overlapping changes observed in SF3B1 mutant BM cells from MDS patients (Obeng et al) (Figure 6—source data

5 and 6). Differentially expressed genes and pathway analysis available in Figure 6—source data 1–4. (F) Lineage negative bone marrow cells from

wildtype (WT) and Sf3b1K700E mice were infected with shRNAs targeting murine Sf3a2 gene co-expressing a reporter GFP gene. Percentage of Ter119+

CD71+ erythroid cells within the GFP compartment after 48 hr in erythroid differentiation. (G) Total cell numbers of GFP+ erythroid cells after 48 hr in

erythroid differentiation.

DOI: https://doi.org/10.7554/eLife.44080.019

The following source data and figure supplements are available for figure 6:

Source data 1. Table containing the DESeq2 output for differentially expressed genes in cells undergoing SF3A2 knockdown or control shRNA treatment.

DOI: https://doi.org/10.7554/eLife.44080.022

Source data 2. Table containing the DESeq2 output for differentially expressed genes in MDS patients with and without mutations in SF3B1.

DOI: https://doi.org/10.7554/eLife.44080.023

Source data 3. Tables containing the GO component (Table 1) and function (Table 2) enrichments calculated using GOrilla for cells undergoing SF3A2

knockdown or control shRNA treatment.

DOI: https://doi.org/10.7554/eLife.44080.024

Source data 4. Tables containing the GO component (Table 1) and function (Table 2) enrichments calculated using GOrilla for MDS patient samples

with and without mutations in SF3B1.

DOI: https://doi.org/10.7554/eLife.44080.025

Source data 5. Tables containing the differential splicing analysis for cells undergoing SF3A2 knockdown or control shRNA treatment.

DOI: https://doi.org/10.7554/eLife.44080.026

Source data 6. Tables containing the differential splicing analysis for MDS patient patient samples with and without mutations in SF3B1.

DOI: https://doi.org/10.7554/eLife.44080.027

Figure supplement 1. Additional Analysis Showing SF3A2 is Required for Human Erythropoiesis.

DOI: https://doi.org/10.7554/eLife.44080.020

Figure supplement 2. Additional Analysis of Erythropoiesis Defects Observed in Sf3b1K700E Murine Erythroid Cells upon SF3A2 knockdown.

DOI: https://doi.org/10.7554/eLife.44080.021
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this is often challenging. Fortunately, this is a shortcoming that will diminish over time as our under-

standing of human biology and our ability to faithfully recapitulate in vivo microenvironments and

processes improves, though this may be a distant prospect for exquisitely complex tissues like the

brain or for traits/diseases that involve a larger number of cell types/interactions. Likewise, the use

of shRNAs as the vehicle for perturbation carries with it unique challenges, chief among them the

proclivity of shRNA to exert confounding off-target effects when compared to CRISPR-based meth-

ods. While this is true and unavoidable, the inclusion of appropriate controls, both at the experimen-

tal level and in modeling off-target contributors to observed phenotypic effects, provide an effective

means to address this issue (Tsherniak et al., 2017). We chose to perform our screen in primary

hematopoietic cells and thus were partially limited experimentally to the use of shRNA-based sup-

pressive approaches. Finally, evidence has recently been published that the targets of identified

non-coding variants are occasionally not within linkage disequilibrium blocks in the genome

(Whalen and Pollard, 2019). This does not necessarily conflict with our results, since we identify hits

at only 38 of 75 examined loci and provides an intriguing direction for further work that may eluci-

date how genetic and epigenomic structural blocks in the human genome can provide complemen-

tary information.

Our data show that gene-centric screens are valuable for GWAS follow-up. They are not limited

to red cell traits and may be useful for other human traits/diseases, as has begun to be shown in dis-

eases like type 2 diabetes (Thomsen et al., 2016). Data from such screens can be integrated with

complementary insights gleaned from variant centric screens. Ultimately this could accelerate our

understanding of human hematopoiesis and other biological processes, and aid in the development

of applicable therapies.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Biological sample
(Homo sapiens)

CD34 + mobilized peripheral blood Fred Hutchinson
Cancer Research
Center

Cell line
(Homo sapiens)

UT-7/EPO NA RRID:CVCL_5202 maintained in
Sankaran laboratory

Cell line
(Mus musculus)

MEL NA maintained in
Sankaran laboratory

Genetic reagent
(Mus musculus)

Sf3b1K700E Obeng et al., 2016 Dr. Benjamin
L. Ebert (Brigham
Women’s Hospital,
Boston MA)

Recombinant
DNA reagent
(lentiviral shRNA)

PLKO.1-Puro
(plasmid)

Sigma-Aldrich RRID
:Addgene_10878

Pol III based
shRNA backbone

Recombinant
DNA reagent
(lentiviral shRNA)

PLKO-GFP
(plasmid)

this paper GFP version of
pLKO.1-Puro

Recombinant
DNA reagent
(lentiviral shRNA)

SFFV-Venus-mir30
shRNA (plasmid)

this paper Pol II based
shRNA backbone

Antibody mouse monoclonal
anti-human
CD235a-APC

Thermo Fisher
Scientific

Cat#: 17-9987-42;
RRID:AB_2043823

FACS (5 ul per test)

Antibody mouse monoclonal
anti-human CD71-FITC

Thermo Fisher
Scientific

Cat#: 11-0719-42;
RRID:AB_1724093

FACS (5 ul per test)

Antibody mouse monoclonal
anti-human
CD71-PEcy7

Thermo Fisher
Scientific

Cat#: 25-0719-42;
RRID:AB_2573366

FACS (5 ul per test)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody mouse monoclonal
ant-human CD49d-PE

Miltenyi Biotec Cat#: 130-093-282;
RRID:AB_1036224

FACS (10 ul per test)

Antibody mouse monoclonal
anti-human CD41a-PE

Thermo Fisher
Scientific

Cat#: 12-0419-42;
RRID:AB_10870785

FACS (5 ul per test)

Antibody mouse monoclonal
anti-human CD11b-PE

Thermo Fisher
Scientific

Cat#: 12-0118-42;
RRID:AB_2043799

FACS (5 ul per test)

Antibody Rat monoclonal
anti-mouse Ter119-APC

Thermo Fisher
Scientific

Cat#: 17-5921-82;
RRID:AB_469473

FACS (0.25 ug/test)

Antibody Rat monoclonal
anti-mouse CD71-PE

Thermo Fisher
Scientific

Cat#: 12-0711-82;
RRID:AB_465740

FACS (0.5 ug/test)

Antibody mouse
monoclonal
anti-phospho
STAT5 Alexa
Fluor-647

BD Bioscience Cat#: 612599;
RRID:AB_399882

FACS (1:20)

Antibody mouse
monoclonal
anti-GAPDH

Santa Cruz
Biotechnology

sc-32233;
RRID:AB_627679

Western (1:20,000)

Antibody mouse
monoclonal
anti-TFR2

Santa Cruz
Biotechnology

sc-32271;
RRID:AB_628395

Western (1:200)

Antibody mouse
monoclonal
anti-SF3A2

Santa Cruz
Biotechnology

sc-390444 Western (1:1000)

Sequence-based
reagent

shLUC Sigma-Aldrich TRCN0000072259 5’- CGCTGAGTACT
TCGAAATGTC-3’

Sequence-based
reagent

TFR2 sh1 (human) Sigma-Aldrich TRCN0000063628 5’-GCCAGATCACT
ACGTTGTCAT-3’

Sequence-based
reagent

TFR2 sh2 (human) Sigma-Aldrich TRCN0000063632 5-CAACAACATCT
TCGGCTGCAT-3’

Sequence-based
reagent

SF3A2 sh1 (human) Sigma-Aldrich TRCN0000000060 5’-CTACGAGACCAT
TGCCTTCAA-3’

Sequence-based
reagent

SF3A2 sh2 (human) Sigma-Aldrich TRCN0000000061 5’-CCTGGGCTCCT
ATGAATGCAA-3’

Sequence-based
reagent

SF3A2 sh3 (human) Sigma-Aldrich TRCN0000000062 5’-CAAAGTGACC
AAGCAGAGAGA-3’

Sequence-based
reagent

SF3A2 sh4 (human) Sigma-Aldrich TRCN0000000063 5’-ACATCAACAAG
GACCCGTACT-3’

Commercial
assay or kit

RNeasy Mini Kit QIAGEN Cat#: 74104

Commercial
assay or kit

iScript cDNA
synthesis Kit

Bio-Rad Cat#: 1708891

Commercial
assay or kit

iQ SYBR
Green Supermix

Bio-Rad Cat#: 170–8882

Commercial
assay or kit

NucleoSpin
Blood XL-Maxi kit

Clonetch Cat#: 740950.1

Commercial
assay or kit

Lineage Cell
Depletion Kit
(mouse)

Miltenyi Cat#: 130-090-858

Commercial
assay or kit

Nextera XT
DNA Library
Preparation Kit

Illumina Cat#: FC-131–1096

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Commercial
assay or kit

NextSeq 500/550
High Output Kit
v2.5 (75 Cycles)

Illumina Cat#: 20024906

Commercial
assay or kit

Bioanalyzer High
Sensitivity DNA
Analysis

Agilent Cat#: 5067–4626

Commercial
assay or kit

Agencourt
AMPure XP

Beckman-Coulter Cat#: A63881

Commercial
assay or kit

TaKaRa Ex Taq
DNA Polymerase

Takara Cat#: RR001B

Commercial
assay or kit

Qubit dsDNA
HS Assay Kit

Thermo Fisher Cat#: Q32854

Chemical
compound, drug

Human
Holo-Transferrin

Sigma Aldrich Cat#: T0665-1G

Peptide,
recombinant protein

Humulin R
(insulin)

Lilly NDC 0002-8215-01

Peptide,
recombinant protein

Heparin Hospira NDC 00409-2720-01

Peptide,
recombinant protein

Epogen
(recombinant
erythropoietin)

Amgen NDC 55513-267-10

Peptide,
recombinant protein

Recombinant
human stem
cell factor (SCF)

Peprotech Cat#: 300–07

Peptide,
recombinant protein

Recombinant
human
interleukin-3 (IL-3)

Peprotech Cat#: 200–03

Peptide,
recombinant protein

Recombinant mouse
stem cell factor (SCF)

R&D systems Cat# 455-MC-010

Peptide,
recombinant protein

recombinant
mouse Insulin
like Growth Factor
1 (IGF1)

R&D systems Cat# 791 MG-050

Chemical
compound, drug

Hoechst 33342 Life Technologies Cat#: H1399 FACS (1:1000)

Chemical
compound, drug

Fixation Buffer BD Bioscience Cat#: 554655

Chemical
compound, drug

Perm Buffer III BD Bioscience Cat#: 558050

Chemical
compound, drug

May-Grünwald Stain Sigma-Aldrich Cat#: MG500

Chemical
compound, drug

Giemsa Stain Sigma-Aldrich Cat#: GS500

Software,
algorithm

STAR Dobin et al., 2013 RRID:SCR_015899

Software,
algorithm

MISO Katz et al., 2010 RRID:SCR_003124

Software,
algorithm

R The R Foundation RRID:SCR_001905

Software,
algorithm

Salmon Patro et al., 2017 RRID:SCR_017036

Software,
algorithm

GOrilla Eden et al., 2009 RRID:SCR_006848

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

VEP McLaren et al., 2016 RRID:SCR_007931

Software,
algorithm

FlowJo version 10 FlowJo RRID:SCR_008520

Software,
algorithm

GraphPad Prism 7 GraphPad
Software Inc

RRID:SCR_002798

Software,
algorithm

Python 2, 3 Python
Software
Foundation

RRID:SCR_008394

Software,
algorithm

PLINK Chang et al., 2015 RRID:SCR_001757

Software,
algorithm

PoolQ Broad Institute https://portals.
broadinstitute.org
/gpp/public/software/poolq

Design of the shRNA library
PLINK version 1.9 and 1000 genomes phase one data were utilized to expand 75 SNPs previously

identified in a RBC trait GWAS to include a genomic region in linkage disequilibrium with r2 �0.8.

Each of these regions was then further expanded to the nearest recombination hotspot. All genes in

the Ensembl assembly GRCh37 were expanded to include 110 kb upstream and 40 kb downstream

of the transcription start and end sites, respectively, to maximize capture of non-coding regulatory

interactions, based upon previously published observations. Genes with windows calculated in this

way found to be overlapping with any of the SNP windows were flagged for inclusion in the screen.

In addition, each locus was examined individually, and in cases of gene deserts, unusually proximal

recombination hotspots, or other unusual genomic structures, the SNP region was expanded to

include additional genes nearby. This resulted in a total of 389 test genes, which were each targeted

by 4–7 distinct shRNAs. Also included in the library were shRNAs targeting a set of 8 validated ery-

throid genes (GATA1, RPL5, RPS19, EPOR, ALAS2, CDAN1, SEC23B, ZFPM1). A pooled library of

2803 TRC clones was produced from the sequence-validated TRC shRNA library (Moffat et al.,

2006) and included shRNAs targeting control genes and essential genes.

Pooled shRNA screening
Mobilized peripheral blood CD34+ cells from three separate donors (7 ~ 11 * 106 cells per donor)

were differentiated into erythroid cells using a three-stage system that has been previously

described (Hu et al., 2013). Cells were cultured using IMDM containing 2% human plasma, 3%

human AB serum, 200 mg/ml human holo-transferrin, 3 IU/mL heparin, and 10 mg/mL insulin (base

medium). During days 0 to 7, cells were supplemented with IL-3 (1 ng/mL), SCF (10 ng/ml), and EPO

(3 IU/ml). On day 2 of this culture, cells were transduced with the pooled lentiviral shRNA library pre-

pared by Broad Institute Genetic Perturbation Platform (1 ml of virus per 0.75 * 106 cells) by spinfec-

tion at 2000 rpm for 90 min with 6 mg/ml polybrene. During days 7 to 13, cells were supplemented

with SCF and EPO only. After day 13, cells were supplemented with EPO alone and the holo-trans-

ferrin concentration was increased to 1 mg/ml. A minimum of 10 * 106 cells was re-plated at each

time point to ensure appropriate library representation and prevent bottlenecks among the infected

cells. Cell pellets were made from 20 ~ 80 * 106 cells at days 4, 6, 9, 12, 14, and 16. At the conclu-

sion of the pooled screen, genomic DNA (gDNA) was extracted from the cell pellets using Nucleo-

Spin Blood XL-Maxi kit (Clonetech) according to kit specifications. The shRNA-containing region was

PCR amplified from the purified gDNA and barcoded using the following conditions: 0.5 ml P5

primer mix (100 mM), 10 ml P7 primer mix (5 mM), 8 ml dNTP mix, 1x ExTaq buffer, 1.5 ml of ExTaq

DNA polymerase (Takara), and up to 10 mg genomic DNA in a total reaction volume of 100 ml. A

total of 40 ~ 87.5 mg gDNA was used as template from each condition. Thermal cycler PCR condi-

tions consisted of heating samples to 95˚C for 5 min; 28 cycles of 95˚C for 30 s, 53˚C for 30 s, and

72˚C for 20 s; and 72˚C for 10 min. Equal amounts of samples were then mixed and purified using
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AMPure XP for PCR purification (Beckman Coulter). Samples were sequenced using a custom

sequencing primer using standard Illumina conditions by the Broad Institute Genetic Perturbation

Platform. Sequencing reads were deconvolved and hairpin counts were quantified for subsequent

analysis by counting against the barcode reference using PoolQ

(https://portals.broadinstitute.org/gpp/public/dir/download?dirpath=software&filename=poolq-

2.2.0-manual.pdf).

P5 primer

AATGATACGGCGACCACCGAGATCT

ACACTCTTTCCCTACACGACGCTCTTCCGATCT[s]TCTTGTGGAAAGG*A*C*G*A

A mix of P5 primers with stagger regions [s] of different length was used to maintain sequence

diversity across the flow-cell.

P7 primer

CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTC

TTCCGATCTTCTACTATTCTTTCCCCTGCA*C*T*G*T

Independently barcoded P7 primers was used for each condition.

NNNNNNNN – barcode region

Analysis of the shRNA screen
A jupyter notebook, along with companion data files to reproduce the figures and analysis in this

work, can be found at https://github.com/sankaranlab/shRNA_screen (Nandakumar and McFarland,

2019; copy archived at https://github.com/elifesciences-publications/shRNA_screen). To summarize,

three separate donor primary CD34+ cells populations were run as replicates in the shRNA screen. A

pseudocount of 1 was added to all shRNA-encoding DNA count totals and these counts were subse-

quently normalized to counts per million (CPM) and log2 transformed. A linear mixed model was

constructed to fit fixed effects for each gene at each time point since transfection (t) using the log2

fold change from initial hairpin counts as the response variable (y). A random effect was included to

capture variations in efficacy and off-target effects for each shRNA (h) used to target a given gene

that could accumulate over the course of the experiment. The resulting model, y ~ t + (0 + t|h), was

fit in R-3.4 using the lme4 package. Genes hits were called from the set of genes with b coefficient

effect size >0.1 and the Wald chi-square test adjusted q value < 0.1. Enrichment of erythroid essen-

tial genes within the hit set was calculated by running 1 million permutations against the distribution

of K562 essentiality for all genes included in the library, panels of genes nominated by sets of signifi-

cant GWAS-associated lipid trait SNPs (Global Lipids Genetics Consortium et al., 2013), and

against all genes in the genome (Ensembl GRCh37p9). Coding variants and protein effects (i.e. mis-

sense or nonsense) were annotated based on the Variant Effect Predictor software (https://www.

ensembl.org/vep). Enrichment for identification of the included 5 ‘gold standard’ genes and for red

blood cell trait-associated coding variants were each accomplished using identical permutation

schemes. Expression of the hit genes in various cell states/stages of differentiation was derived from

the cited datasets and permuted across all unique stages to determine stage-specific enrichment.

The interaction network surrounding the 77 hits identified in the screen was generated in the latest

version of STRING (10.5) and filtered for the purposes of display to only those nodes with at least

one edge to another node among the hits. For the comparison with eQTL-based methods of hit

identification, we used the whole blood summary statistics from GTEx and intersected them with

genomic regions in linkage disequilibrium r2 >0.8 with the 75 sentinel SNPs from the van der Harst

et al. study used to identify the library of genes targeted in the screen (see Figure 1A). These

regions were padded to a fixed 100 kb, as many of the regions were small. This yielded 139 genes

that one could argue would be nominated on an eQTL-basis from the total pool of 8661 genes with

a whole blood eQTL. We performed a Fisher’s exact test on the contingency table comparing hits

from our method of nomination with the set of eQTLs and eQTL-nominated genes. There were 35

hits (of the 77 total in our screen) present among the whole eQTL set, but 0 hits found among the

139 genes nominated by using eQTLs from whole blood. The data used for the analyses described

in this manuscript were obtained from the GTEx Portal on 06/01/18.
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RNA-Seq
Stage matched CD71+/ CD235a+ cells derived from CD34+ HSPCs infected with SF3A2 sh3, sh4 and

shLUC were FACS sorted at day 8 of erythroid differentiation. RNA was isolated using a RNAqueous

Micro kit (Invitrogen) according to the manufacturer’s instructions. DNase digestion was performed

before RNA was quantified using a Qubit RNA HS Assay kit (Invitrogen). 1–10 ng of RNA were used

as input to a modified SMART-seq2 (Picelli et al., 2014) protocol and after reverse transcription, 8–

9 cycles of PCR were used to amplify transcriptome library. Quality of whole transcriptome libraries

was validated using a High Sensitivity DNA Chip run on a Bioanalyzer 2100 system (Agilent), fol-

lowed by library preparation using the Nextera XT kit (Illumina) and custom index primers according

to the manufacturer’s instructions. Final libraries were quantified using a Qubit dsDNA HS Assay kit

(Invitrogen) and a high sensitivity DNA chip run on a Bioanalyzer 2100 system (Agilent). All libraries

were sequenced using Nextseq High Output Cartridge kits and a Nextseq 500 sequencer (Illumina).

Libraries were sequenced using 2 � 38 bp paired end reads.

RNA-seq differential expression analysis
For differential expression analysis, paired end sequencing reads from our SF3A2 shRNA knockdown

experiments and obtained from the SF3B1 mutant datasets (Obeng et al., 2016) were quantified

using Salmon version 0.11.1 (Patro et al., 2017) with default parameters and an index constructed

from Gencode annotations version 28. Differential expression of quantified counts was calculated

using DESeq2 (Love et al., 2014) in R-3.4. Enrichment for functions and components of the cell

among the differentially expressed gene sets were quantified using GOrilla (Eden et al., 2007;

Eden et al., 2009).

RNA-seq differential splicing analysis
Paired end sequencing reads from our SF3A2 shRNA knockdown experiments and obtained from

the cited SF3B1 mutant datasets were aligned using STAR version 2.5.2 in two-pass mode. Differen-

tial splicing was quantified using MISO version 0.5.4 in Python 2.7 using the instructions and annota-

tion files provided with the package (Katz et al., 2010). The software’s default cutoff of Bayes factor

of 10 or greater was used to call differential splice forms.

Analysis of hemoglobin levels for MDS patients with or without SF3A2
mutations
Genotyped MDS patient hemoglobin level measurements were obtained from the laboratory of J.

Maciejewski. 1000GENOMES phase three data were used to find a SNP encoded in whole-exome

sequencing data (rs25672) in high LD (r2 = 0.737675) with the SF3A2-associated sentinel SNP

(rs2159213). An ordinary least squares linear regression was used to fit the patient hemoglobin levels

to the number of SF3A2 minor alleles present in each patient (log likelihood ratio test p=0.140).

Phosphorylated STAT5 assessment with intracellular flow cytometry
UT-7/EPO cells were cultured in DMEM medium supplemented with 10% Fetal Bovine Serum and 2

U/mL EPO. 5 days post-infection with TFR2 shRNAs, UT-7/EPO cells were cytokine starved over-

night. On the next day, cells were treated with EPO in a dose dependent manner ((0 U/mL, 0.002 U/

mL, 0.02 U/mL, 0.2 U/mL, 2 U/mL, 20 U/mL and 200 U/mL) and incubated 37˚C for 30 min. Alterna-

tively the cells were treated with 2 U/ml EPO in a time dependent manner (15, 30, 60, 120,180 min).

Treated cells were gently mixed with pre-warmed Fixation Buffer (BD Bioscience) at 37˚C for 10 min

to fix cells. To permeabilize cells for intracellular staining, cells were resuspended in pre-chilled Perm

Buffer III (BD Bioscience) for 30 min at 4˚C. After three washes with 3% FBS in PBS, samples were

stained either with Alexa Fluor-647 Mouse Anti-phospho-STAT5 (pY694; 1:20 dilution) for 1 hr in the

dark at room temperature. A BD Accuri C6 Cytometer (BD Bioscience) was used to acquire mean

fluorescent intensity (MFI) of phospho-STAT5-Alexa Fluor 647. The MFI of phospho-STAT5-Alexa

Fluor 647 of gated single cells was calculated using FlowJo (version 10.0.8r1). Unstimulated UT7/

EPO cells were used as a negative control.
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May-Grünwald-Giemsa staining
Approximately 50,000–200,000 cells were harvested, washed once at 300 x g for 5 min, resuspended

in 200 mL FACS buffer and spun onto poly-L-lysine coated glass slides (Sigma Aldrich) with a Shan-

don 4 (Thermo Fisher) cytocentrifuge at 300 rpm for 4 min. Visibly dry slides were stained with May-

Grünwald solution for 5 min, rinsed four times for each 30 s in H2O, transferred to Giemsa solution

for 15 min and washed as described above. Slides were dried overnight and mounted with coverslip.

All images were taken with AxioVision software (Zeiss) at 100 x magnification.

Mouse erythroid differentiation culture
Bone marrow cells that were isolated from Sf3b1K700E +/- mice and littermate controls were lineage

depleted using the Lineage Cell Depletion Kit, mouse (Miltenyi Biotech) according to manufacturer’s

protocols. Lineage negative cells were immediately transduced with lentiviral shRNAs targeting

SF3A2 or controls (MOI �90) by spinfection at 2000 rpm for 90 min. The cells were cultured in ery-

throid maintenance medium (StemSpan-SFEM; StemCell Technologies) supplemented with 100 ng/

mL recombinant mouse stem cell factor (SCF) (R&D Systems), 40 ng/mL recombinant mouse IGF1

(R&D Systems), 100 nM dexamethasone (Sigma), and 2 U/mL erythropoietin (Amgen) and cultured

at 37˚C for 36 hr. Following this, the cells were cultured for another 48 hr in erythroid differentiation

medium (Iscove modified Dulbecco’s medium containing 15% (vol/vol) FBS (Stemcell), 1% detoxified

BSA (Stemcell), 500 mg/mL holo-transferrin (Sigma-Aldrich), 0.5 U/mL Epoetin (Epo; Amgen), 10 mg/

mL recombinant human insulin (Sigma-Aldrich), and 2 mM L-glutamine (Invitrogen)) at 37˚C.

Flow cytometry analyses and antibodies
All flow cytometry data were acquired using either using LSR II SORP or LSR Fortessa flow cytome-

ters (BD Biosciences). All staining was carried out in FACS buffer (2% FBS in PBS) for 30 min on ice

unless otherwise described. The following antibodies were used anti-human CD235a-APC (eBio-

science, Clone HIR2), anti-human CD71-FITC (eBioscience, Clone OKT9), anti-human CD71-PEcy7

(eBioscience, Clone OKT9), ant-human CD49d-PE (Miltenyi, Clone MZ18-24A9), anti-human CD41a-

PE (eBioscience, Clone HIP8), anti-human CD11b-PE (eBioscience, Clone ICRF44), anti-mouse

Ter119-APC (eBioscience, Clone TER119), anti-mouse CD71-PE (eBioscience, Clone R17217) and

Alexa Fluor-647 anti-phospho STAT5 (pY694) (BD Bioscience Cat#: 612599). Hoechst 33342 (Life

Technologies, H1399) was used to visualize nuclei.

shRNA sequences
The following lentiviral shRNA constructs were generated in Polymerase III based shRNA backbone

pLKO.1-puro (Sigma Aldrich).

shLUC

5’-CCGGCGCTGAGTACTTCGAAATGTCCTCGAGGACATTTCGAAGTACTCAGCGTTTTTG-3’

TFR2 sh1

5’-CCGGGCCAGATCACTACGTTGTCATCTCGAGATGACAACGTAGTGATCTGGCTTTTTG-3

TFR2 sh2

5’-CCGGCAACAACATCTTCGGCTGCATCTCGAGATGCAGCCGAAGATGTTGTTGTTTTTG-3’

SF3A2 sh1 (human)

5’-CCGGCTACGAGACCATTGCCTTCAACTCGAGTTGAAGGCAATGGTCTCGTAGTTTTT-3

SF3A2 sh2 (human)

5’-CCGGCCTGGGCTCCTATGAATGCAACTCGAGTTGCATTCATAGGAGCCCAGGTTTTT-3’

SF3A2 sh3 (human)

5’-CCGGCAAAGTGACCAAGCAGAGAGACTCGAGTCTCTCTGCTTGGTCACTTTGTTTTT-3

SF3A2 sh4 (human)

5’-CCGGACATCAACAAGGACCCGTACTCTCGAGAGTACGGGTCCTTGTTGATGTTTTTT-3’

The following lentiviral shRNA constructs were generated in Polymerase II based mir30 shRNA

backbone developed in the lab SFFV-Venus-mir30 shRNA backbone.

shNT(non-targeting)

5’_TGCTGTTGACAGTGAGCGATCTCGCTTGGGCGAGAGTAAGTAGTGAAGCCACAGATGTAC

TTACTCTCGCCCAAGCGAGAGTGCCTACTGCCTCGGA_3’

Sf3a2 sh1 (mouse)
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5’_TGCTGTTGACAGTGAGCGCGGAGGTGAAGAAGTTTGTGAATAGTGAAGCCACAGATGTA

TTCACAAACTTCTTCACCTCCATGCCTACTGCCTCGGA_3’

Sf3a2 sh2 (mouse)

5’_TGCTGTTGACAGTGAGCGACCACCGTTTCATGTCTGCTTATAGTGAAGCCACAGATGTA

TAAGCAGACATGAAACGGTGGCTGCCTACTGCCTCGGA_3’

Sf3a2 sh3 (mouse)

5’_TGCTGTTGACAGTGAGCGATCCTGCCTTGAGCCTATTAAATAGTGAAGCCACAGATGTA

TTTAATAGGCTCAAGGCAGGACTGCCTACTGCCTCGGA_3’

Sf3a2 sh4 (mouse)

5’_TGCTGTTGACAGTGAGCGACCACTGGAACAGAGAAACCAATAGTGAAGCCACAGATGTA

TTGGTTTCTCTGTTCCAGTGGGTGCCTACTGCCTCGGA_3’

Sf3a2 sh5 (mouse)

5’_TGCTGTTGACAGTGAGCGATGGAGGTGAAGAAGTTTGTGATAGTGAAGCCACAGATGTA

TCACAAACTTCTTCACCTCCACTGCCTACTGCCTCGGA_3’

sgRNA sequences
The following sgRNA sequences targeting a variant in the Duffy promoter were cloned into SpCas9

and KRAB-dcas9 constructs.

Duffy sgRNA 3: 5’-GGCCCGCAGACAGAAGGGCT-3’

Duffy sgRNA 5: 5’-GGGCCATCAGGTTCTGGGCA-3’

Control sgRNA: 5’-ATCGCGAGGACCCGTTCCGCC-3’

qPCR primers
TFR2 Fwd: 5’-ATCCTTCCCTCTTCCCTCCC-3’

TFR2 Rev: 5’-CCATCCAGCCACATGGTTCT-3

SF3A2 Fwd: 5’-CCTGAGAAGGTCAAGGTGGA-3’

SF3A2 Rev: 5’-CTCCGAGTCTCTCTGCTTGG-3’

Western blot antibodies
Anti-GAPDH (Santa Cruz Biotechnology, sc-32233); anti-TFR2 (Santa Cruz Biotechnology, sc- sc-

32271); anti-SF3A2 (Santa Cruz Biotechnology, sc-390444).

Source data
Important data associated with figures in the manuscript are included below. For a full set of data-

sets and resources used in the analyses, please see the companion GitHub repository (https://

github.com/sankaranlab/shRNA_screen).
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M, Boucher G, Anderson CA, Andersen V, Cleynen I, Cortes A, Crins F, D’Amato M, Deffontaine V, Dmitrieva J,
Docampo E, Elansary M, Farh KK, Franke A, Gori AS, Goyette P, Halfvarson J, et al. 2017. Fine-mapping
inflammatory bowel disease loci to single-variant resolution. Nature 547:173–178. DOI: https://doi.org/10.
1038/nature22969, PMID: 28658209

International Inflammatory Bowel Disease Genetics Constortium, Rossin EJ, Lage K, Raychaudhuri S, Xavier
RJ, Tatar D, Benita Y, Cotsapas C, Daly MJ. 2011. Proteins encoded in genomic regions associated with
immune-mediated disease physically interact and suggest underlying biology. PLOS Genetics 7:e1001273.
DOI: https://doi.org/10.1371/journal.pgen.1001273, PMID: 21249183

Jing H, Vakoc CR, Ying L, Mandat S, Wang H, Zheng X, Blobel GA. 2008. Exchange of GATA factors mediates
transitions in looped chromatin organization at a developmentally regulated gene locus. Molecular Cell 29:
232–242. DOI: https://doi.org/10.1016/j.molcel.2007.11.020, PMID: 18243117

Katz Y, Wang ET, Airoldi EM, Burge CB. 2010. Analysis and design of RNA sequencing experiments for
identifying isoform regulation. Nature Methods 7:1009–1015. DOI: https://doi.org/10.1038/nmeth.1528,
PMID: 21057496

Khajuria RK, Munschauer M, Ulirsch JC, Fiorini C, Ludwig LS, McFarland SK, Abdulhay NJ, Specht H, Keshishian
H, Mani DR, Jovanovic M, Ellis SR, Fulco CP, Engreitz JM, Schütz S, Lian J, Gripp KW, Weinberg OK, Pinkus
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